| author | paulson | 
| Fri, 26 Jun 1998 15:16:14 +0200 | |
| changeset 5089 | f95e0a6eb775 | 
| parent 5067 | 62b6288e6005 | 
| child 5137 | 60205b0de9b9 | 
| permissions | -rw-r--r-- | 
| 1461 | 1 | (* Title: ZF/fixedpt.ML | 
| 0 | 2 | ID: $Id$ | 
| 1461 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 4 | Copyright 1992 University of Cambridge | 
| 5 | ||
| 6 | For fixedpt.thy. Least and greatest fixed points; the Knaster-Tarski Theorem | |
| 7 | ||
| 8 | Proved in the lattice of subsets of D, namely Pow(D), with Inter as glb | |
| 9 | *) | |
| 10 | ||
| 11 | open Fixedpt; | |
| 12 | ||
| 13 | (*** Monotone operators ***) | |
| 14 | ||
| 15 | val prems = goalw Fixedpt.thy [bnd_mono_def] | |
| 16 | "[| h(D)<=D; \ | |
| 17 | \ !!W X. [| W<=D; X<=D; W<=X |] ==> h(W) <= h(X) \ | |
| 18 | \ |] ==> bnd_mono(D,h)"; | |
| 19 | by (REPEAT (ares_tac (prems@[conjI,allI,impI]) 1 | |
| 20 | ORELSE etac subset_trans 1)); | |
| 760 | 21 | qed "bnd_monoI"; | 
| 0 | 22 | |
| 23 | val [major] = goalw Fixedpt.thy [bnd_mono_def] "bnd_mono(D,h) ==> h(D) <= D"; | |
| 24 | by (rtac (major RS conjunct1) 1); | |
| 760 | 25 | qed "bnd_monoD1"; | 
| 0 | 26 | |
| 27 | val major::prems = goalw Fixedpt.thy [bnd_mono_def] | |
| 28 | "[| bnd_mono(D,h); W<=X; X<=D |] ==> h(W) <= h(X)"; | |
| 29 | by (rtac (major RS conjunct2 RS spec RS spec RS mp RS mp) 1); | |
| 30 | by (REPEAT (resolve_tac prems 1)); | |
| 760 | 31 | qed "bnd_monoD2"; | 
| 0 | 32 | |
| 33 | val [major,minor] = goal Fixedpt.thy | |
| 34 | "[| bnd_mono(D,h); X<=D |] ==> h(X) <= D"; | |
| 35 | by (rtac (major RS bnd_monoD2 RS subset_trans) 1); | |
| 36 | by (rtac (major RS bnd_monoD1) 3); | |
| 37 | by (rtac minor 1); | |
| 38 | by (rtac subset_refl 1); | |
| 760 | 39 | qed "bnd_mono_subset"; | 
| 0 | 40 | |
| 5067 | 41 | Goal "!!A B. [| bnd_mono(D,h); A <= D; B <= D |] ==> \ | 
| 0 | 42 | \ h(A) Un h(B) <= h(A Un B)"; | 
| 43 | by (REPEAT (ares_tac [Un_upper1, Un_upper2, Un_least] 1 | |
| 44 | ORELSE etac bnd_monoD2 1)); | |
| 760 | 45 | qed "bnd_mono_Un"; | 
| 0 | 46 | |
| 47 | (*Useful??*) | |
| 5067 | 48 | Goal "!!A B. [| bnd_mono(D,h); A <= D; B <= D |] ==> \ | 
| 0 | 49 | \ h(A Int B) <= h(A) Int h(B)"; | 
| 50 | by (REPEAT (ares_tac [Int_lower1, Int_lower2, Int_greatest] 1 | |
| 51 | ORELSE etac bnd_monoD2 1)); | |
| 760 | 52 | qed "bnd_mono_Int"; | 
| 0 | 53 | |
| 54 | (**** Proof of Knaster-Tarski Theorem for the lfp ****) | |
| 55 | ||
| 56 | (*lfp is contained in each pre-fixedpoint*) | |
| 5067 | 57 | Goalw [lfp_def] | 
| 744 | 58 | "!!A. [| h(A) <= A; A<=D |] ==> lfp(D,h) <= A"; | 
| 3016 | 59 | by (Blast_tac 1); | 
| 744 | 60 | (*or by (rtac (PowI RS CollectI RS Inter_lower) 1); *) | 
| 760 | 61 | qed "lfp_lowerbound"; | 
| 0 | 62 | |
| 63 | (*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*) | |
| 5067 | 64 | Goalw [lfp_def,Inter_def] "lfp(D,h) <= D"; | 
| 3016 | 65 | by (Blast_tac 1); | 
| 760 | 66 | qed "lfp_subset"; | 
| 0 | 67 | |
| 68 | (*Used in datatype package*) | |
| 69 | val [rew] = goal Fixedpt.thy "A==lfp(D,h) ==> A <= D"; | |
| 70 | by (rewtac rew); | |
| 71 | by (rtac lfp_subset 1); | |
| 760 | 72 | qed "def_lfp_subset"; | 
| 0 | 73 | |
| 74 | val prems = goalw Fixedpt.thy [lfp_def] | |
| 75 | "[| h(D) <= D; !!X. [| h(X) <= X; X<=D |] ==> A<=X |] ==> \ | |
| 76 | \ A <= lfp(D,h)"; | |
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 77 | by (rtac (Pow_top RS CollectI RS Inter_greatest) 1); | 
| 0 | 78 | by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [CollectE,PowD] 1)); | 
| 760 | 79 | qed "lfp_greatest"; | 
| 0 | 80 | |
| 81 | val hmono::prems = goal Fixedpt.thy | |
| 82 | "[| bnd_mono(D,h); h(A)<=A; A<=D |] ==> h(lfp(D,h)) <= A"; | |
| 83 | by (rtac (hmono RS bnd_monoD2 RS subset_trans) 1); | |
| 84 | by (rtac lfp_lowerbound 1); | |
| 85 | by (REPEAT (resolve_tac prems 1)); | |
| 760 | 86 | qed "lfp_lemma1"; | 
| 0 | 87 | |
| 88 | val [hmono] = goal Fixedpt.thy | |
| 89 | "bnd_mono(D,h) ==> h(lfp(D,h)) <= lfp(D,h)"; | |
| 90 | by (rtac (bnd_monoD1 RS lfp_greatest) 1); | |
| 91 | by (rtac lfp_lemma1 2); | |
| 92 | by (REPEAT (ares_tac [hmono] 1)); | |
| 760 | 93 | qed "lfp_lemma2"; | 
| 0 | 94 | |
| 95 | val [hmono] = goal Fixedpt.thy | |
| 96 | "bnd_mono(D,h) ==> lfp(D,h) <= h(lfp(D,h))"; | |
| 97 | by (rtac lfp_lowerbound 1); | |
| 98 | by (rtac (hmono RS bnd_monoD2) 1); | |
| 99 | by (rtac (hmono RS lfp_lemma2) 1); | |
| 100 | by (rtac (hmono RS bnd_mono_subset) 2); | |
| 101 | by (REPEAT (rtac lfp_subset 1)); | |
| 760 | 102 | qed "lfp_lemma3"; | 
| 0 | 103 | |
| 104 | val prems = goal Fixedpt.thy | |
| 105 | "bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))"; | |
| 106 | by (REPEAT (resolve_tac (prems@[equalityI,lfp_lemma2,lfp_lemma3]) 1)); | |
| 760 | 107 | qed "lfp_Tarski"; | 
| 0 | 108 | |
| 109 | (*Definition form, to control unfolding*) | |
| 110 | val [rew,mono] = goal Fixedpt.thy | |
| 111 | "[| A==lfp(D,h); bnd_mono(D,h) |] ==> A = h(A)"; | |
| 112 | by (rewtac rew); | |
| 113 | by (rtac (mono RS lfp_Tarski) 1); | |
| 760 | 114 | qed "def_lfp_Tarski"; | 
| 0 | 115 | |
| 116 | (*** General induction rule for least fixedpoints ***) | |
| 117 | ||
| 118 | val [hmono,indstep] = goal Fixedpt.thy | |
| 119 | "[| bnd_mono(D,h); !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \ | |
| 120 | \ |] ==> h(Collect(lfp(D,h),P)) <= Collect(lfp(D,h),P)"; | |
| 121 | by (rtac subsetI 1); | |
| 122 | by (rtac CollectI 1); | |
| 123 | by (etac indstep 2); | |
| 124 | by (rtac (hmono RS lfp_lemma2 RS subsetD) 1); | |
| 125 | by (rtac (hmono RS bnd_monoD2 RS subsetD) 1); | |
| 126 | by (REPEAT (ares_tac [Collect_subset, lfp_subset] 1)); | |
| 760 | 127 | qed "Collect_is_pre_fixedpt"; | 
| 0 | 128 | |
| 129 | (*This rule yields an induction hypothesis in which the components of a | |
| 130 | data structure may be assumed to be elements of lfp(D,h)*) | |
| 131 | val prems = goal Fixedpt.thy | |
| 1461 | 132 | "[| bnd_mono(D,h); a : lfp(D,h); \ | 
| 133 | \ !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \ | |
| 0 | 134 | \ |] ==> P(a)"; | 
| 135 | by (rtac (Collect_is_pre_fixedpt RS lfp_lowerbound RS subsetD RS CollectD2) 1); | |
| 136 | by (rtac (lfp_subset RS (Collect_subset RS subset_trans)) 3); | |
| 137 | by (REPEAT (ares_tac prems 1)); | |
| 760 | 138 | qed "induct"; | 
| 0 | 139 | |
| 140 | (*Definition form, to control unfolding*) | |
| 141 | val rew::prems = goal Fixedpt.thy | |
| 142 | "[| A == lfp(D,h); bnd_mono(D,h); a:A; \ | |
| 143 | \ !!x. x : h(Collect(A,P)) ==> P(x) \ | |
| 144 | \ |] ==> P(a)"; | |
| 145 | by (rtac induct 1); | |
| 146 | by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1)); | |
| 760 | 147 | qed "def_induct"; | 
| 0 | 148 | |
| 149 | (*This version is useful when "A" is not a subset of D; | |
| 150 | second premise could simply be h(D Int A) <= D or !!X. X<=D ==> h(X)<=D *) | |
| 151 | val [hsub,hmono] = goal Fixedpt.thy | |
| 152 | "[| h(D Int A) <= A; bnd_mono(D,h) |] ==> lfp(D,h) <= A"; | |
| 153 | by (rtac (lfp_lowerbound RS subset_trans) 1); | |
| 154 | by (rtac (hmono RS bnd_mono_subset RS Int_greatest) 1); | |
| 155 | by (REPEAT (resolve_tac [hsub,Int_lower1,Int_lower2] 1)); | |
| 760 | 156 | qed "lfp_Int_lowerbound"; | 
| 0 | 157 | |
| 158 | (*Monotonicity of lfp, where h precedes i under a domain-like partial order | |
| 159 | monotonicity of h is not strictly necessary; h must be bounded by D*) | |
| 160 | val [hmono,imono,subhi] = goal Fixedpt.thy | |
| 1461 | 161 | "[| bnd_mono(D,h); bnd_mono(E,i); \ | 
| 0 | 162 | \ !!X. X<=D ==> h(X) <= i(X) |] ==> lfp(D,h) <= lfp(E,i)"; | 
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 163 | by (rtac (bnd_monoD1 RS lfp_greatest) 1); | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 164 | by (rtac imono 1); | 
| 0 | 165 | by (rtac (hmono RSN (2, lfp_Int_lowerbound)) 1); | 
| 166 | by (rtac (Int_lower1 RS subhi RS subset_trans) 1); | |
| 167 | by (rtac (imono RS bnd_monoD2 RS subset_trans) 1); | |
| 168 | by (REPEAT (ares_tac [Int_lower2] 1)); | |
| 760 | 169 | qed "lfp_mono"; | 
| 0 | 170 | |
| 171 | (*This (unused) version illustrates that monotonicity is not really needed, | |
| 172 | but both lfp's must be over the SAME set D; Inter is anti-monotonic!*) | |
| 173 | val [isubD,subhi] = goal Fixedpt.thy | |
| 174 | "[| i(D) <= D; !!X. X<=D ==> h(X) <= i(X) |] ==> lfp(D,h) <= lfp(D,i)"; | |
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 175 | by (rtac lfp_greatest 1); | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 176 | by (rtac isubD 1); | 
| 0 | 177 | by (rtac lfp_lowerbound 1); | 
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 178 | by (etac (subhi RS subset_trans) 1); | 
| 0 | 179 | by (REPEAT (assume_tac 1)); | 
| 760 | 180 | qed "lfp_mono2"; | 
| 0 | 181 | |
| 182 | ||
| 183 | (**** Proof of Knaster-Tarski Theorem for the gfp ****) | |
| 184 | ||
| 185 | (*gfp contains each post-fixedpoint that is contained in D*) | |
| 186 | val prems = goalw Fixedpt.thy [gfp_def] | |
| 187 | "[| A <= h(A); A<=D |] ==> A <= gfp(D,h)"; | |
| 188 | by (rtac (PowI RS CollectI RS Union_upper) 1); | |
| 189 | by (REPEAT (resolve_tac prems 1)); | |
| 760 | 190 | qed "gfp_upperbound"; | 
| 0 | 191 | |
| 5067 | 192 | Goalw [gfp_def] "gfp(D,h) <= D"; | 
| 3016 | 193 | by (Blast_tac 1); | 
| 760 | 194 | qed "gfp_subset"; | 
| 0 | 195 | |
| 196 | (*Used in datatype package*) | |
| 197 | val [rew] = goal Fixedpt.thy "A==gfp(D,h) ==> A <= D"; | |
| 198 | by (rewtac rew); | |
| 199 | by (rtac gfp_subset 1); | |
| 760 | 200 | qed "def_gfp_subset"; | 
| 0 | 201 | |
| 202 | val hmono::prems = goalw Fixedpt.thy [gfp_def] | |
| 203 | "[| bnd_mono(D,h); !!X. [| X <= h(X); X<=D |] ==> X<=A |] ==> \ | |
| 204 | \ gfp(D,h) <= A"; | |
| 205 | by (fast_tac (subset_cs addIs ((hmono RS bnd_monoD1)::prems)) 1); | |
| 760 | 206 | qed "gfp_least"; | 
| 0 | 207 | |
| 208 | val hmono::prems = goal Fixedpt.thy | |
| 209 | "[| bnd_mono(D,h); A<=h(A); A<=D |] ==> A <= h(gfp(D,h))"; | |
| 210 | by (rtac (hmono RS bnd_monoD2 RSN (2,subset_trans)) 1); | |
| 211 | by (rtac gfp_subset 3); | |
| 212 | by (rtac gfp_upperbound 2); | |
| 213 | by (REPEAT (resolve_tac prems 1)); | |
| 760 | 214 | qed "gfp_lemma1"; | 
| 0 | 215 | |
| 216 | val [hmono] = goal Fixedpt.thy | |
| 217 | "bnd_mono(D,h) ==> gfp(D,h) <= h(gfp(D,h))"; | |
| 218 | by (rtac gfp_least 1); | |
| 219 | by (rtac gfp_lemma1 2); | |
| 220 | by (REPEAT (ares_tac [hmono] 1)); | |
| 760 | 221 | qed "gfp_lemma2"; | 
| 0 | 222 | |
| 223 | val [hmono] = goal Fixedpt.thy | |
| 224 | "bnd_mono(D,h) ==> h(gfp(D,h)) <= gfp(D,h)"; | |
| 225 | by (rtac gfp_upperbound 1); | |
| 226 | by (rtac (hmono RS bnd_monoD2) 1); | |
| 227 | by (rtac (hmono RS gfp_lemma2) 1); | |
| 228 | by (REPEAT (rtac ([hmono, gfp_subset] MRS bnd_mono_subset) 1)); | |
| 760 | 229 | qed "gfp_lemma3"; | 
| 0 | 230 | |
| 231 | val prems = goal Fixedpt.thy | |
| 232 | "bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))"; | |
| 233 | by (REPEAT (resolve_tac (prems@[equalityI,gfp_lemma2,gfp_lemma3]) 1)); | |
| 760 | 234 | qed "gfp_Tarski"; | 
| 0 | 235 | |
| 236 | (*Definition form, to control unfolding*) | |
| 237 | val [rew,mono] = goal Fixedpt.thy | |
| 238 | "[| A==gfp(D,h); bnd_mono(D,h) |] ==> A = h(A)"; | |
| 239 | by (rewtac rew); | |
| 240 | by (rtac (mono RS gfp_Tarski) 1); | |
| 760 | 241 | qed "def_gfp_Tarski"; | 
| 0 | 242 | |
| 243 | ||
| 244 | (*** Coinduction rules for greatest fixed points ***) | |
| 245 | ||
| 246 | (*weak version*) | |
| 5067 | 247 | Goal "!!X h. [| a: X; X <= h(X); X <= D |] ==> a : gfp(D,h)"; | 
| 0 | 248 | by (REPEAT (ares_tac [gfp_upperbound RS subsetD] 1)); | 
| 760 | 249 | qed "weak_coinduct"; | 
| 0 | 250 | |
| 251 | val [subs_h,subs_D,mono] = goal Fixedpt.thy | |
| 252 | "[| X <= h(X Un gfp(D,h)); X <= D; bnd_mono(D,h) |] ==> \ | |
| 253 | \ X Un gfp(D,h) <= h(X Un gfp(D,h))"; | |
| 254 | by (rtac (subs_h RS Un_least) 1); | |
| 255 | by (rtac (mono RS gfp_lemma2 RS subset_trans) 1); | |
| 256 | by (rtac (Un_upper2 RS subset_trans) 1); | |
| 257 | by (rtac ([mono, subs_D, gfp_subset] MRS bnd_mono_Un) 1); | |
| 760 | 258 | qed "coinduct_lemma"; | 
| 0 | 259 | |
| 260 | (*strong version*) | |
| 5067 | 261 | Goal | 
| 0 | 262 | "!!X D. [| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D |] ==> \ | 
| 263 | \ a : gfp(D,h)"; | |
| 647 
fb7345cccddc
ZF/Fixedpt/coinduct: modified proof to suppress deep unification
 lcp parents: 
484diff
changeset | 264 | by (rtac weak_coinduct 1); | 
| 
fb7345cccddc
ZF/Fixedpt/coinduct: modified proof to suppress deep unification
 lcp parents: 
484diff
changeset | 265 | by (etac coinduct_lemma 2); | 
| 0 | 266 | by (REPEAT (ares_tac [gfp_subset, UnI1, Un_least] 1)); | 
| 760 | 267 | qed "coinduct"; | 
| 0 | 268 | |
| 269 | (*Definition form, to control unfolding*) | |
| 270 | val rew::prems = goal Fixedpt.thy | |
| 271 | "[| A == gfp(D,h); bnd_mono(D,h); a: X; X <= h(X Un A); X <= D |] ==> \ | |
| 272 | \ a : A"; | |
| 273 | by (rewtac rew); | |
| 274 | by (rtac coinduct 1); | |
| 275 | by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1)); | |
| 760 | 276 | qed "def_coinduct"; | 
| 0 | 277 | |
| 278 | (*Lemma used immediately below!*) | |
| 279 | val [subsA,XimpP] = goal ZF.thy | |
| 280 | "[| X <= A; !!z. z:X ==> P(z) |] ==> X <= Collect(A,P)"; | |
| 281 | by (rtac (subsA RS subsetD RS CollectI RS subsetI) 1); | |
| 282 | by (assume_tac 1); | |
| 283 | by (etac XimpP 1); | |
| 760 | 284 | qed "subset_Collect"; | 
| 0 | 285 | |
| 286 | (*The version used in the induction/coinduction package*) | |
| 287 | val prems = goal Fixedpt.thy | |
| 288 | "[| A == gfp(D, %w. Collect(D,P(w))); bnd_mono(D, %w. Collect(D,P(w))); \ | |
| 289 | \ a: X; X <= D; !!z. z: X ==> P(X Un A, z) |] ==> \ | |
| 290 | \ a : A"; | |
| 291 | by (rtac def_coinduct 1); | |
| 292 | by (REPEAT (ares_tac (subset_Collect::prems) 1)); | |
| 760 | 293 | qed "def_Collect_coinduct"; | 
| 0 | 294 | |
| 295 | (*Monotonicity of gfp!*) | |
| 296 | val [hmono,subde,subhi] = goal Fixedpt.thy | |
| 1461 | 297 | "[| bnd_mono(D,h); D <= E; \ | 
| 0 | 298 | \ !!X. X<=D ==> h(X) <= i(X) |] ==> gfp(D,h) <= gfp(E,i)"; | 
| 299 | by (rtac gfp_upperbound 1); | |
| 300 | by (rtac (hmono RS gfp_lemma2 RS subset_trans) 1); | |
| 301 | by (rtac (gfp_subset RS subhi) 1); | |
| 302 | by (rtac ([gfp_subset, subde] MRS subset_trans) 1); | |
| 760 | 303 | qed "gfp_mono"; | 
| 0 | 304 |