| author | paulson | 
| Fri, 26 Jun 1998 15:16:14 +0200 | |
| changeset 5089 | f95e0a6eb775 | 
| parent 3940 | 1d5bee4d047f | 
| child 6068 | 2d8f3e1f1151 | 
| permissions | -rw-r--r-- | 
| 615 | 1 | (* Title: ZF/ZF.thy | 
| 0 | 2 | ID: $Id$ | 
| 3 | Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | ||
| 6 | Zermelo-Fraenkel Set Theory | |
| 7 | *) | |
| 8 | ||
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 9 | ZF = FOL + Let + | 
| 0 | 10 | |
| 3906 | 11 | global | 
| 12 | ||
| 0 | 13 | types | 
| 615 | 14 | i | 
| 0 | 15 | |
| 16 | arities | |
| 17 | i :: term | |
| 18 | ||
| 19 | consts | |
| 20 | ||
| 1401 | 21 |   "0"         :: i                  ("0")   (*the empty set*)
 | 
| 22 | Pow :: i => i (*power sets*) | |
| 23 | Inf :: i (*infinite set*) | |
| 0 | 24 | |
| 25 | (* Bounded Quantifiers *) | |
| 26 | ||
| 1401 | 27 | Ball, Bex :: [i, i => o] => o | 
| 0 | 28 | |
| 29 | (* General Union and Intersection *) | |
| 30 | ||
| 1401 | 31 | Union,Inter :: i => i | 
| 0 | 32 | |
| 33 | (* Variations on Replacement *) | |
| 34 | ||
| 1401 | 35 | PrimReplace :: [i, [i, i] => o] => i | 
| 36 | Replace :: [i, [i, i] => o] => i | |
| 37 | RepFun :: [i, i => i] => i | |
| 38 | Collect :: [i, i => o] => i | |
| 0 | 39 | |
| 40 | (* Descriptions *) | |
| 41 | ||
| 1401 | 42 | The :: (i => o) => i (binder "THE " 10) | 
| 43 | if :: [o, i, i] => i | |
| 0 | 44 | |
| 45 | (* Finite Sets *) | |
| 46 | ||
| 1401 | 47 | Upair, cons :: [i, i] => i | 
| 48 | succ :: i => i | |
| 0 | 49 | |
| 615 | 50 | (* Ordered Pairing *) | 
| 0 | 51 | |
| 1401 | 52 | Pair :: [i, i] => i | 
| 53 | fst, snd :: i => i | |
| 54 | split :: [[i, i] => 'a, i] => 'a::logic (*for pattern-matching*) | |
| 0 | 55 | |
| 56 | (* Sigma and Pi Operators *) | |
| 57 | ||
| 1401 | 58 | Sigma, Pi :: [i, i => i] => i | 
| 0 | 59 | |
| 60 | (* Relations and Functions *) | |
| 61 | ||
| 1401 | 62 | domain :: i => i | 
| 63 | range :: i => i | |
| 64 | field :: i => i | |
| 65 | converse :: i => i | |
| 1478 | 66 | function :: i => o (*is a relation a function?*) | 
| 1401 | 67 | Lambda :: [i, i => i] => i | 
| 68 | restrict :: [i, i] => i | |
| 0 | 69 | |
| 70 | (* Infixes in order of decreasing precedence *) | |
| 71 | ||
| 1401 | 72 | "``" :: [i, i] => i (infixl 90) (*image*) | 
| 73 | "-``" :: [i, i] => i (infixl 90) (*inverse image*) | |
| 74 | "`" :: [i, i] => i (infixl 90) (*function application*) | |
| 75 | (*"*" :: [i, i] => i (infixr 80) (*Cartesian product*)*) | |
| 76 | "Int" :: [i, i] => i (infixl 70) (*binary intersection*) | |
| 77 | "Un" :: [i, i] => i (infixl 65) (*binary union*) | |
| 78 | "-" :: [i, i] => i (infixl 65) (*set difference*) | |
| 79 | (*"->" :: [i, i] => i (infixr 60) (*function space*)*) | |
| 80 | "<=" :: [i, i] => o (infixl 50) (*subset relation*) | |
| 81 | ":" :: [i, i] => o (infixl 50) (*membership relation*) | |
| 82 | (*"~:" :: [i, i] => o (infixl 50) (*negated membership relation*)*) | |
| 0 | 83 | |
| 84 | ||
| 615 | 85 | types | 
| 86 | is | |
| 3692 | 87 | patterns | 
| 615 | 88 | |
| 89 | syntax | |
| 1401 | 90 |   ""          :: i => is                   ("_")
 | 
| 91 |   "@Enum"     :: [i, is] => is             ("_,/ _")
 | |
| 92 | "~:" :: [i, i] => o (infixl 50) | |
| 93 |   "@Finset"   :: is => i                   ("{(_)}")
 | |
| 94 |   "@Tuple"    :: [i, is] => i              ("<(_,/ _)>")
 | |
| 95 |   "@Collect"  :: [pttrn, i, o] => i        ("(1{_: _ ./ _})")
 | |
| 96 |   "@Replace"  :: [pttrn, pttrn, i, o] => i ("(1{_ ./ _: _, _})")
 | |
| 97 |   "@RepFun"   :: [i, pttrn, i] => i        ("(1{_ ./ _: _})" [51,0,51])
 | |
| 98 |   "@INTER"    :: [pttrn, i, i] => i        ("(3INT _:_./ _)" 10)
 | |
| 99 |   "@UNION"    :: [pttrn, i, i] => i        ("(3UN _:_./ _)" 10)
 | |
| 100 |   "@PROD"     :: [pttrn, i, i] => i        ("(3PROD _:_./ _)" 10)
 | |
| 101 |   "@SUM"      :: [pttrn, i, i] => i        ("(3SUM _:_./ _)" 10)
 | |
| 102 | "->" :: [i, i] => i (infixr 60) | |
| 103 | "*" :: [i, i] => i (infixr 80) | |
| 104 |   "@lam"      :: [pttrn, i, i] => i        ("(3lam _:_./ _)" 10)
 | |
| 105 |   "@Ball"     :: [pttrn, i, o] => o        ("(3ALL _:_./ _)" 10)
 | |
| 106 |   "@Bex"      :: [pttrn, i, o] => o        ("(3EX _:_./ _)" 10)
 | |
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 107 | |
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 108 | (** Patterns -- extends pre-defined type "pttrn" used in abstractions **) | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 109 | |
| 3692 | 110 |   "@pattern"  :: patterns => pttrn         ("<_>")
 | 
| 111 |   ""          :: pttrn => patterns         ("_")
 | |
| 112 |   "@patterns" :: [pttrn, patterns] => patterns  ("_,/_")
 | |
| 615 | 113 | |
| 0 | 114 | translations | 
| 615 | 115 | "x ~: y" == "~ (x : y)" | 
| 0 | 116 |   "{x, xs}"     == "cons(x, {xs})"
 | 
| 117 |   "{x}"         == "cons(x, 0)"
 | |
| 118 |   "{x:A. P}"    == "Collect(A, %x. P)"
 | |
| 119 |   "{y. x:A, Q}" == "Replace(A, %x y. Q)"
 | |
| 615 | 120 |   "{b. x:A}"    == "RepFun(A, %x. b)"
 | 
| 0 | 121 |   "INT x:A. B"  == "Inter({B. x:A})"
 | 
| 122 |   "UN x:A. B"   == "Union({B. x:A})"
 | |
| 123 | "PROD x:A. B" => "Pi(A, %x. B)" | |
| 124 | "SUM x:A. B" => "Sigma(A, %x. B)" | |
| 49 | 125 | "A -> B" => "Pi(A, _K(B))" | 
| 126 | "A * B" => "Sigma(A, _K(B))" | |
| 0 | 127 | "lam x:A. f" == "Lambda(A, %x. f)" | 
| 128 | "ALL x:A. P" == "Ball(A, %x. P)" | |
| 129 | "EX x:A. P" == "Bex(A, %x. P)" | |
| 37 | 130 | |
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 131 | "<x, y, z>" == "<x, <y, z>>" | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 132 | "<x, y>" == "Pair(x, y)" | 
| 2286 | 133 | "%<x,y,zs>.b" == "split(%x <y,zs>.b)" | 
| 3840 | 134 | "%<x,y>.b" == "split(%x y. b)" | 
| 2286 | 135 | |
| 0 | 136 | |
| 2540 | 137 | syntax (symbols) | 
| 138 | "op *" :: [i, i] => i (infixr "\\<times>" 80) | |
| 139 | "op Int" :: [i, i] => i (infixl "\\<inter>" 70) | |
| 140 | "op Un" :: [i, i] => i (infixl "\\<union>" 65) | |
| 141 | "op ->" :: [i, i] => i (infixr "\\<rightarrow>" 60) | |
| 142 | "op <=" :: [i, i] => o (infixl "\\<subseteq>" 50) | |
| 143 | "op :" :: [i, i] => o (infixl "\\<in>" 50) | |
| 144 | "op ~:" :: [i, i] => o (infixl "\\<notin>" 50) | |
| 145 |   "@Collect"  :: [pttrn, i, o] => i        ("(1{_\\<in> _ ./ _})")
 | |
| 146 |   "@Replace"  :: [pttrn, pttrn, i, o] => i ("(1{_ ./ _\\<in> _, _})")
 | |
| 147 |   "@RepFun"   :: [i, pttrn, i] => i        ("(1{_ ./ _\\<in> _})" [51,0,51])
 | |
| 148 |   "@INTER"    :: [pttrn, i, i] => i        ("(3\\<Inter> _\\<in>_./ _)" 10)
 | |
| 149 |   "@UNION"    :: [pttrn, i, i] => i        ("(3\\<Union> _\\<in>_./ _)" 10)
 | |
| 150 |   "@PROD"     :: [pttrn, i, i] => i        ("(3\\<Pi> _\\<in>_./ _)" 10)
 | |
| 151 |   "@SUM"      :: [pttrn, i, i] => i        ("(3\\<Sigma> _\\<in>_./ _)" 10)
 | |
| 152 |   "@Ball"     :: [pttrn, i, o] => o        ("(3\\<forall> _\\<in>_./ _)" 10)
 | |
| 153 |   "@Bex"      :: [pttrn, i, o] => o        ("(3\\<exists> _\\<in>_./ _)" 10)
 | |
| 3068 
b7562e452816
deactivated new symbols (not yet printable on xterm, emacs);
 wenzelm parents: 
3065diff
changeset | 154 | (* | 
| 3065 | 155 |   "@Tuple"    :: [i, is] => i              ("\\<langle>(_,/ _)\\<rangle>")
 | 
| 3692 | 156 |   "@pattern"  :: patterns => pttrn         ("\\<langle>_\\<rangle>")
 | 
| 3068 
b7562e452816
deactivated new symbols (not yet printable on xterm, emacs);
 wenzelm parents: 
3065diff
changeset | 157 | *) | 
| 2540 | 158 | |
| 159 | ||
| 690 | 160 | defs | 
| 0 | 161 | |
| 615 | 162 | (* Bounded Quantifiers *) | 
| 163 | Ball_def "Ball(A, P) == ALL x. x:A --> P(x)" | |
| 164 | Bex_def "Bex(A, P) == EX x. x:A & P(x)" | |
| 690 | 165 | |
| 615 | 166 | subset_def "A <= B == ALL x:A. x:B" | 
| 690 | 167 | succ_def "succ(i) == cons(i, i)" | 
| 168 | ||
| 3906 | 169 | |
| 3940 | 170 | local | 
| 3906 | 171 | |
| 690 | 172 | rules | 
| 0 | 173 | |
| 615 | 174 | (* ZF axioms -- see Suppes p.238 | 
| 175 | Axioms for Union, Pow and Replace state existence only, | |
| 176 | uniqueness is derivable using extensionality. *) | |
| 0 | 177 | |
| 615 | 178 | extension "A = B <-> A <= B & B <= A" | 
| 179 | Union_iff "A : Union(C) <-> (EX B:C. A:B)" | |
| 180 | Pow_iff "A : Pow(B) <-> A <= B" | |
| 0 | 181 | |
| 615 | 182 | (*We may name this set, though it is not uniquely defined.*) | 
| 183 | infinity "0:Inf & (ALL y:Inf. succ(y): Inf)" | |
| 0 | 184 | |
| 615 | 185 | (*This formulation facilitates case analysis on A.*) | 
| 186 | foundation "A=0 | (EX x:A. ALL y:x. y~:A)" | |
| 0 | 187 | |
| 615 | 188 | (*Schema axiom since predicate P is a higher-order variable*) | 
| 1155 | 189 | replacement "(ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==> | 
| 190 | b : PrimReplace(A,P) <-> (EX x:A. P(x,b))" | |
| 615 | 191 | |
| 690 | 192 | defs | 
| 193 | ||
| 615 | 194 | (* Derived form of replacement, restricting P to its functional part. | 
| 195 | The resulting set (for functional P) is the same as with | |
| 196 | PrimReplace, but the rules are simpler. *) | |
| 0 | 197 | |
| 3840 | 198 | Replace_def "Replace(A,P) == PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))" | 
| 615 | 199 | |
| 200 | (* Functional form of replacement -- analgous to ML's map functional *) | |
| 0 | 201 | |
| 615 | 202 |   RepFun_def    "RepFun(A,f) == {y . x:A, y=f(x)}"
 | 
| 0 | 203 | |
| 615 | 204 | (* Separation and Pairing can be derived from the Replacement | 
| 205 | and Powerset Axioms using the following definitions. *) | |
| 0 | 206 | |
| 615 | 207 |   Collect_def   "Collect(A,P) == {y . x:A, x=y & P(x)}"
 | 
| 0 | 208 | |
| 615 | 209 | (*Unordered pairs (Upair) express binary union/intersection and cons; | 
| 210 |     set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
 | |
| 0 | 211 | |
| 615 | 212 |   Upair_def   "Upair(a,b) == {y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
 | 
| 213 | cons_def "cons(a,A) == Upair(a,a) Un A" | |
| 214 | ||
| 2872 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 215 | (* Difference, general intersection, binary union and small intersection *) | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 216 | |
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 217 |   Diff_def      "A - B    == { x:A . ~(x:B) }"
 | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 218 |   Inter_def     "Inter(A) == { x:Union(A) . ALL y:A. x:y}"
 | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 219 | Un_def "A Un B == Union(Upair(A,B))" | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 220 | Int_def "A Int B == Inter(Upair(A,B))" | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 221 | |
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 222 | (* Definite descriptions -- via Replace over the set "1" *) | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 223 | |
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 224 |   the_def       "The(P)    == Union({y . x:{0}, P(y)})"
 | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 225 | if_def "if(P,a,b) == THE z. P & z=a | ~P & z=b" | 
| 0 | 226 | |
| 615 | 227 |   (* this "symmetric" definition works better than {{a}, {a,b}} *)
 | 
| 228 |   Pair_def      "<a,b>  == {{a,a}, {a,b}}"
 | |
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 229 | fst_def "fst(p) == THE a. EX b. p=<a,b>" | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 230 | snd_def "snd(p) == THE b. EX a. p=<a,b>" | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 231 | split_def "split(c,p) == c(fst(p), snd(p))" | 
| 615 | 232 |   Sigma_def     "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"
 | 
| 0 | 233 | |
| 615 | 234 | (* Operations on relations *) | 
| 0 | 235 | |
| 615 | 236 | (*converse of relation r, inverse of function*) | 
| 237 |   converse_def  "converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}"
 | |
| 0 | 238 | |
| 615 | 239 |   domain_def    "domain(r) == {x. w:r, EX y. w=<x,y>}"
 | 
| 240 | range_def "range(r) == domain(converse(r))" | |
| 241 | field_def "field(r) == domain(r) Un range(r)" | |
| 1478 | 242 | function_def "function(r) == ALL x y. <x,y>:r --> | 
| 243 | (ALL y'. <x,y'>:r --> y=y')" | |
| 615 | 244 |   image_def     "r `` A  == {y : range(r) . EX x:A. <x,y> : r}"
 | 
| 245 | vimage_def "r -`` A == converse(r)``A" | |
| 0 | 246 | |
| 615 | 247 | (* Abstraction, application and Cartesian product of a family of sets *) | 
| 0 | 248 | |
| 615 | 249 |   lam_def       "Lambda(A,b) == {<x,b(x)> . x:A}"
 | 
| 250 | apply_def "f`a == THE y. <a,y> : f" | |
| 690 | 251 |   Pi_def        "Pi(A,B)  == {f: Pow(Sigma(A,B)). A<=domain(f) & function(f)}"
 | 
| 0 | 252 | |
| 253 | (* Restrict the function f to the domain A *) | |
| 3840 | 254 | restrict_def "restrict(f,A) == lam x:A. f`x" | 
| 0 | 255 | |
| 256 | end | |
| 257 | ||
| 258 | ||
| 259 | ML | |
| 260 | ||
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 261 | (* Pattern-matching and 'Dependent' type operators *) | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 262 | |
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 263 | val print_translation = | 
| 1116 | 264 |   [(*("split", split_tr'),*)
 | 
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 265 |    ("Pi",    dependent_tr' ("@PROD", "op ->")),
 | 
| 632 | 266 |    ("Sigma", dependent_tr' ("@SUM", "op *"))];
 | 
| 2469 | 267 |