author | nipkow |
Tue, 07 Sep 2010 10:05:19 +0200 | |
changeset 39198 | f967a16dfcdd |
parent 38642 | 8fa437809c67 |
child 43337 | 57a1c19f8e3b |
permissions | -rw-r--r-- |
36648 | 1 |
(* Title: HOL/Library/Convex.thy |
2 |
Author: Armin Heller, TU Muenchen |
|
3 |
Author: Johannes Hoelzl, TU Muenchen |
|
4 |
*) |
|
5 |
||
6 |
header {* Convexity in real vector spaces *} |
|
7 |
||
36623 | 8 |
theory Convex |
9 |
imports Product_Vector |
|
10 |
begin |
|
11 |
||
12 |
subsection {* Convexity. *} |
|
13 |
||
14 |
definition |
|
15 |
convex :: "'a::real_vector set \<Rightarrow> bool" where |
|
16 |
"convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" |
|
17 |
||
18 |
lemma convex_alt: |
|
19 |
"convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" |
|
20 |
(is "_ \<longleftrightarrow> ?alt") |
|
21 |
proof |
|
22 |
assume alt[rule_format]: ?alt |
|
23 |
{ fix x y and u v :: real assume mem: "x \<in> s" "y \<in> s" |
|
24 |
assume "0 \<le> u" "0 \<le> v" "u + v = 1" |
|
25 |
moreover hence "u = 1 - v" by auto |
|
26 |
ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" using alt[OF mem] by auto } |
|
27 |
thus "convex s" unfolding convex_def by auto |
|
28 |
qed (auto simp: convex_def) |
|
29 |
||
30 |
lemma mem_convex: |
|
31 |
assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" |
|
32 |
shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" |
|
33 |
using assms unfolding convex_alt by auto |
|
34 |
||
35 |
lemma convex_empty[intro]: "convex {}" |
|
36 |
unfolding convex_def by simp |
|
37 |
||
38 |
lemma convex_singleton[intro]: "convex {a}" |
|
39 |
unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) |
|
40 |
||
41 |
lemma convex_UNIV[intro]: "convex UNIV" |
|
42 |
unfolding convex_def by auto |
|
43 |
||
44 |
lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)" |
|
45 |
unfolding convex_def by auto |
|
46 |
||
47 |
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" |
|
48 |
unfolding convex_def by auto |
|
49 |
||
50 |
lemma convex_halfspace_le: "convex {x. inner a x \<le> b}" |
|
51 |
unfolding convex_def |
|
52 |
by (auto simp: inner_add inner_scaleR intro!: convex_bound_le) |
|
53 |
||
54 |
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}" |
|
55 |
proof - |
|
56 |
have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto |
|
57 |
show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto |
|
58 |
qed |
|
59 |
||
60 |
lemma convex_hyperplane: "convex {x. inner a x = b}" |
|
61 |
proof- |
|
62 |
have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto |
|
63 |
show ?thesis using convex_halfspace_le convex_halfspace_ge |
|
64 |
by (auto intro!: convex_Int simp: *) |
|
65 |
qed |
|
66 |
||
67 |
lemma convex_halfspace_lt: "convex {x. inner a x < b}" |
|
68 |
unfolding convex_def |
|
69 |
by (auto simp: convex_bound_lt inner_add) |
|
70 |
||
71 |
lemma convex_halfspace_gt: "convex {x. inner a x > b}" |
|
72 |
using convex_halfspace_lt[of "-a" "-b"] by auto |
|
73 |
||
74 |
lemma convex_real_interval: |
|
75 |
fixes a b :: "real" |
|
76 |
shows "convex {a..}" and "convex {..b}" |
|
77 |
and "convex {a<..}" and "convex {..<b}" |
|
78 |
and "convex {a..b}" and "convex {a<..b}" |
|
79 |
and "convex {a..<b}" and "convex {a<..<b}" |
|
80 |
proof - |
|
81 |
have "{a..} = {x. a \<le> inner 1 x}" by auto |
|
82 |
thus 1: "convex {a..}" by (simp only: convex_halfspace_ge) |
|
83 |
have "{..b} = {x. inner 1 x \<le> b}" by auto |
|
84 |
thus 2: "convex {..b}" by (simp only: convex_halfspace_le) |
|
85 |
have "{a<..} = {x. a < inner 1 x}" by auto |
|
86 |
thus 3: "convex {a<..}" by (simp only: convex_halfspace_gt) |
|
87 |
have "{..<b} = {x. inner 1 x < b}" by auto |
|
88 |
thus 4: "convex {..<b}" by (simp only: convex_halfspace_lt) |
|
89 |
have "{a..b} = {a..} \<inter> {..b}" by auto |
|
90 |
thus "convex {a..b}" by (simp only: convex_Int 1 2) |
|
91 |
have "{a<..b} = {a<..} \<inter> {..b}" by auto |
|
92 |
thus "convex {a<..b}" by (simp only: convex_Int 3 2) |
|
93 |
have "{a..<b} = {a..} \<inter> {..<b}" by auto |
|
94 |
thus "convex {a..<b}" by (simp only: convex_Int 1 4) |
|
95 |
have "{a<..<b} = {a<..} \<inter> {..<b}" by auto |
|
96 |
thus "convex {a<..<b}" by (simp only: convex_Int 3 4) |
|
97 |
qed |
|
98 |
||
99 |
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *} |
|
100 |
||
101 |
lemma convex_setsum: |
|
102 |
fixes C :: "'a::real_vector set" |
|
103 |
assumes "finite s" and "convex C" and "(\<Sum> i \<in> s. a i) = 1" |
|
104 |
assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And> i. i \<in> s \<Longrightarrow> y i \<in> C" |
|
105 |
shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" |
|
106 |
using assms |
|
107 |
proof (induct s arbitrary:a rule:finite_induct) |
|
108 |
case empty thus ?case by auto |
|
109 |
next |
|
110 |
case (insert i s) note asms = this |
|
111 |
{ assume "a i = 1" |
|
112 |
hence "(\<Sum> j \<in> s. a j) = 0" |
|
113 |
using asms by auto |
|
114 |
hence "\<And> j. j \<in> s \<Longrightarrow> a j = 0" |
|
115 |
using setsum_nonneg_0[where 'b=real] asms by fastsimp |
|
116 |
hence ?case using asms by auto } |
|
117 |
moreover |
|
118 |
{ assume asm: "a i \<noteq> 1" |
|
119 |
from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto |
|
120 |
have fis: "finite (insert i s)" using asms by auto |
|
121 |
hence ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a 1] asms by simp |
|
122 |
hence "a i < 1" using asm by auto |
|
123 |
hence i0: "1 - a i > 0" by auto |
|
124 |
let "?a j" = "a j / (1 - a i)" |
|
125 |
{ fix j assume "j \<in> s" |
|
126 |
hence "?a j \<ge> 0" |
|
127 |
using i0 asms divide_nonneg_pos |
|
128 |
by fastsimp } note a_nonneg = this |
|
129 |
have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto |
|
130 |
hence "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastsimp |
|
131 |
hence "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto |
|
132 |
hence a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding divide.setsum by simp |
|
133 |
from this asms |
|
134 |
have "(\<Sum>j\<in>s. ?a j *\<^sub>R y j) \<in> C" using a_nonneg by fastsimp |
|
135 |
hence "a i *\<^sub>R y i + (1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" |
|
136 |
using asms[unfolded convex_def, rule_format] yai ai1 by auto |
|
137 |
hence "a i *\<^sub>R y i + (\<Sum> j \<in> s. (1 - a i) *\<^sub>R (?a j *\<^sub>R y j)) \<in> C" |
|
138 |
using scaleR_right.setsum[of "(1 - a i)" "\<lambda> j. ?a j *\<^sub>R y j" s] by auto |
|
139 |
hence "a i *\<^sub>R y i + (\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" using i0 by auto |
|
140 |
hence ?case using setsum.insert asms by auto } |
|
141 |
ultimately show ?case by auto |
|
142 |
qed |
|
143 |
||
144 |
lemma convex: |
|
145 |
shows "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1) |
|
146 |
\<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)" |
|
147 |
proof safe |
|
148 |
fix k :: nat fix u :: "nat \<Rightarrow> real" fix x |
|
149 |
assume "convex s" |
|
150 |
"\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s" |
|
151 |
"setsum u {1..k} = 1" |
|
152 |
from this convex_setsum[of "{1 .. k}" s] |
|
153 |
show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s" by auto |
|
154 |
next |
|
155 |
assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 |
|
156 |
\<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s" |
|
157 |
{ fix \<mu> :: real fix x y :: 'a assume xy: "x \<in> s" "y \<in> s" assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1" |
|
158 |
let "?u i" = "if (i :: nat) = 1 then \<mu> else 1 - \<mu>" |
|
159 |
let "?x i" = "if (i :: nat) = 1 then x else y" |
|
160 |
have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}" by auto |
|
161 |
hence card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp |
|
162 |
hence "setsum ?u {1 .. 2} = 1" |
|
163 |
using setsum_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"] |
|
164 |
by auto |
|
165 |
from this asm[rule_format, of "2" ?u ?x] |
|
166 |
have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s" |
|
167 |
using mu xy by auto |
|
168 |
have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y" |
|
169 |
using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto |
|
170 |
from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this] |
|
171 |
have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" by auto |
|
172 |
hence "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" using s by (auto simp:add_commute) } |
|
173 |
thus "convex s" unfolding convex_alt by auto |
|
174 |
qed |
|
175 |
||
176 |
||
177 |
lemma convex_explicit: |
|
178 |
fixes s :: "'a::real_vector set" |
|
179 |
shows "convex s \<longleftrightarrow> |
|
180 |
(\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)" |
|
181 |
proof safe |
|
182 |
fix t fix u :: "'a \<Rightarrow> real" |
|
183 |
assume "convex s" "finite t" |
|
184 |
"t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" |
|
185 |
thus "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" |
|
186 |
using convex_setsum[of t s u "\<lambda> x. x"] by auto |
|
187 |
next |
|
188 |
assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) |
|
189 |
\<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" |
|
190 |
show "convex s" |
|
191 |
unfolding convex_alt |
|
192 |
proof safe |
|
193 |
fix x y fix \<mu> :: real |
|
194 |
assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1" |
|
195 |
{ assume "x \<noteq> y" |
|
196 |
hence "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" |
|
197 |
using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"] |
|
198 |
asm by auto } |
|
199 |
moreover |
|
200 |
{ assume "x = y" |
|
201 |
hence "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" |
|
202 |
using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"] |
|
203 |
asm by (auto simp:field_simps real_vector.scale_left_diff_distrib) } |
|
204 |
ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" by blast |
|
205 |
qed |
|
206 |
qed |
|
207 |
||
208 |
lemma convex_finite: assumes "finite s" |
|
209 |
shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 |
|
210 |
\<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)" |
|
211 |
unfolding convex_explicit |
|
212 |
proof (safe elim!: conjE) |
|
213 |
fix t u assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" |
|
214 |
and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)" |
|
215 |
have *:"s \<inter> t = t" using as(2) by auto |
|
216 |
have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" by simp |
|
217 |
show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" |
|
218 |
using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as * |
|
219 |
by (auto simp: assms setsum_cases if_distrib if_distrib_arg) |
|
220 |
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) |
|
221 |
||
222 |
definition |
|
223 |
convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where |
|
224 |
"convex_on s f \<longleftrightarrow> |
|
225 |
(\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" |
|
226 |
||
227 |
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" |
|
228 |
unfolding convex_on_def by auto |
|
229 |
||
230 |
lemma convex_add[intro]: |
|
231 |
assumes "convex_on s f" "convex_on s g" |
|
232 |
shows "convex_on s (\<lambda>x. f x + g x)" |
|
233 |
proof- |
|
234 |
{ fix x y assume "x\<in>s" "y\<in>s" moreover |
|
235 |
fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1" |
|
236 |
ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" |
|
237 |
using assms unfolding convex_on_def by (auto simp add:add_mono) |
|
238 |
hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: field_simps) } |
|
239 |
thus ?thesis unfolding convex_on_def by auto |
|
240 |
qed |
|
241 |
||
242 |
lemma convex_cmul[intro]: |
|
243 |
assumes "0 \<le> (c::real)" "convex_on s f" |
|
244 |
shows "convex_on s (\<lambda>x. c * f x)" |
|
245 |
proof- |
|
246 |
have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: field_simps) |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
36778
diff
changeset
|
247 |
show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] unfolding convex_on_def and * by auto |
36623 | 248 |
qed |
249 |
||
250 |
lemma convex_lower: |
|
251 |
assumes "convex_on s f" "x\<in>s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" |
|
252 |
shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" |
|
253 |
proof- |
|
254 |
let ?m = "max (f x) (f y)" |
|
255 |
have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
36778
diff
changeset
|
256 |
using assms(4,5) by (auto simp add: mult_left_mono add_mono) |
36623 | 257 |
also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto |
258 |
finally show ?thesis |
|
259 |
using assms unfolding convex_on_def by fastsimp |
|
260 |
qed |
|
261 |
||
262 |
lemma convex_distance[intro]: |
|
263 |
fixes s :: "'a::real_normed_vector set" |
|
264 |
shows "convex_on s (\<lambda>x. dist a x)" |
|
265 |
proof(auto simp add: convex_on_def dist_norm) |
|
266 |
fix x y assume "x\<in>s" "y\<in>s" |
|
267 |
fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1" |
|
268 |
have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp |
|
269 |
hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" |
|
270 |
by (auto simp add: algebra_simps) |
|
271 |
show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" |
|
272 |
unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] |
|
273 |
using `0 \<le> u` `0 \<le> v` by auto |
|
274 |
qed |
|
275 |
||
276 |
subsection {* Arithmetic operations on sets preserve convexity. *} |
|
277 |
lemma convex_scaling: |
|
278 |
assumes "convex s" |
|
279 |
shows"convex ((\<lambda>x. c *\<^sub>R x) ` s)" |
|
280 |
using assms unfolding convex_def image_iff |
|
281 |
proof safe |
|
282 |
fix x xa y xb :: "'a::real_vector" fix u v :: real |
|
283 |
assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" |
|
284 |
"xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" |
|
285 |
show "\<exists>x\<in>s. u *\<^sub>R c *\<^sub>R xa + v *\<^sub>R c *\<^sub>R xb = c *\<^sub>R x" |
|
286 |
using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by (auto simp add: algebra_simps) |
|
287 |
qed |
|
288 |
||
289 |
lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)" |
|
290 |
using assms unfolding convex_def image_iff |
|
291 |
proof safe |
|
292 |
fix x xa y xb :: "'a::real_vector" fix u v :: real |
|
293 |
assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" |
|
294 |
"xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" |
|
295 |
show "\<exists>x\<in>s. u *\<^sub>R - xa + v *\<^sub>R - xb = - x" |
|
296 |
using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by auto |
|
297 |
qed |
|
298 |
||
299 |
lemma convex_sums: |
|
300 |
assumes "convex s" "convex t" |
|
301 |
shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}" |
|
302 |
using assms unfolding convex_def image_iff |
|
303 |
proof safe |
|
304 |
fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t" |
|
305 |
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" |
|
306 |
show "\<exists>x y. u *\<^sub>R (xa + ya) + v *\<^sub>R (xb + yb) = x + y \<and> x \<in> s \<and> y \<in> t" |
|
307 |
using exI[of _ "u *\<^sub>R xa + v *\<^sub>R xb"] exI[of _ "u *\<^sub>R ya + v *\<^sub>R yb"] |
|
308 |
assms[unfolded convex_def] uv xy by (auto simp add:scaleR_right_distrib) |
|
309 |
qed |
|
310 |
||
311 |
lemma convex_differences: |
|
312 |
assumes "convex s" "convex t" |
|
313 |
shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}" |
|
314 |
proof - |
|
315 |
have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}" |
|
316 |
proof safe |
|
317 |
fix x x' y assume "x' \<in> s" "y \<in> t" |
|
318 |
thus "\<exists>x y'. x' - y = x + y' \<and> x \<in> s \<and> y' \<in> uminus ` t" |
|
319 |
using exI[of _ x'] exI[of _ "-y"] by auto |
|
320 |
next |
|
321 |
fix x x' y y' assume "x' \<in> s" "y' \<in> t" |
|
322 |
thus "\<exists>x y. x' + - y' = x - y \<and> x \<in> s \<and> y \<in> t" |
|
323 |
using exI[of _ x'] exI[of _ y'] by auto |
|
324 |
qed |
|
325 |
thus ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto |
|
326 |
qed |
|
327 |
||
328 |
lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)" |
|
329 |
proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto |
|
330 |
thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed |
|
331 |
||
332 |
lemma convex_affinity: assumes "convex s" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)" |
|
333 |
proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto |
|
334 |
thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed |
|
335 |
||
336 |
lemma convex_linear_image: |
|
337 |
assumes c:"convex s" and l:"bounded_linear f" |
|
338 |
shows "convex(f ` s)" |
|
339 |
proof(auto simp add: convex_def) |
|
340 |
interpret f: bounded_linear f by fact |
|
341 |
fix x y assume xy:"x \<in> s" "y \<in> s" |
|
342 |
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" |
|
343 |
show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff |
|
344 |
using bexI[of _ "u *\<^sub>R x + v *\<^sub>R y"] f.add f.scaleR |
|
345 |
c[unfolded convex_def] xy uv by auto |
|
346 |
qed |
|
347 |
||
348 |
||
349 |
lemma pos_is_convex: |
|
350 |
shows "convex {0 :: real <..}" |
|
351 |
unfolding convex_alt |
|
352 |
proof safe |
|
353 |
fix y x \<mu> :: real |
|
354 |
assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1" |
|
355 |
{ assume "\<mu> = 0" |
|
356 |
hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp |
|
357 |
hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp } |
|
358 |
moreover |
|
359 |
{ assume "\<mu> = 1" |
|
360 |
hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp } |
|
361 |
moreover |
|
362 |
{ assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0" |
|
363 |
hence "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto |
|
364 |
hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms |
|
36778
739a9379e29b
avoid using real-specific versions of generic lemmas
huffman
parents:
36648
diff
changeset
|
365 |
by (auto simp add: add_pos_pos mult_pos_pos) } |
36623 | 366 |
ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" using assms by fastsimp |
367 |
qed |
|
368 |
||
369 |
lemma convex_on_setsum: |
|
370 |
fixes a :: "'a \<Rightarrow> real" |
|
371 |
fixes y :: "'a \<Rightarrow> 'b::real_vector" |
|
372 |
fixes f :: "'b \<Rightarrow> real" |
|
373 |
assumes "finite s" "s \<noteq> {}" |
|
374 |
assumes "convex_on C f" |
|
375 |
assumes "convex C" |
|
376 |
assumes "(\<Sum> i \<in> s. a i) = 1" |
|
377 |
assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0" |
|
378 |
assumes "\<And> i. i \<in> s \<Longrightarrow> y i \<in> C" |
|
379 |
shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))" |
|
380 |
using assms |
|
381 |
proof (induct s arbitrary:a rule:finite_ne_induct) |
|
382 |
case (singleton i) |
|
383 |
hence ai: "a i = 1" by auto |
|
384 |
thus ?case by auto |
|
385 |
next |
|
386 |
case (insert i s) note asms = this |
|
387 |
hence "convex_on C f" by simp |
|
388 |
from this[unfolded convex_on_def, rule_format] |
|
389 |
have conv: "\<And> x y \<mu>. \<lbrakk>x \<in> C; y \<in> C; 0 \<le> \<mu>; \<mu> \<le> 1\<rbrakk> |
|
390 |
\<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" |
|
391 |
by simp |
|
392 |
{ assume "a i = 1" |
|
393 |
hence "(\<Sum> j \<in> s. a j) = 0" |
|
394 |
using asms by auto |
|
395 |
hence "\<And> j. j \<in> s \<Longrightarrow> a j = 0" |
|
396 |
using setsum_nonneg_0[where 'b=real] asms by fastsimp |
|
397 |
hence ?case using asms by auto } |
|
398 |
moreover |
|
399 |
{ assume asm: "a i \<noteq> 1" |
|
400 |
from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto |
|
401 |
have fis: "finite (insert i s)" using asms by auto |
|
402 |
hence ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp |
|
403 |
hence "a i < 1" using asm by auto |
|
404 |
hence i0: "1 - a i > 0" by auto |
|
405 |
let "?a j" = "a j / (1 - a i)" |
|
406 |
{ fix j assume "j \<in> s" |
|
407 |
hence "?a j \<ge> 0" |
|
408 |
using i0 asms divide_nonneg_pos |
|
409 |
by fastsimp } note a_nonneg = this |
|
410 |
have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto |
|
411 |
hence "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastsimp |
|
412 |
hence "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto |
|
413 |
hence a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding divide.setsum by simp |
|
414 |
have "convex C" using asms by auto |
|
415 |
hence asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" |
|
416 |
using asms convex_setsum[OF `finite s` |
|
417 |
`convex C` a1 a_nonneg] by auto |
|
418 |
have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))" |
|
419 |
using a_nonneg a1 asms by blast |
|
420 |
have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" |
|
421 |
using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF `finite s` `i \<notin> s`] asms |
|
422 |
by (auto simp only:add_commute) |
|
423 |
also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" |
|
424 |
using i0 by auto |
|
425 |
also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" |
|
426 |
using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] by (auto simp:algebra_simps) |
|
427 |
also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" |
|
36778
739a9379e29b
avoid using real-specific versions of generic lemmas
huffman
parents:
36648
diff
changeset
|
428 |
by (auto simp: divide_inverse) |
36623 | 429 |
also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)" |
430 |
using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] |
|
431 |
by (auto simp add:add_commute) |
|
432 |
also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)" |
|
433 |
using add_right_mono[OF mult_left_mono[of _ _ "1 - a i", |
|
434 |
OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp |
|
435 |
also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" |
|
436 |
unfolding mult_right.setsum[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto |
|
437 |
also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto |
|
438 |
also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using asms by auto |
|
439 |
finally have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) \<le> (\<Sum> j \<in> insert i s. a j * f (y j))" |
|
440 |
by simp } |
|
441 |
ultimately show ?case by auto |
|
442 |
qed |
|
443 |
||
444 |
lemma convex_on_alt: |
|
445 |
fixes C :: "'a::real_vector set" |
|
446 |
assumes "convex C" |
|
447 |
shows "convex_on C f = |
|
448 |
(\<forall> x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 |
|
449 |
\<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)" |
|
450 |
proof safe |
|
451 |
fix x y fix \<mu> :: real |
|
452 |
assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1" |
|
453 |
from this[unfolded convex_on_def, rule_format] |
|
454 |
have "\<And> u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" by auto |
|
455 |
from this[of "\<mu>" "1 - \<mu>", simplified] asms |
|
456 |
show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) |
|
457 |
\<le> \<mu> * f x + (1 - \<mu>) * f y" by auto |
|
458 |
next |
|
459 |
assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" |
|
460 |
{fix x y fix u v :: real |
|
461 |
assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1" |
|
462 |
hence[simp]: "1 - u = v" by auto |
|
463 |
from asm[rule_format, of x y u] |
|
464 |
have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using lasm by auto } |
|
465 |
thus "convex_on C f" unfolding convex_on_def by auto |
|
466 |
qed |
|
467 |
||
468 |
||
469 |
lemma pos_convex_function: |
|
470 |
fixes f :: "real \<Rightarrow> real" |
|
471 |
assumes "convex C" |
|
472 |
assumes leq: "\<And> x y. \<lbrakk>x \<in> C ; y \<in> C\<rbrakk> \<Longrightarrow> f' x * (y - x) \<le> f y - f x" |
|
473 |
shows "convex_on C f" |
|
474 |
unfolding convex_on_alt[OF assms(1)] |
|
475 |
using assms |
|
476 |
proof safe |
|
477 |
fix x y \<mu> :: real |
|
478 |
let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" |
|
479 |
assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1" |
|
480 |
hence "1 - \<mu> \<ge> 0" by auto |
|
481 |
hence xpos: "?x \<in> C" using asm unfolding convex_alt by fastsimp |
|
482 |
have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) |
|
483 |
\<ge> \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)" |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
36778
diff
changeset
|
484 |
using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`] |
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
36778
diff
changeset
|
485 |
mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]] by auto |
36623 | 486 |
hence "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0" |
487 |
by (auto simp add:field_simps) |
|
488 |
thus "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" |
|
489 |
using convex_on_alt by auto |
|
490 |
qed |
|
491 |
||
492 |
lemma atMostAtLeast_subset_convex: |
|
493 |
fixes C :: "real set" |
|
494 |
assumes "convex C" |
|
495 |
assumes "x \<in> C" "y \<in> C" "x < y" |
|
496 |
shows "{x .. y} \<subseteq> C" |
|
497 |
proof safe |
|
498 |
fix z assume zasm: "z \<in> {x .. y}" |
|
499 |
{ assume asm: "x < z" "z < y" |
|
500 |
let "?\<mu>" = "(y - z) / (y - x)" |
|
501 |
have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms asm by (auto simp add:field_simps) |
|
502 |
hence comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C" |
|
503 |
using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] by (simp add:algebra_simps) |
|
504 |
have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" |
|
505 |
by (auto simp add:field_simps) |
|
506 |
also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" |
|
507 |
using assms unfolding add_divide_distrib by (auto simp:field_simps) |
|
508 |
also have "\<dots> = z" |
|
509 |
using assms by (auto simp:field_simps) |
|
510 |
finally have "z \<in> C" |
|
511 |
using comb by auto } note less = this |
|
512 |
show "z \<in> C" using zasm less assms |
|
513 |
unfolding atLeastAtMost_iff le_less by auto |
|
514 |
qed |
|
515 |
||
516 |
lemma f''_imp_f': |
|
517 |
fixes f :: "real \<Rightarrow> real" |
|
518 |
assumes "convex C" |
|
519 |
assumes f': "\<And> x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" |
|
520 |
assumes f'': "\<And> x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" |
|
521 |
assumes pos: "\<And> x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" |
|
522 |
assumes "x \<in> C" "y \<in> C" |
|
523 |
shows "f' x * (y - x) \<le> f y - f x" |
|
524 |
using assms |
|
525 |
proof - |
|
526 |
{ fix x y :: real assume asm: "x \<in> C" "y \<in> C" "y > x" |
|
527 |
hence ge: "y - x > 0" "y - x \<ge> 0" by auto |
|
528 |
from asm have le: "x - y < 0" "x - y \<le> 0" by auto |
|
529 |
then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" |
|
530 |
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`], |
|
531 |
THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] |
|
532 |
by auto |
|
533 |
hence "z1 \<in> C" using atMostAtLeast_subset_convex |
|
534 |
`convex C` `x \<in> C` `y \<in> C` `x < y` by fastsimp |
|
535 |
from z1 have z1': "f x - f y = (x - y) * f' z1" |
|
536 |
by (simp add:field_simps) |
|
537 |
obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" |
|
538 |
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `z1 \<in> C` `x < z1`], |
|
539 |
THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 |
|
540 |
by auto |
|
541 |
obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" |
|
542 |
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \<in> C` `y \<in> C` `z1 < y`], |
|
543 |
THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 |
|
544 |
by auto |
|
545 |
have "f' y - (f x - f y) / (x - y) = f' y - f' z1" |
|
546 |
using asm z1' by auto |
|
547 |
also have "\<dots> = (y - z1) * f'' z3" using z3 by auto |
|
548 |
finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp |
|
549 |
have A': "y - z1 \<ge> 0" using z1 by auto |
|
550 |
have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex |
|
551 |
`convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastsimp |
|
552 |
hence B': "f'' z3 \<ge> 0" using assms by auto |
|
553 |
from A' B' have "(y - z1) * f'' z3 \<ge> 0" using mult_nonneg_nonneg by auto |
|
554 |
from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto |
|
555 |
from mult_right_mono_neg[OF this le(2)] |
|
556 |
have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)" |
|
36778
739a9379e29b
avoid using real-specific versions of generic lemmas
huffman
parents:
36648
diff
changeset
|
557 |
by (simp add: algebra_simps) |
36623 | 558 |
hence "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto |
559 |
hence res: "f' y * (x - y) \<le> f x - f y" by auto |
|
560 |
have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" |
|
561 |
using asm z1 by auto |
|
562 |
also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto |
|
563 |
finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp |
|
564 |
have A: "z1 - x \<ge> 0" using z1 by auto |
|
565 |
have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex |
|
566 |
`convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastsimp |
|
567 |
hence B: "f'' z2 \<ge> 0" using assms by auto |
|
568 |
from A B have "(z1 - x) * f'' z2 \<ge> 0" using mult_nonneg_nonneg by auto |
|
569 |
from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto |
|
570 |
from mult_right_mono[OF this ge(2)] |
|
571 |
have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)" |
|
36778
739a9379e29b
avoid using real-specific versions of generic lemmas
huffman
parents:
36648
diff
changeset
|
572 |
by (simp add: algebra_simps) |
36623 | 573 |
hence "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto |
574 |
hence "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" |
|
575 |
using res by auto } note less_imp = this |
|
576 |
{ fix x y :: real assume "x \<in> C" "y \<in> C" "x \<noteq> y" |
|
577 |
hence"f y - f x \<ge> f' x * (y - x)" |
|
578 |
unfolding neq_iff using less_imp by auto } note neq_imp = this |
|
579 |
moreover |
|
580 |
{ fix x y :: real assume asm: "x \<in> C" "y \<in> C" "x = y" |
|
581 |
hence "f y - f x \<ge> f' x * (y - x)" by auto } |
|
582 |
ultimately show ?thesis using assms by blast |
|
583 |
qed |
|
584 |
||
585 |
lemma f''_ge0_imp_convex: |
|
586 |
fixes f :: "real \<Rightarrow> real" |
|
587 |
assumes conv: "convex C" |
|
588 |
assumes f': "\<And> x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" |
|
589 |
assumes f'': "\<And> x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" |
|
590 |
assumes pos: "\<And> x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" |
|
591 |
shows "convex_on C f" |
|
592 |
using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function by fastsimp |
|
593 |
||
594 |
lemma minus_log_convex: |
|
595 |
fixes b :: real |
|
596 |
assumes "b > 1" |
|
597 |
shows "convex_on {0 <..} (\<lambda> x. - log b x)" |
|
598 |
proof - |
|
599 |
have "\<And> z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto |
|
600 |
hence f': "\<And> z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)" |
|
601 |
using DERIV_minus by auto |
|
602 |
have "\<And> z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" |
|
603 |
using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto |
|
604 |
from this[THEN DERIV_cmult, of _ "- 1 / ln b"] |
|
605 |
have "\<And> z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" |
|
606 |
by auto |
|
607 |
hence f''0: "\<And> z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" |
|
36778
739a9379e29b
avoid using real-specific versions of generic lemmas
huffman
parents:
36648
diff
changeset
|
608 |
unfolding inverse_eq_divide by (auto simp add: mult_assoc) |
36623 | 609 |
have f''_ge0: "\<And> z :: real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0" |
36778
739a9379e29b
avoid using real-specific versions of generic lemmas
huffman
parents:
36648
diff
changeset
|
610 |
using `b > 1` by (auto intro!:less_imp_le simp add:divide_pos_pos[of 1] mult_pos_pos) |
36623 | 611 |
from f''_ge0_imp_convex[OF pos_is_convex, |
612 |
unfolded greaterThan_iff, OF f' f''0 f''_ge0] |
|
613 |
show ?thesis by auto |
|
614 |
qed |
|
615 |
||
616 |
end |