| author | wenzelm | 
| Fri, 08 Dec 2023 15:37:46 +0100 | |
| changeset 79207 | f991d3003ec8 | 
| parent 75624 | 22d1c5f2b9f4 | 
| permissions | -rw-r--r-- | 
| 58128 | 1 | (* Title: HOL/BNF_Composition.thy | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 2 | Author: Dmitriy Traytel, TU Muenchen | 
| 57698 | 3 | Author: Jasmin Blanchette, TU Muenchen | 
| 75624 | 4 | Author: Jan van Brügge, TU Muenchen | 
| 5 | Copyright 2012, 2013, 2014, 2022 | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 6 | |
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 7 | Composition of bounded natural functors. | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 8 | *) | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 9 | |
| 60758 | 10 | section \<open>Composition of Bounded Natural Functors\<close> | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 11 | |
| 58128 | 12 | theory BNF_Composition | 
| 55936 | 13 | imports BNF_Def | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 14 | begin | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 15 | |
| 60918 
4ceef1592e8c
new command for lifting BNF structure over typedefs
 traytel parents: 
60758diff
changeset | 16 | lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" | 
| 
4ceef1592e8c
new command for lifting BNF structure over typedefs
 traytel parents: 
60758diff
changeset | 17 | by simp | 
| 
4ceef1592e8c
new command for lifting BNF structure over typedefs
 traytel parents: 
60758diff
changeset | 18 | |
| 67091 | 19 | lemma empty_natural: "(\<lambda>_. {}) \<circ> f = image g \<circ> (\<lambda>_. {})"
 | 
| 58128 | 20 | by (rule ext) simp | 
| 49312 | 21 | |
| 75624 | 22 | lemma Cinfinite_gt_empty: "Cinfinite r \<Longrightarrow> |{}| <o r"
 | 
| 23 | by (simp add: cinfinite_def finite_ordLess_infinite card_of_ordIso_finite Field_card_of card_of_well_order_on emptyI card_order_on_well_order_on) | |
| 24 | ||
| 67091 | 25 | lemma Union_natural: "Union \<circ> image (image f) = image f \<circ> Union" | 
| 58128 | 26 | by (rule ext) (auto simp only: comp_apply) | 
| 49312 | 27 | |
| 67091 | 28 | lemma in_Union_o_assoc: "x \<in> (Union \<circ> gset \<circ> gmap) A \<Longrightarrow> x \<in> (Union \<circ> (gset \<circ> gmap)) A" | 
| 58128 | 29 | by (unfold comp_assoc) | 
| 49312 | 30 | |
| 75624 | 31 | lemma regularCard_UNION_bound: | 
| 32 | assumes "Cinfinite r" "regularCard r" and "|I| <o r" "\<And>i. i \<in> I \<Longrightarrow> |A i| <o r" | |
| 33 | shows "|\<Union>i\<in>I. A i| <o r" | |
| 34 | using assms cinfinite_def regularCard_stable stable_UNION by blast | |
| 35 | ||
| 36 | lemma comp_single_set_bd_strict: | |
| 37 | assumes fbd: "Cinfinite fbd" "regularCard fbd" and | |
| 38 | gbd: "Cinfinite gbd" "regularCard gbd" and | |
| 39 | fset_bd: "\<And>x. |fset x| <o fbd" and | |
| 40 | gset_bd: "\<And>x. |gset x| <o gbd" | |
| 41 | shows "|\<Union>(fset ` gset x)| <o gbd *c fbd" | |
| 42 | proof (cases "fbd <o gbd") | |
| 43 | case True | |
| 44 | then have "|fset x| <o gbd" for x using fset_bd ordLess_transitive by blast | |
| 45 | then have "|\<Union>(fset ` gset x)| <o gbd" using regularCard_UNION_bound[OF gbd gset_bd] by blast | |
| 46 | then have "|\<Union> (fset ` gset x)| <o fbd *c gbd" | |
| 47 | using ordLess_ordLeq_trans ordLeq_cprod2 gbd(1) fbd(1) cinfinite_not_czero by blast | |
| 48 | then show ?thesis using ordLess_ordIso_trans cprod_com by blast | |
| 49 | next | |
| 50 | case False | |
| 51 | have "Well_order fbd" "Well_order gbd" using fbd(1) gbd(1) card_order_on_well_order_on by auto | |
| 52 | then have "gbd \<le>o fbd" using not_ordLess_iff_ordLeq False by blast | |
| 53 | then have "|gset x| <o fbd" for x using gset_bd ordLess_ordLeq_trans by blast | |
| 54 | then have "|\<Union>(fset ` gset x)| <o fbd" using regularCard_UNION_bound[OF fbd] fset_bd by blast | |
| 55 | then show ?thesis using ordLess_ordLeq_trans ordLeq_cprod2 gbd(1) fbd(1) cinfinite_not_czero by blast | |
| 56 | qed | |
| 57 | ||
| 49312 | 58 | lemma comp_single_set_bd: | 
| 59 | assumes fbd_Card_order: "Card_order fbd" and | |
| 60 | fset_bd: "\<And>x. |fset x| \<le>o fbd" and | |
| 61 | gset_bd: "\<And>x. |gset x| \<le>o gbd" | |
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 62 | shows "|\<Union>(fset ` gset x)| \<le>o gbd *c fbd" | 
| 58128 | 63 | apply simp | 
| 64 | apply (rule ordLeq_transitive) | |
| 65 | apply (rule card_of_UNION_Sigma) | |
| 66 | apply (subst SIGMA_CSUM) | |
| 67 | apply (rule ordLeq_transitive) | |
| 68 | apply (rule card_of_Csum_Times') | |
| 69 | apply (rule fbd_Card_order) | |
| 70 | apply (rule ballI) | |
| 71 | apply (rule fset_bd) | |
| 72 | apply (rule ordLeq_transitive) | |
| 73 | apply (rule cprod_mono1) | |
| 74 | apply (rule gset_bd) | |
| 75 | apply (rule ordIso_imp_ordLeq) | |
| 76 | apply (rule ordIso_refl) | |
| 77 | apply (rule Card_order_cprod) | |
| 78 | done | |
| 49312 | 79 | |
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 80 | lemma csum_dup: "cinfinite r \<Longrightarrow> Card_order r \<Longrightarrow> p +c p' =o r +c r \<Longrightarrow> p +c p' =o r" | 
| 58128 | 81 | apply (erule ordIso_transitive) | 
| 82 | apply (frule csum_absorb2') | |
| 83 | apply (erule ordLeq_refl) | |
| 84 | by simp | |
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 85 | |
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 86 | lemma cprod_dup: "cinfinite r \<Longrightarrow> Card_order r \<Longrightarrow> p *c p' =o r *c r \<Longrightarrow> p *c p' =o r" | 
| 58128 | 87 | apply (erule ordIso_transitive) | 
| 88 | apply (rule cprod_infinite) | |
| 89 | by simp | |
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 90 | |
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 91 | lemma Union_image_insert: "\<Union>(f ` insert a B) = f a \<union> \<Union>(f ` B)" | 
| 58128 | 92 | by simp | 
| 49312 | 93 | |
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 94 | lemma Union_image_empty: "A \<union> \<Union>(f ` {}) = A"
 | 
| 58128 | 95 | by simp | 
| 49312 | 96 | |
| 67091 | 97 | lemma image_o_collect: "collect ((\<lambda>f. image g \<circ> f) ` F) = image g \<circ> collect F" | 
| 58128 | 98 | by (rule ext) (auto simp add: collect_def) | 
| 49312 | 99 | |
| 100 | lemma conj_subset_def: "A \<subseteq> {x. P x \<and> Q x} = (A \<subseteq> {x. P x} \<and> A \<subseteq> {x. Q x})"
 | |
| 58128 | 101 | by blast | 
| 49312 | 102 | |
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 103 | lemma UN_image_subset: "\<Union>(f ` g x) \<subseteq> X = (g x \<subseteq> {x. f x \<subseteq> X})"
 | 
| 58128 | 104 | by blast | 
| 49312 | 105 | |
| 69745 | 106 | lemma comp_set_bd_Union_o_collect: "|\<Union>(\<Union>((\<lambda>f. f x) ` X))| \<le>o hbd \<Longrightarrow> |(Union \<circ> collect X) x| \<le>o hbd" | 
| 58128 | 107 | by (unfold comp_apply collect_def) simp | 
| 49312 | 108 | |
| 75624 | 109 | lemma comp_set_bd_Union_o_collect_strict: "|\<Union>(\<Union>((\<lambda>f. f x) ` X))| <o hbd \<Longrightarrow> |(Union \<circ> collect X) x| <o hbd" | 
| 110 | by (unfold comp_apply collect_def) simp | |
| 111 | ||
| 62324 | 112 | lemma Collect_inj: "Collect P = Collect Q \<Longrightarrow> P = Q" | 
| 113 | by blast | |
| 114 | ||
| 67613 | 115 | lemma Grp_fst_snd: "(Grp (Collect (case_prod R)) fst)\<inverse>\<inverse> OO Grp (Collect (case_prod R)) snd = R" | 
| 58128 | 116 | unfolding Grp_def fun_eq_iff relcompp.simps by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
49512diff
changeset | 117 | |
| 67613 | 118 | lemma OO_Grp_cong: "A = B \<Longrightarrow> (Grp A f)\<inverse>\<inverse> OO Grp A g = (Grp B f)\<inverse>\<inverse> OO Grp B g" | 
| 58128 | 119 | by (rule arg_cong) | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
49512diff
changeset | 120 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 121 | lemma vimage2p_relcompp_mono: "R OO S \<le> T \<Longrightarrow> | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 122 | vimage2p f g R OO vimage2p g h S \<le> vimage2p f h T" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 123 | unfolding vimage2p_def by auto | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 124 | |
| 67091 | 125 | lemma type_copy_map_cong0: "M (g x) = N (h x) \<Longrightarrow> (f \<circ> M \<circ> g) x = (f \<circ> N \<circ> h) x" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 126 | by auto | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 127 | |
| 75624 | 128 | lemma type_copy_set_bd: "(\<And>y. |S y| <o bd) \<Longrightarrow> |(S \<circ> Rep) x| <o bd" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 129 | by auto | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 130 | |
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 131 | lemma vimage2p_cong: "R = S \<Longrightarrow> vimage2p f g R = vimage2p f g S" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 132 | by simp | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 133 | |
| 67091 | 134 | lemma Ball_comp_iff: "(\<lambda>x. Ball (A x) f) \<circ> g = (\<lambda>x. Ball ((A \<circ> g) x) f)" | 
| 62324 | 135 | unfolding o_def by auto | 
| 136 | ||
| 67091 | 137 | lemma conj_comp_iff: "(\<lambda>x. P x \<and> Q x) \<circ> g = (\<lambda>x. (P \<circ> g) x \<and> (Q \<circ> g) x)" | 
| 62324 | 138 | unfolding o_def by auto | 
| 139 | ||
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 140 | context | 
| 58128 | 141 | fixes Rep Abs | 
| 142 | assumes type_copy: "type_definition Rep Abs UNIV" | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 143 | begin | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 144 | |
| 67091 | 145 | lemma type_copy_map_id0: "M = id \<Longrightarrow> Abs \<circ> M \<circ> Rep = id" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 146 | using type_definition.Rep_inverse[OF type_copy] by auto | 
| 55811 | 147 | |
| 67091 | 148 | lemma type_copy_map_comp0: "M = M1 \<circ> M2 \<Longrightarrow> f \<circ> M \<circ> g = (f \<circ> M1 \<circ> Rep) \<circ> (Abs \<circ> M2 \<circ> g)" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 149 | using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto | 
| 55811 | 150 | |
| 67091 | 151 | lemma type_copy_set_map0: "S \<circ> M = image f \<circ> S' \<Longrightarrow> (S \<circ> Rep) \<circ> (Abs \<circ> M \<circ> g) = image f \<circ> (S' \<circ> g)" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 152 | using type_definition.Abs_inverse[OF type_copy UNIV_I] by (auto simp: o_def fun_eq_iff) | 
| 55811 | 153 | |
| 67091 | 154 | lemma type_copy_wit: "x \<in> (S \<circ> Rep) (Abs y) \<Longrightarrow> x \<in> S y" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 155 | using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto | 
| 55811 | 156 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 157 | lemma type_copy_vimage2p_Grp_Rep: "vimage2p f Rep (Grp (Collect P) h) = | 
| 67091 | 158 | Grp (Collect (\<lambda>x. P (f x))) (Abs \<circ> h \<circ> f)" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 159 | unfolding vimage2p_def Grp_def fun_eq_iff | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 160 | by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I] | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 161 | type_definition.Rep_inverse[OF type_copy] dest: sym) | 
| 55811 | 162 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 163 | lemma type_copy_vimage2p_Grp_Abs: | 
| 67091 | 164 | "\<And>h. vimage2p g Abs (Grp (Collect P) h) = Grp (Collect (\<lambda>x. P (g x))) (Rep \<circ> h \<circ> g)" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 165 | unfolding vimage2p_def Grp_def fun_eq_iff | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 166 | by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I] | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 167 | type_definition.Rep_inverse[OF type_copy] dest: sym) | 
| 55811 | 168 | |
| 169 | lemma type_copy_ex_RepI: "(\<exists>b. F b) = (\<exists>b. F (Rep b))" | |
| 170 | proof safe | |
| 171 | fix b assume "F b" | |
| 172 | show "\<exists>b'. F (Rep b')" | |
| 173 | proof (rule exI) | |
| 60758 | 174 | from \<open>F b\<close> show "F (Rep (Abs b))" using type_definition.Abs_inverse[OF type_copy] by auto | 
| 55811 | 175 | qed | 
| 176 | qed blast | |
| 177 | ||
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 178 | lemma vimage2p_relcompp_converse: | 
| 67613 | 179 | "vimage2p f g (R\<inverse>\<inverse> OO S) = (vimage2p Rep f R)\<inverse>\<inverse> OO vimage2p Rep g S" | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 180 | unfolding vimage2p_def relcompp.simps conversep.simps fun_eq_iff image_def | 
| 55811 | 181 | by (auto simp: type_copy_ex_RepI) | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 182 | |
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 183 | end | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 184 | |
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 185 | bnf DEADID: 'a | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 186 | map: "id :: 'a \<Rightarrow> 'a" | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 187 | bd: natLeq | 
| 67399 | 188 | rel: "(=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 75624 | 189 | by (auto simp add: natLeq_card_order natLeq_cinfinite regularCard_natLeq) | 
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 190 | |
| 58353 | 191 | definition id_bnf :: "'a \<Rightarrow> 'a" where | 
| 192 | "id_bnf \<equiv> (\<lambda>x. x)" | |
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 193 | |
| 58181 | 194 | lemma id_bnf_apply: "id_bnf x = x" | 
| 195 | unfolding id_bnf_def by simp | |
| 56016 
8875cdcfc85b
unfold intermediate definitions after sealing the bnf
 traytel parents: 
55936diff
changeset | 196 | |
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 197 | bnf ID: 'a | 
| 58181 | 198 |   map: "id_bnf :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 199 |   sets: "\<lambda>x. {x}"
 | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 200 | bd: natLeq | 
| 58181 | 201 |   rel: "id_bnf :: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 62324 | 202 |   pred: "id_bnf :: ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 58181 | 203 | unfolding id_bnf_def | 
| 75624 | 204 | apply (auto simp: Grp_def fun_eq_iff relcompp.simps natLeq_card_order natLeq_cinfinite regularCard_natLeq) | 
| 205 | apply (rule finite_ordLess_infinite[OF _ natLeq_Well_order]) | |
| 58128 | 206 | apply (auto simp add: Field_card_of Field_natLeq card_of_well_order_on)[3] | 
| 207 | done | |
| 55854 
ee270328a781
make 'typedef' optional, depending on size of original type
 blanchet parents: 
55851diff
changeset | 208 | |
| 58181 | 209 | lemma type_definition_id_bnf_UNIV: "type_definition id_bnf id_bnf UNIV" | 
| 210 | unfolding id_bnf_def by unfold_locales auto | |
| 55854 
ee270328a781
make 'typedef' optional, depending on size of original type
 blanchet parents: 
55851diff
changeset | 211 | |
| 69605 | 212 | ML_file \<open>Tools/BNF/bnf_comp_tactics.ML\<close> | 
| 213 | ML_file \<open>Tools/BNF/bnf_comp.ML\<close> | |
| 49309 
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
 blanchet parents: 
49308diff
changeset | 214 | |
| 58282 | 215 | hide_fact | 
| 216 | DEADID.inj_map DEADID.inj_map_strong DEADID.map_comp DEADID.map_cong DEADID.map_cong0 | |
| 217 | DEADID.map_cong_simp DEADID.map_id DEADID.map_id0 DEADID.map_ident DEADID.map_transfer | |
| 218 | DEADID.rel_Grp DEADID.rel_compp DEADID.rel_compp_Grp DEADID.rel_conversep DEADID.rel_eq | |
| 219 | DEADID.rel_flip DEADID.rel_map DEADID.rel_mono DEADID.rel_transfer | |
| 220 | ID.inj_map ID.inj_map_strong ID.map_comp ID.map_cong ID.map_cong0 ID.map_cong_simp ID.map_id | |
| 221 | ID.map_id0 ID.map_ident ID.map_transfer ID.rel_Grp ID.rel_compp ID.rel_compp_Grp ID.rel_conversep | |
| 222 | ID.rel_eq ID.rel_flip ID.rel_map ID.rel_mono ID.rel_transfer ID.set_map ID.set_transfer | |
| 223 | ||
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 224 | end |