| author | wenzelm | 
| Sat, 08 Sep 2018 12:34:11 +0200 | |
| changeset 68945 | fa5d936daf1c | 
| parent 67489 | f1ba59ddd9a6 | 
| child 69064 | 5840724b1d71 | 
| permissions | -rw-r--r-- | 
| 58101 | 1 | (* Author: Tobias Nipkow, TU Muenchen *) | 
| 2 | ||
| 60758 | 3 | section \<open>Sum and product over lists\<close> | 
| 58101 | 4 | |
| 5 | theory Groups_List | |
| 6 | imports List | |
| 7 | begin | |
| 8 | ||
| 58320 | 9 | locale monoid_list = monoid | 
| 10 | begin | |
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 11 | |
| 58320 | 12 | definition F :: "'a list \<Rightarrow> 'a" | 
| 13 | where | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 14 | eq_foldr [code]: "F xs = foldr f xs \<^bold>1" | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 15 | |
| 58320 | 16 | lemma Nil [simp]: | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 17 | "F [] = \<^bold>1" | 
| 58320 | 18 | by (simp add: eq_foldr) | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 19 | |
| 58320 | 20 | lemma Cons [simp]: | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 21 | "F (x # xs) = x \<^bold>* F xs" | 
| 58320 | 22 | by (simp add: eq_foldr) | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 23 | |
| 58320 | 24 | lemma append [simp]: | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 25 | "F (xs @ ys) = F xs \<^bold>* F ys" | 
| 58320 | 26 | by (induct xs) (simp_all add: assoc) | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 27 | |
| 58320 | 28 | end | 
| 58101 | 29 | |
| 58320 | 30 | locale comm_monoid_list = comm_monoid + monoid_list | 
| 31 | begin | |
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 32 | |
| 58320 | 33 | lemma rev [simp]: | 
| 34 | "F (rev xs) = F xs" | |
| 35 | by (simp add: eq_foldr foldr_fold fold_rev fun_eq_iff assoc left_commute) | |
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 36 | |
| 58320 | 37 | end | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 38 | |
| 58320 | 39 | locale comm_monoid_list_set = list: comm_monoid_list + set: comm_monoid_set | 
| 40 | begin | |
| 58101 | 41 | |
| 58320 | 42 | lemma distinct_set_conv_list: | 
| 43 | "distinct xs \<Longrightarrow> set.F g (set xs) = list.F (map g xs)" | |
| 44 | by (induct xs) simp_all | |
| 58101 | 45 | |
| 58320 | 46 | lemma set_conv_list [code]: | 
| 47 | "set.F g (set xs) = list.F (map g (remdups xs))" | |
| 48 | by (simp add: distinct_set_conv_list [symmetric]) | |
| 49 | ||
| 50 | end | |
| 51 | ||
| 52 | ||
| 60758 | 53 | subsection \<open>List summation\<close> | 
| 58320 | 54 | |
| 55 | context monoid_add | |
| 56 | begin | |
| 57 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 58 | sublocale sum_list: monoid_list plus 0 | 
| 61776 | 59 | defines | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 60 | sum_list = sum_list.F .. | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 61 | |
| 58320 | 62 | end | 
| 63 | ||
| 64 | context comm_monoid_add | |
| 65 | begin | |
| 66 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 67 | sublocale sum_list: comm_monoid_list plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 68 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 69 | "monoid_list.F plus 0 = sum_list" | 
| 58320 | 70 | proof - | 
| 71 | show "comm_monoid_list plus 0" .. | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 72 | then interpret sum_list: comm_monoid_list plus 0 . | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 73 | from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp | 
| 58101 | 74 | qed | 
| 75 | ||
| 64267 | 76 | sublocale sum: comm_monoid_list_set plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 77 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 78 | "monoid_list.F plus 0 = sum_list" | 
| 64267 | 79 | and "comm_monoid_set.F plus 0 = sum" | 
| 58320 | 80 | proof - | 
| 81 | show "comm_monoid_list_set plus 0" .. | |
| 64267 | 82 | then interpret sum: comm_monoid_list_set plus 0 . | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 83 | from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp | 
| 64267 | 84 | from sum_def show "comm_monoid_set.F plus 0 = sum" by (auto intro: sym) | 
| 58320 | 85 | qed | 
| 86 | ||
| 87 | end | |
| 88 | ||
| 60758 | 89 | text \<open>Some syntactic sugar for summing a function over a list:\<close> | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 90 | syntax (ASCII) | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 91 |   "_sum_list" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
 | 
| 58101 | 92 | syntax | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 93 |   "_sum_list" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 61799 | 94 | translations \<comment> \<open>Beware of argument permutation!\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 95 | "\<Sum>x\<leftarrow>xs. b" == "CONST sum_list (CONST map (\<lambda>x. b) xs)" | 
| 58101 | 96 | |
| 60758 | 97 | text \<open>TODO duplicates\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 98 | lemmas sum_list_simps = sum_list.Nil sum_list.Cons | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 99 | lemmas sum_list_append = sum_list.append | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 100 | lemmas sum_list_rev = sum_list.rev | 
| 58320 | 101 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 102 | lemma (in monoid_add) fold_plus_sum_list_rev: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 103 | "fold plus xs = plus (sum_list (rev xs))" | 
| 58320 | 104 | proof | 
| 105 | fix x | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 106 | have "fold plus xs x = sum_list (rev xs @ [x])" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 107 | by (simp add: foldr_conv_fold sum_list.eq_foldr) | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 108 | also have "\<dots> = sum_list (rev xs) + x" | 
| 58320 | 109 | by simp | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 110 | finally show "fold plus xs x = sum_list (rev xs) + x" | 
| 58320 | 111 | . | 
| 112 | qed | |
| 113 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 114 | lemma (in comm_monoid_add) sum_list_map_remove1: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 115 | "x \<in> set xs \<Longrightarrow> sum_list (map f xs) = f x + sum_list (map f (remove1 x xs))" | 
| 58101 | 116 | by (induct xs) (auto simp add: ac_simps) | 
| 117 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 118 | lemma (in monoid_add) size_list_conv_sum_list: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 119 | "size_list f xs = sum_list (map f xs) + size xs" | 
| 58101 | 120 | by (induct xs) auto | 
| 121 | ||
| 122 | lemma (in monoid_add) length_concat: | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 123 | "length (concat xss) = sum_list (map length xss)" | 
| 58101 | 124 | by (induct xss) simp_all | 
| 125 | ||
| 126 | lemma (in monoid_add) length_product_lists: | |
| 67399 | 127 | "length (product_lists xss) = foldr ( * ) (map length xss) 1" | 
| 58101 | 128 | proof (induct xss) | 
| 129 | case (Cons xs xss) then show ?case by (induct xs) (auto simp: length_concat o_def) | |
| 130 | qed simp | |
| 131 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 132 | lemma (in monoid_add) sum_list_map_filter: | 
| 58101 | 133 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 134 | shows "sum_list (map f (filter P xs)) = sum_list (map f xs)" | 
| 58101 | 135 | using assms by (induct xs) auto | 
| 136 | ||
| 64267 | 137 | lemma (in comm_monoid_add) distinct_sum_list_conv_Sum: | 
| 138 | "distinct xs \<Longrightarrow> sum_list xs = Sum (set xs)" | |
| 58101 | 139 | by (induct xs) simp_all | 
| 140 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 141 | lemma sum_list_upt[simp]: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 142 |   "m \<le> n \<Longrightarrow> sum_list [m..<n] = \<Sum> {m..<n}"
 | 
| 64267 | 143 | by(simp add: distinct_sum_list_conv_Sum) | 
| 58995 | 144 | |
| 66311 | 145 | context ordered_comm_monoid_add | 
| 146 | begin | |
| 147 | ||
| 148 | lemma sum_list_nonneg: "(\<And>x. x \<in> set xs \<Longrightarrow> 0 \<le> x) \<Longrightarrow> 0 \<le> sum_list xs" | |
| 149 | by (induction xs) auto | |
| 150 | ||
| 151 | lemma sum_list_nonpos: "(\<And>x. x \<in> set xs \<Longrightarrow> x \<le> 0) \<Longrightarrow> sum_list xs \<le> 0" | |
| 152 | by (induction xs) (auto simp: add_nonpos_nonpos) | |
| 58101 | 153 | |
| 66311 | 154 | lemma sum_list_nonneg_eq_0_iff: | 
| 155 | "(\<And>x. x \<in> set xs \<Longrightarrow> 0 \<le> x) \<Longrightarrow> sum_list xs = 0 \<longleftrightarrow> (\<forall>x\<in> set xs. x = 0)" | |
| 156 | by (induction xs) (simp_all add: add_nonneg_eq_0_iff sum_list_nonneg) | |
| 157 | ||
| 158 | end | |
| 159 | ||
| 160 | context canonically_ordered_monoid_add | |
| 161 | begin | |
| 58101 | 162 | |
| 66311 | 163 | lemma sum_list_eq_0_iff [simp]: | 
| 164 | "sum_list ns = 0 \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)" | |
| 165 | by (simp add: sum_list_nonneg_eq_0_iff) | |
| 166 | ||
| 167 | lemma member_le_sum_list: | |
| 168 | "x \<in> set xs \<Longrightarrow> x \<le> sum_list xs" | |
| 169 | by (induction xs) (auto simp: add_increasing add_increasing2) | |
| 58101 | 170 | |
| 66311 | 171 | lemma elem_le_sum_list: | 
| 172 | "k < size ns \<Longrightarrow> ns ! k \<le> sum_list (ns)" | |
| 173 | by (rule member_le_sum_list) simp | |
| 174 | ||
| 175 | end | |
| 176 | ||
| 177 | lemma (in ordered_cancel_comm_monoid_diff) sum_list_update: | |
| 178 | "k < size xs \<Longrightarrow> sum_list (xs[k := x]) = sum_list xs + x - xs ! k" | |
| 179 | apply(induction xs arbitrary:k) | |
| 180 | apply (auto simp: add_ac split: nat.split) | |
| 181 | apply(drule elem_le_sum_list) | |
| 182 | by (simp add: local.add_diff_assoc local.add_increasing) | |
| 58101 | 183 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 184 | lemma (in monoid_add) sum_list_triv: | 
| 58101 | 185 | "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r" | 
| 186 | by (induct xs) (simp_all add: distrib_right) | |
| 187 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 188 | lemma (in monoid_add) sum_list_0 [simp]: | 
| 58101 | 189 | "(\<Sum>x\<leftarrow>xs. 0) = 0" | 
| 190 | by (induct xs) (simp_all add: distrib_right) | |
| 191 | ||
| 61799 | 192 | text\<open>For non-Abelian groups \<open>xs\<close> needs to be reversed on one side:\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 193 | lemma (in ab_group_add) uminus_sum_list_map: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 194 | "- sum_list (map f xs) = sum_list (map (uminus \<circ> f) xs)" | 
| 58101 | 195 | by (induct xs) simp_all | 
| 196 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 197 | lemma (in comm_monoid_add) sum_list_addf: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 198 | "(\<Sum>x\<leftarrow>xs. f x + g x) = sum_list (map f xs) + sum_list (map g xs)" | 
| 58101 | 199 | by (induct xs) (simp_all add: algebra_simps) | 
| 200 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 201 | lemma (in ab_group_add) sum_list_subtractf: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 202 | "(\<Sum>x\<leftarrow>xs. f x - g x) = sum_list (map f xs) - sum_list (map g xs)" | 
| 58101 | 203 | by (induct xs) (simp_all add: algebra_simps) | 
| 204 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 205 | lemma (in semiring_0) sum_list_const_mult: | 
| 58101 | 206 | "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)" | 
| 207 | by (induct xs) (simp_all add: algebra_simps) | |
| 208 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 209 | lemma (in semiring_0) sum_list_mult_const: | 
| 58101 | 210 | "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c" | 
| 211 | by (induct xs) (simp_all add: algebra_simps) | |
| 212 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 213 | lemma (in ordered_ab_group_add_abs) sum_list_abs: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 214 | "\<bar>sum_list xs\<bar> \<le> sum_list (map abs xs)" | 
| 58101 | 215 | by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq]) | 
| 216 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 217 | lemma sum_list_mono: | 
| 58101 | 218 |   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
 | 
| 219 | shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)" | |
| 220 | by (induct xs) (simp, simp add: add_mono) | |
| 221 | ||
| 64267 | 222 | lemma (in monoid_add) sum_list_distinct_conv_sum_set: | 
| 223 | "distinct xs \<Longrightarrow> sum_list (map f xs) = sum f (set xs)" | |
| 58101 | 224 | by (induct xs) simp_all | 
| 225 | ||
| 64267 | 226 | lemma (in monoid_add) interv_sum_list_conv_sum_set_nat: | 
| 227 | "sum_list (map f [m..<n]) = sum f (set [m..<n])" | |
| 228 | by (simp add: sum_list_distinct_conv_sum_set) | |
| 58101 | 229 | |
| 64267 | 230 | lemma (in monoid_add) interv_sum_list_conv_sum_set_int: | 
| 231 | "sum_list (map f [k..l]) = sum f (set [k..l])" | |
| 232 | by (simp add: sum_list_distinct_conv_sum_set) | |
| 58101 | 233 | |
| 64267 | 234 | text \<open>General equivalence between @{const sum_list} and @{const sum}\<close>
 | 
| 235 | lemma (in monoid_add) sum_list_sum_nth: | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 236 | "sum_list xs = (\<Sum> i = 0 ..< length xs. xs ! i)" | 
| 67399 | 237 | using interv_sum_list_conv_sum_set_nat [of "(!) xs" 0 "length xs"] by (simp add: map_nth) | 
| 58101 | 238 | |
| 64267 | 239 | lemma sum_list_map_eq_sum_count: | 
| 240 | "sum_list (map f xs) = sum (\<lambda>x. count_list xs x * f x) (set xs)" | |
| 59728 | 241 | proof(induction xs) | 
| 242 | case (Cons x xs) | |
| 243 | show ?case (is "?l = ?r") | |
| 244 | proof cases | |
| 245 | assume "x \<in> set xs" | |
| 60541 | 246 | have "?l = f x + (\<Sum>x\<in>set xs. count_list xs x * f x)" by (simp add: Cons.IH) | 
| 60758 | 247 |     also have "set xs = insert x (set xs - {x})" using \<open>x \<in> set xs\<close>by blast
 | 
| 60541 | 248 |     also have "f x + (\<Sum>x\<in>insert x (set xs - {x}). count_list xs x * f x) = ?r"
 | 
| 64267 | 249 | by (simp add: sum.insert_remove eq_commute) | 
| 59728 | 250 | finally show ?thesis . | 
| 251 | next | |
| 252 | assume "x \<notin> set xs" | |
| 253 | hence "\<And>xa. xa \<in> set xs \<Longrightarrow> x \<noteq> xa" by blast | |
| 60758 | 254 | thus ?thesis by (simp add: Cons.IH \<open>x \<notin> set xs\<close>) | 
| 59728 | 255 | qed | 
| 256 | qed simp | |
| 257 | ||
| 64267 | 258 | lemma sum_list_map_eq_sum_count2: | 
| 59728 | 259 | assumes "set xs \<subseteq> X" "finite X" | 
| 64267 | 260 | shows "sum_list (map f xs) = sum (\<lambda>x. count_list xs x * f x) X" | 
| 59728 | 261 | proof- | 
| 60541 | 262 | let ?F = "\<lambda>x. count_list xs x * f x" | 
| 64267 | 263 | have "sum ?F X = sum ?F (set xs \<union> (X - set xs))" | 
| 59728 | 264 | using Un_absorb1[OF assms(1)] by(simp) | 
| 64267 | 265 | also have "\<dots> = sum ?F (set xs)" | 
| 59728 | 266 | using assms(2) | 
| 64267 | 267 | by(simp add: sum.union_disjoint[OF _ _ Diff_disjoint] del: Un_Diff_cancel) | 
| 268 | finally show ?thesis by(simp add:sum_list_map_eq_sum_count) | |
| 59728 | 269 | qed | 
| 270 | ||
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 271 | lemma sum_list_nonneg: | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 272 | "(\<And>x. x \<in> set xs \<Longrightarrow> (x :: 'a :: ordered_comm_monoid_add) \<ge> 0) \<Longrightarrow> sum_list xs \<ge> 0" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 273 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 274 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 275 | lemma (in monoid_add) sum_list_map_filter': | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 276 | "sum_list (map f (filter P xs)) = sum_list (map (\<lambda>x. if P x then f x else 0) xs)" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 277 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 278 | |
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 279 | text \<open>Summation of a strictly ascending sequence with length \<open>n\<close> | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 280 |   can be upper-bounded by summation over \<open>{0..<n}\<close>.\<close>
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 281 | |
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 282 | lemma sorted_wrt_less_sum_mono_lowerbound: | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 283 |   fixes f :: "nat \<Rightarrow> ('b::ordered_comm_monoid_add)"
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 284 | assumes mono: "\<And>x y. x\<le>y \<Longrightarrow> f x \<le> f y" | 
| 67399 | 285 | shows "sorted_wrt (<) ns \<Longrightarrow> | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 286 |     (\<Sum>i\<in>{0..<length ns}. f i) \<le> (\<Sum>i\<leftarrow>ns. f i)"
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 287 | proof (induction ns rule: rev_induct) | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 288 | case Nil | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 289 | then show ?case by simp | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 290 | next | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 291 | case (snoc n ns) | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 292 |   have "sum f {0..<length (ns @ [n])}
 | 
| 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 293 |       = sum f {0..<length ns} + f (length ns)"
 | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 294 | by simp | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 295 |   also have "sum f {0..<length ns} \<le> sum_list (map f ns)"
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 296 | using snoc by (auto simp: sorted_wrt_append) | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 297 | also have "length ns \<le> n" | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 298 | using sorted_wrt_less_idx[OF snoc.prems(1), of "length ns"] by auto | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 299 |   finally have "sum f {0..<length (ns @ [n])} \<le> sum_list (map f ns) + f n"
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 300 | using mono add_mono by blast | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 301 | thus ?case by simp | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 302 | qed | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 303 | |
| 58101 | 304 | |
| 60758 | 305 | subsection \<open>Further facts about @{const List.n_lists}\<close>
 | 
| 58101 | 306 | |
| 307 | lemma length_n_lists: "length (List.n_lists n xs) = length xs ^ n" | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 308 | by (induct n) (auto simp add: comp_def length_concat sum_list_triv) | 
| 58101 | 309 | |
| 310 | lemma distinct_n_lists: | |
| 311 | assumes "distinct xs" | |
| 312 | shows "distinct (List.n_lists n xs)" | |
| 313 | proof (rule card_distinct) | |
| 314 | from assms have card_length: "card (set xs) = length xs" by (rule distinct_card) | |
| 315 | have "card (set (List.n_lists n xs)) = card (set xs) ^ n" | |
| 316 | proof (induct n) | |
| 317 | case 0 then show ?case by simp | |
| 318 | next | |
| 319 | case (Suc n) | |
| 320 | moreover have "card (\<Union>ys\<in>set (List.n_lists n xs). (\<lambda>y. y # ys) ` set xs) | |
| 321 | = (\<Sum>ys\<in>set (List.n_lists n xs). card ((\<lambda>y. y # ys) ` set xs))" | |
| 322 | by (rule card_UN_disjoint) auto | |
| 323 | moreover have "\<And>ys. card ((\<lambda>y. y # ys) ` set xs) = card (set xs)" | |
| 324 | by (rule card_image) (simp add: inj_on_def) | |
| 325 | ultimately show ?case by auto | |
| 326 | qed | |
| 327 | also have "\<dots> = length xs ^ n" by (simp add: card_length) | |
| 328 | finally show "card (set (List.n_lists n xs)) = length (List.n_lists n xs)" | |
| 329 | by (simp add: length_n_lists) | |
| 330 | qed | |
| 331 | ||
| 332 | ||
| 60758 | 333 | subsection \<open>Tools setup\<close> | 
| 58101 | 334 | |
| 64267 | 335 | lemmas sum_code = sum.set_conv_list | 
| 58320 | 336 | |
| 64267 | 337 | lemma sum_set_upto_conv_sum_list_int [code_unfold]: | 
| 338 | "sum f (set [i..j::int]) = sum_list (map f [i..j])" | |
| 339 | by (simp add: interv_sum_list_conv_sum_set_int) | |
| 58101 | 340 | |
| 64267 | 341 | lemma sum_set_upt_conv_sum_list_nat [code_unfold]: | 
| 342 | "sum f (set [m..<n]) = sum_list (map f [m..<n])" | |
| 343 | by (simp add: interv_sum_list_conv_sum_set_nat) | |
| 58101 | 344 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 345 | lemma sum_list_transfer[transfer_rule]: | 
| 63343 | 346 | includes lifting_syntax | 
| 58101 | 347 | assumes [transfer_rule]: "A 0 0" | 
| 67399 | 348 | assumes [transfer_rule]: "(A ===> A ===> A) (+) (+)" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 349 | shows "(list_all2 A ===> A) sum_list sum_list" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 350 | unfolding sum_list.eq_foldr [abs_def] | 
| 58101 | 351 | by transfer_prover | 
| 352 | ||
| 58368 | 353 | |
| 60758 | 354 | subsection \<open>List product\<close> | 
| 58368 | 355 | |
| 356 | context monoid_mult | |
| 357 | begin | |
| 358 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 359 | sublocale prod_list: monoid_list times 1 | 
| 61776 | 360 | defines | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 361 | prod_list = prod_list.F .. | 
| 58368 | 362 | |
| 58320 | 363 | end | 
| 58368 | 364 | |
| 365 | context comm_monoid_mult | |
| 366 | begin | |
| 367 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 368 | sublocale prod_list: comm_monoid_list times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 369 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 370 | "monoid_list.F times 1 = prod_list" | 
| 58368 | 371 | proof - | 
| 372 | show "comm_monoid_list times 1" .. | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 373 | then interpret prod_list: comm_monoid_list times 1 . | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 374 | from prod_list_def show "monoid_list.F times 1 = prod_list" by simp | 
| 58368 | 375 | qed | 
| 376 | ||
| 64272 | 377 | sublocale prod: comm_monoid_list_set times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 378 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 379 | "monoid_list.F times 1 = prod_list" | 
| 64272 | 380 | and "comm_monoid_set.F times 1 = prod" | 
| 58368 | 381 | proof - | 
| 382 | show "comm_monoid_list_set times 1" .. | |
| 64272 | 383 | then interpret prod: comm_monoid_list_set times 1 . | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 384 | from prod_list_def show "monoid_list.F times 1 = prod_list" by simp | 
| 64272 | 385 | from prod_def show "comm_monoid_set.F times 1 = prod" by (auto intro: sym) | 
| 58368 | 386 | qed | 
| 387 | ||
| 388 | end | |
| 389 | ||
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 390 | lemma prod_list_zero_iff: | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 391 |   "prod_list xs = 0 \<longleftrightarrow> (0 :: 'a :: {semiring_no_zero_divisors, semiring_1}) \<in> set xs"
 | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63290diff
changeset | 392 | by (induction xs) simp_all | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63290diff
changeset | 393 | |
| 60758 | 394 | text \<open>Some syntactic sugar:\<close> | 
| 58368 | 395 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 396 | syntax (ASCII) | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 397 |   "_prod_list" :: "pttrn => 'a list => 'b => 'b"    ("(3PROD _<-_. _)" [0, 51, 10] 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 398 | syntax | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 399 |   "_prod_list" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Prod>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 61799 | 400 | translations \<comment> \<open>Beware of argument permutation!\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 401 | "\<Prod>x\<leftarrow>xs. b" \<rightleftharpoons> "CONST prod_list (CONST map (\<lambda>x. b) xs)" | 
| 58368 | 402 | |
| 403 | end |