author | wenzelm |
Fri, 18 Feb 2022 13:48:50 +0100 | |
changeset 75095 | faa24820fba1 |
parent 69605 | a96320074298 |
child 76213 | e44d86131648 |
permissions | -rw-r--r-- |
41777 | 1 |
(* Title: ZF/ArithSimp.thy |
9548 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 2000 University of Cambridge |
|
4 |
*) |
|
5 |
||
60770 | 6 |
section\<open>Arithmetic with simplification\<close> |
13328 | 7 |
|
46820 | 8 |
theory ArithSimp |
15481 | 9 |
imports Arith |
10 |
begin |
|
13259 | 11 |
|
69605 | 12 |
ML_file \<open>~~/src/Provers/Arith/cancel_numerals.ML\<close> |
13 |
ML_file \<open>~~/src/Provers/Arith/combine_numerals.ML\<close> |
|
14 |
ML_file \<open>arith_data.ML\<close> |
|
48891 | 15 |
|
16 |
||
60770 | 17 |
subsection\<open>Difference\<close> |
13259 | 18 |
|
14046 | 19 |
lemma diff_self_eq_0 [simp]: "m #- m = 0" |
13259 | 20 |
apply (subgoal_tac "natify (m) #- natify (m) = 0") |
21 |
apply (rule_tac [2] natify_in_nat [THEN nat_induct], auto) |
|
22 |
done |
|
23 |
||
24 |
(**Addition is the inverse of subtraction**) |
|
25 |
||
26 |
(*We need m:nat even if we replace the RHS by natify(m), for consider e.g. |
|
46820 | 27 |
n=2, m=omega; then n + (m-n) = 2 + (0-2) = 2 \<noteq> 0 = natify(m).*) |
28 |
lemma add_diff_inverse: "[| n \<le> m; m:nat |] ==> n #+ (m#-n) = m" |
|
13259 | 29 |
apply (frule lt_nat_in_nat, erule nat_succI) |
30 |
apply (erule rev_mp) |
|
13784 | 31 |
apply (rule_tac m = m and n = n in diff_induct, auto) |
13259 | 32 |
done |
33 |
||
46820 | 34 |
lemma add_diff_inverse2: "[| n \<le> m; m:nat |] ==> (m#-n) #+ n = m" |
13259 | 35 |
apply (frule lt_nat_in_nat, erule nat_succI) |
36 |
apply (simp (no_asm_simp) add: add_commute add_diff_inverse) |
|
37 |
done |
|
38 |
||
39 |
(*Proof is IDENTICAL to that of add_diff_inverse*) |
|
46820 | 40 |
lemma diff_succ: "[| n \<le> m; m:nat |] ==> succ(m) #- n = succ(m#-n)" |
13259 | 41 |
apply (frule lt_nat_in_nat, erule nat_succI) |
42 |
apply (erule rev_mp) |
|
13784 | 43 |
apply (rule_tac m = m and n = n in diff_induct) |
13259 | 44 |
apply (simp_all (no_asm_simp)) |
45 |
done |
|
46 |
||
47 |
lemma zero_less_diff [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
48 |
"[| m: nat; n: nat |] ==> 0 < (n #- m) \<longleftrightarrow> m<n" |
13784 | 49 |
apply (rule_tac m = m and n = n in diff_induct) |
13259 | 50 |
apply (simp_all (no_asm_simp)) |
51 |
done |
|
52 |
||
53 |
||
54 |
(** Difference distributes over multiplication **) |
|
55 |
||
56 |
lemma diff_mult_distrib: "(m #- n) #* k = (m #* k) #- (n #* k)" |
|
57 |
apply (subgoal_tac " (natify (m) #- natify (n)) #* natify (k) = (natify (m) #* natify (k)) #- (natify (n) #* natify (k))") |
|
58 |
apply (rule_tac [2] m = "natify (m) " and n = "natify (n) " in diff_induct) |
|
59 |
apply (simp_all add: diff_cancel) |
|
60 |
done |
|
61 |
||
62 |
lemma diff_mult_distrib2: "k #* (m #- n) = (k #* m) #- (k #* n)" |
|
63 |
apply (simp (no_asm) add: mult_commute [of k] diff_mult_distrib) |
|
64 |
done |
|
65 |
||
66 |
||
60770 | 67 |
subsection\<open>Remainder\<close> |
13259 | 68 |
|
69 |
(*We need m:nat even with natify*) |
|
46820 | 70 |
lemma div_termination: "[| 0<n; n \<le> m; m:nat |] ==> m #- n < m" |
13259 | 71 |
apply (frule lt_nat_in_nat, erule nat_succI) |
72 |
apply (erule rev_mp) |
|
73 |
apply (erule rev_mp) |
|
13784 | 74 |
apply (rule_tac m = m and n = n in diff_induct) |
13259 | 75 |
apply (simp_all (no_asm_simp) add: diff_le_self) |
76 |
done |
|
77 |
||
78 |
(*for mod and div*) |
|
46820 | 79 |
lemmas div_rls = |
80 |
nat_typechecks Ord_transrec_type apply_funtype |
|
13259 | 81 |
div_termination [THEN ltD] |
82 |
nat_into_Ord not_lt_iff_le [THEN iffD1] |
|
83 |
||
46820 | 84 |
lemma raw_mod_type: "[| m:nat; n:nat |] ==> raw_mod (m, n) \<in> nat" |
13259 | 85 |
apply (unfold raw_mod_def) |
86 |
apply (rule Ord_transrec_type) |
|
87 |
apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
46820 | 88 |
apply (blast intro: div_rls) |
13259 | 89 |
done |
90 |
||
46820 | 91 |
lemma mod_type [TC,iff]: "m mod n \<in> nat" |
13259 | 92 |
apply (unfold mod_def) |
93 |
apply (simp (no_asm) add: mod_def raw_mod_type) |
|
94 |
done |
|
95 |
||
96 |
||
46820 | 97 |
(** Aribtrary definitions for division by zero. Useful to simplify |
13259 | 98 |
certain equations **) |
99 |
||
100 |
lemma DIVISION_BY_ZERO_DIV: "a div 0 = 0" |
|
101 |
apply (unfold div_def) |
|
102 |
apply (rule raw_div_def [THEN def_transrec, THEN trans]) |
|
103 |
apply (simp (no_asm_simp)) |
|
104 |
done (*NOT for adding to default simpset*) |
|
105 |
||
106 |
lemma DIVISION_BY_ZERO_MOD: "a mod 0 = natify(a)" |
|
107 |
apply (unfold mod_def) |
|
108 |
apply (rule raw_mod_def [THEN def_transrec, THEN trans]) |
|
109 |
apply (simp (no_asm_simp)) |
|
110 |
done (*NOT for adding to default simpset*) |
|
111 |
||
112 |
lemma raw_mod_less: "m<n ==> raw_mod (m,n) = m" |
|
113 |
apply (rule raw_mod_def [THEN def_transrec, THEN trans]) |
|
114 |
apply (simp (no_asm_simp) add: div_termination [THEN ltD]) |
|
115 |
done |
|
116 |
||
46820 | 117 |
lemma mod_less [simp]: "[| m<n; n \<in> nat |] ==> m mod n = m" |
13259 | 118 |
apply (frule lt_nat_in_nat, assumption) |
119 |
apply (simp (no_asm_simp) add: mod_def raw_mod_less) |
|
120 |
done |
|
121 |
||
122 |
lemma raw_mod_geq: |
|
46820 | 123 |
"[| 0<n; n \<le> m; m:nat |] ==> raw_mod (m, n) = raw_mod (m#-n, n)" |
13259 | 124 |
apply (frule lt_nat_in_nat, erule nat_succI) |
125 |
apply (rule raw_mod_def [THEN def_transrec, THEN trans]) |
|
13611 | 126 |
apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2], blast) |
13259 | 127 |
done |
128 |
||
129 |
||
46820 | 130 |
lemma mod_geq: "[| n \<le> m; m:nat |] ==> m mod n = (m#-n) mod n" |
13259 | 131 |
apply (frule lt_nat_in_nat, erule nat_succI) |
132 |
apply (case_tac "n=0") |
|
133 |
apply (simp add: DIVISION_BY_ZERO_MOD) |
|
134 |
apply (simp add: mod_def raw_mod_geq nat_into_Ord [THEN Ord_0_lt_iff]) |
|
135 |
done |
|
136 |
||
137 |
||
60770 | 138 |
subsection\<open>Division\<close> |
13259 | 139 |
|
46820 | 140 |
lemma raw_div_type: "[| m:nat; n:nat |] ==> raw_div (m, n) \<in> nat" |
13259 | 141 |
apply (unfold raw_div_def) |
142 |
apply (rule Ord_transrec_type) |
|
143 |
apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
46820 | 144 |
apply (blast intro: div_rls) |
13259 | 145 |
done |
146 |
||
46820 | 147 |
lemma div_type [TC,iff]: "m div n \<in> nat" |
13259 | 148 |
apply (unfold div_def) |
149 |
apply (simp (no_asm) add: div_def raw_div_type) |
|
150 |
done |
|
151 |
||
152 |
lemma raw_div_less: "m<n ==> raw_div (m,n) = 0" |
|
153 |
apply (rule raw_div_def [THEN def_transrec, THEN trans]) |
|
154 |
apply (simp (no_asm_simp) add: div_termination [THEN ltD]) |
|
155 |
done |
|
156 |
||
46820 | 157 |
lemma div_less [simp]: "[| m<n; n \<in> nat |] ==> m div n = 0" |
13259 | 158 |
apply (frule lt_nat_in_nat, assumption) |
159 |
apply (simp (no_asm_simp) add: div_def raw_div_less) |
|
160 |
done |
|
161 |
||
46820 | 162 |
lemma raw_div_geq: "[| 0<n; n \<le> m; m:nat |] ==> raw_div(m,n) = succ(raw_div(m#-n, n))" |
163 |
apply (subgoal_tac "n \<noteq> 0") |
|
13259 | 164 |
prefer 2 apply blast |
165 |
apply (frule lt_nat_in_nat, erule nat_succI) |
|
166 |
apply (rule raw_div_def [THEN def_transrec, THEN trans]) |
|
46820 | 167 |
apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2] ) |
13259 | 168 |
done |
169 |
||
170 |
lemma div_geq [simp]: |
|
46820 | 171 |
"[| 0<n; n \<le> m; m:nat |] ==> m div n = succ ((m#-n) div n)" |
13259 | 172 |
apply (frule lt_nat_in_nat, erule nat_succI) |
173 |
apply (simp (no_asm_simp) add: div_def raw_div_geq) |
|
174 |
done |
|
175 |
||
176 |
declare div_less [simp] div_geq [simp] |
|
177 |
||
178 |
||
179 |
(*A key result*) |
|
180 |
lemma mod_div_lemma: "[| m: nat; n: nat |] ==> (m div n)#*n #+ m mod n = m" |
|
181 |
apply (case_tac "n=0") |
|
182 |
apply (simp add: DIVISION_BY_ZERO_MOD) |
|
183 |
apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
184 |
apply (erule complete_induct) |
|
185 |
apply (case_tac "x<n") |
|
60770 | 186 |
txt\<open>case x<n\<close> |
13259 | 187 |
apply (simp (no_asm_simp)) |
69593 | 188 |
txt\<open>case \<^term>\<open>n \<le> x\<close>\<close> |
13259 | 189 |
apply (simp add: not_lt_iff_le add_assoc mod_geq div_termination [THEN ltD] add_diff_inverse) |
190 |
done |
|
191 |
||
192 |
lemma mod_div_equality_natify: "(m div n)#*n #+ m mod n = natify(m)" |
|
193 |
apply (subgoal_tac " (natify (m) div natify (n))#*natify (n) #+ natify (m) mod natify (n) = natify (m) ") |
|
46820 | 194 |
apply force |
13259 | 195 |
apply (subst mod_div_lemma, auto) |
196 |
done |
|
197 |
||
198 |
lemma mod_div_equality: "m: nat ==> (m div n)#*n #+ m mod n = m" |
|
199 |
apply (simp (no_asm_simp) add: mod_div_equality_natify) |
|
200 |
done |
|
201 |
||
202 |
||
60770 | 203 |
subsection\<open>Further Facts about Remainder\<close> |
13356 | 204 |
|
60770 | 205 |
text\<open>(mainly for mutilated chess board)\<close> |
13259 | 206 |
|
207 |
lemma mod_succ_lemma: |
|
46820 | 208 |
"[| 0<n; m:nat; n:nat |] |
13259 | 209 |
==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))" |
210 |
apply (erule complete_induct) |
|
211 |
apply (case_tac "succ (x) <n") |
|
60770 | 212 |
txt\<open>case succ(x) < n\<close> |
13259 | 213 |
apply (simp (no_asm_simp) add: nat_le_refl [THEN lt_trans] succ_neq_self) |
214 |
apply (simp add: ltD [THEN mem_imp_not_eq]) |
|
69593 | 215 |
txt\<open>case \<^term>\<open>n \<le> succ(x)\<close>\<close> |
13259 | 216 |
apply (simp add: mod_geq not_lt_iff_le) |
217 |
apply (erule leE) |
|
218 |
apply (simp (no_asm_simp) add: mod_geq div_termination [THEN ltD] diff_succ) |
|
60770 | 219 |
txt\<open>equality case\<close> |
13259 | 220 |
apply (simp add: diff_self_eq_0) |
221 |
done |
|
222 |
||
223 |
lemma mod_succ: |
|
224 |
"n:nat ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))" |
|
225 |
apply (case_tac "n=0") |
|
226 |
apply (simp (no_asm_simp) add: natify_succ DIVISION_BY_ZERO_MOD) |
|
227 |
apply (subgoal_tac "natify (succ (m)) mod n = (if succ (natify (m) mod n) = n then 0 else succ (natify (m) mod n))") |
|
228 |
prefer 2 |
|
229 |
apply (subst natify_succ) |
|
230 |
apply (rule mod_succ_lemma) |
|
231 |
apply (auto simp del: natify_succ simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
232 |
done |
|
233 |
||
234 |
lemma mod_less_divisor: "[| 0<n; n:nat |] ==> m mod n < n" |
|
235 |
apply (subgoal_tac "natify (m) mod n < n") |
|
236 |
apply (rule_tac [2] i = "natify (m) " in complete_induct) |
|
46820 | 237 |
apply (case_tac [3] "x<n", auto) |
69593 | 238 |
txt\<open>case \<^term>\<open>n \<le> x\<close>\<close> |
13259 | 239 |
apply (simp add: mod_geq not_lt_iff_le div_termination [THEN ltD]) |
240 |
done |
|
241 |
||
242 |
lemma mod_1_eq [simp]: "m mod 1 = 0" |
|
13784 | 243 |
by (cut_tac n = 1 in mod_less_divisor, auto) |
13259 | 244 |
|
245 |
lemma mod2_cases: "b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)" |
|
246 |
apply (subgoal_tac "k mod 2: 2") |
|
247 |
prefer 2 apply (simp add: mod_less_divisor [THEN ltD]) |
|
248 |
apply (drule ltD, auto) |
|
249 |
done |
|
250 |
||
251 |
lemma mod2_succ_succ [simp]: "succ(succ(m)) mod 2 = m mod 2" |
|
252 |
apply (subgoal_tac "m mod 2: 2") |
|
253 |
prefer 2 apply (simp add: mod_less_divisor [THEN ltD]) |
|
254 |
apply (auto simp add: mod_succ) |
|
255 |
done |
|
256 |
||
257 |
lemma mod2_add_more [simp]: "(m#+m#+n) mod 2 = n mod 2" |
|
258 |
apply (subgoal_tac " (natify (m) #+natify (m) #+n) mod 2 = n mod 2") |
|
259 |
apply (rule_tac [2] n = "natify (m) " in nat_induct) |
|
260 |
apply auto |
|
261 |
done |
|
262 |
||
263 |
lemma mod2_add_self [simp]: "(m#+m) mod 2 = 0" |
|
13784 | 264 |
by (cut_tac n = 0 in mod2_add_more, auto) |
13259 | 265 |
|
266 |
||
61798 | 267 |
subsection\<open>Additional theorems about \<open>\<le>\<close>\<close> |
13259 | 268 |
|
46820 | 269 |
lemma add_le_self: "m:nat ==> m \<le> (m #+ n)" |
13259 | 270 |
apply (simp (no_asm_simp)) |
271 |
done |
|
272 |
||
46820 | 273 |
lemma add_le_self2: "m:nat ==> m \<le> (n #+ m)" |
13259 | 274 |
apply (simp (no_asm_simp)) |
275 |
done |
|
276 |
||
277 |
(*** Monotonicity of Multiplication ***) |
|
278 |
||
46820 | 279 |
lemma mult_le_mono1: "[| i \<le> j; j:nat |] ==> (i#*k) \<le> (j#*k)" |
280 |
apply (subgoal_tac "natify (i) #*natify (k) \<le> j#*natify (k) ") |
|
13259 | 281 |
apply (frule_tac [2] lt_nat_in_nat) |
282 |
apply (rule_tac [3] n = "natify (k) " in nat_induct) |
|
283 |
apply (simp_all add: add_le_mono) |
|
284 |
done |
|
285 |
||
46820 | 286 |
(* @{text"\<le>"} monotonicity, BOTH arguments*) |
287 |
lemma mult_le_mono: "[| i \<le> j; k \<le> l; j:nat; l:nat |] ==> i#*k \<le> j#*l" |
|
13259 | 288 |
apply (rule mult_le_mono1 [THEN le_trans], assumption+) |
289 |
apply (subst mult_commute, subst mult_commute, rule mult_le_mono1, assumption+) |
|
290 |
done |
|
291 |
||
292 |
(*strict, in 1st argument; proof is by induction on k>0. |
|
293 |
I can't see how to relax the typing conditions.*) |
|
294 |
lemma mult_lt_mono2: "[| i<j; 0<k; j:nat; k:nat |] ==> k#*i < k#*j" |
|
295 |
apply (erule zero_lt_natE) |
|
296 |
apply (frule_tac [2] lt_nat_in_nat) |
|
297 |
apply (simp_all (no_asm_simp)) |
|
298 |
apply (induct_tac "x") |
|
299 |
apply (simp_all (no_asm_simp) add: add_lt_mono) |
|
300 |
done |
|
301 |
||
302 |
lemma mult_lt_mono1: "[| i<j; 0<k; j:nat; k:nat |] ==> i#*k < j#*k" |
|
303 |
apply (simp (no_asm_simp) add: mult_lt_mono2 mult_commute [of _ k]) |
|
304 |
done |
|
305 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
306 |
lemma add_eq_0_iff [iff]: "m#+n = 0 \<longleftrightarrow> natify(m)=0 & natify(n)=0" |
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
307 |
apply (subgoal_tac "natify (m) #+ natify (n) = 0 \<longleftrightarrow> natify (m) =0 & natify (n) =0") |
13259 | 308 |
apply (rule_tac [2] n = "natify (m) " in natE) |
309 |
apply (rule_tac [4] n = "natify (n) " in natE) |
|
310 |
apply auto |
|
311 |
done |
|
312 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
313 |
lemma zero_lt_mult_iff [iff]: "0 < m#*n \<longleftrightarrow> 0 < natify(m) & 0 < natify(n)" |
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
314 |
apply (subgoal_tac "0 < natify (m) #*natify (n) \<longleftrightarrow> 0 < natify (m) & 0 < natify (n) ") |
13259 | 315 |
apply (rule_tac [2] n = "natify (m) " in natE) |
316 |
apply (rule_tac [4] n = "natify (n) " in natE) |
|
317 |
apply (rule_tac [3] n = "natify (n) " in natE) |
|
318 |
apply auto |
|
319 |
done |
|
320 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
321 |
lemma mult_eq_1_iff [iff]: "m#*n = 1 \<longleftrightarrow> natify(m)=1 & natify(n)=1" |
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
322 |
apply (subgoal_tac "natify (m) #* natify (n) = 1 \<longleftrightarrow> natify (m) =1 & natify (n) =1") |
13259 | 323 |
apply (rule_tac [2] n = "natify (m) " in natE) |
324 |
apply (rule_tac [4] n = "natify (n) " in natE) |
|
325 |
apply auto |
|
326 |
done |
|
327 |
||
328 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
329 |
lemma mult_is_zero: "[|m: nat; n: nat|] ==> (m #* n = 0) \<longleftrightarrow> (m = 0 | n = 0)" |
13259 | 330 |
apply auto |
331 |
apply (erule natE) |
|
332 |
apply (erule_tac [2] natE, auto) |
|
333 |
done |
|
334 |
||
335 |
lemma mult_is_zero_natify [iff]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
336 |
"(m #* n = 0) \<longleftrightarrow> (natify(m) = 0 | natify(n) = 0)" |
13259 | 337 |
apply (cut_tac m = "natify (m) " and n = "natify (n) " in mult_is_zero) |
338 |
apply auto |
|
339 |
done |
|
340 |
||
341 |
||
60770 | 342 |
subsection\<open>Cancellation Laws for Common Factors in Comparisons\<close> |
13259 | 343 |
|
344 |
lemma mult_less_cancel_lemma: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
345 |
"[| k: nat; m: nat; n: nat |] ==> (m#*k < n#*k) \<longleftrightarrow> (0<k & m<n)" |
13259 | 346 |
apply (safe intro!: mult_lt_mono1) |
347 |
apply (erule natE, auto) |
|
348 |
apply (rule not_le_iff_lt [THEN iffD1]) |
|
349 |
apply (drule_tac [3] not_le_iff_lt [THEN [2] rev_iffD2]) |
|
350 |
prefer 5 apply (blast intro: mult_le_mono1, auto) |
|
351 |
done |
|
352 |
||
353 |
lemma mult_less_cancel2 [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
354 |
"(m#*k < n#*k) \<longleftrightarrow> (0 < natify(k) & natify(m) < natify(n))" |
13259 | 355 |
apply (rule iff_trans) |
356 |
apply (rule_tac [2] mult_less_cancel_lemma, auto) |
|
357 |
done |
|
358 |
||
359 |
lemma mult_less_cancel1 [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
360 |
"(k#*m < k#*n) \<longleftrightarrow> (0 < natify(k) & natify(m) < natify(n))" |
13259 | 361 |
apply (simp (no_asm) add: mult_less_cancel2 mult_commute [of k]) |
362 |
done |
|
363 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
364 |
lemma mult_le_cancel2 [simp]: "(m#*k \<le> n#*k) \<longleftrightarrow> (0 < natify(k) \<longrightarrow> natify(m) \<le> natify(n))" |
13259 | 365 |
apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym]) |
366 |
apply auto |
|
367 |
done |
|
368 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
369 |
lemma mult_le_cancel1 [simp]: "(k#*m \<le> k#*n) \<longleftrightarrow> (0 < natify(k) \<longrightarrow> natify(m) \<le> natify(n))" |
13259 | 370 |
apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym]) |
371 |
apply auto |
|
372 |
done |
|
373 |
||
46820 | 374 |
lemma mult_le_cancel_le1: "k \<in> nat ==> k #* m \<le> k \<longleftrightarrow> (0 < k \<longrightarrow> natify(m) \<le> 1)" |
13784 | 375 |
by (cut_tac k = k and m = m and n = 1 in mult_le_cancel1, auto) |
13259 | 376 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
377 |
lemma Ord_eq_iff_le: "[| Ord(m); Ord(n) |] ==> m=n \<longleftrightarrow> (m \<le> n & n \<le> m)" |
13259 | 378 |
by (blast intro: le_anti_sym) |
379 |
||
380 |
lemma mult_cancel2_lemma: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
381 |
"[| k: nat; m: nat; n: nat |] ==> (m#*k = n#*k) \<longleftrightarrow> (m=n | k=0)" |
13259 | 382 |
apply (simp (no_asm_simp) add: Ord_eq_iff_le [of "m#*k"] Ord_eq_iff_le [of m]) |
383 |
apply (auto simp add: Ord_0_lt_iff) |
|
384 |
done |
|
385 |
||
386 |
lemma mult_cancel2 [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
387 |
"(m#*k = n#*k) \<longleftrightarrow> (natify(m) = natify(n) | natify(k) = 0)" |
13259 | 388 |
apply (rule iff_trans) |
389 |
apply (rule_tac [2] mult_cancel2_lemma, auto) |
|
390 |
done |
|
391 |
||
392 |
lemma mult_cancel1 [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
393 |
"(k#*m = k#*n) \<longleftrightarrow> (natify(m) = natify(n) | natify(k) = 0)" |
13259 | 394 |
apply (simp (no_asm) add: mult_cancel2 mult_commute [of k]) |
395 |
done |
|
396 |
||
397 |
||
398 |
(** Cancellation law for division **) |
|
399 |
||
400 |
lemma div_cancel_raw: |
|
401 |
"[| 0<n; 0<k; k:nat; m:nat; n:nat |] ==> (k#*m) div (k#*n) = m div n" |
|
13784 | 402 |
apply (erule_tac i = m in complete_induct) |
13259 | 403 |
apply (case_tac "x<n") |
404 |
apply (simp add: div_less zero_lt_mult_iff mult_lt_mono2) |
|
405 |
apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono] |
|
406 |
div_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD]) |
|
407 |
done |
|
408 |
||
409 |
lemma div_cancel: |
|
410 |
"[| 0 < natify(n); 0 < natify(k) |] ==> (k#*m) div (k#*n) = m div n" |
|
46820 | 411 |
apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)" |
13259 | 412 |
in div_cancel_raw) |
413 |
apply auto |
|
414 |
done |
|
415 |
||
416 |
||
60770 | 417 |
subsection\<open>More Lemmas about Remainder\<close> |
13259 | 418 |
|
419 |
lemma mult_mod_distrib_raw: |
|
420 |
"[| k:nat; m:nat; n:nat |] ==> (k#*m) mod (k#*n) = k #* (m mod n)" |
|
421 |
apply (case_tac "k=0") |
|
422 |
apply (simp add: DIVISION_BY_ZERO_MOD) |
|
423 |
apply (case_tac "n=0") |
|
424 |
apply (simp add: DIVISION_BY_ZERO_MOD) |
|
425 |
apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
13784 | 426 |
apply (erule_tac i = m in complete_induct) |
13259 | 427 |
apply (case_tac "x<n") |
428 |
apply (simp (no_asm_simp) add: mod_less zero_lt_mult_iff mult_lt_mono2) |
|
46820 | 429 |
apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono] |
13259 | 430 |
mod_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD]) |
431 |
done |
|
432 |
||
433 |
lemma mod_mult_distrib2: "k #* (m mod n) = (k#*m) mod (k#*n)" |
|
46820 | 434 |
apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)" |
13259 | 435 |
in mult_mod_distrib_raw) |
436 |
apply auto |
|
437 |
done |
|
438 |
||
439 |
lemma mult_mod_distrib: "(m mod n) #* k = (m#*k) mod (n#*k)" |
|
440 |
apply (simp (no_asm) add: mult_commute mod_mult_distrib2) |
|
441 |
done |
|
442 |
||
443 |
lemma mod_add_self2_raw: "n \<in> nat ==> (m #+ n) mod n = m mod n" |
|
444 |
apply (subgoal_tac " (n #+ m) mod n = (n #+ m #- n) mod n") |
|
46820 | 445 |
apply (simp add: add_commute) |
446 |
apply (subst mod_geq [symmetric], auto) |
|
13259 | 447 |
done |
448 |
||
449 |
lemma mod_add_self2 [simp]: "(m #+ n) mod n = m mod n" |
|
450 |
apply (cut_tac n = "natify (n) " in mod_add_self2_raw) |
|
451 |
apply auto |
|
452 |
done |
|
453 |
||
454 |
lemma mod_add_self1 [simp]: "(n#+m) mod n = m mod n" |
|
455 |
apply (simp (no_asm_simp) add: add_commute mod_add_self2) |
|
456 |
done |
|
457 |
||
458 |
lemma mod_mult_self1_raw: "k \<in> nat ==> (m #+ k#*n) mod n = m mod n" |
|
459 |
apply (erule nat_induct) |
|
460 |
apply (simp_all (no_asm_simp) add: add_left_commute [of _ n]) |
|
461 |
done |
|
462 |
||
463 |
lemma mod_mult_self1 [simp]: "(m #+ k#*n) mod n = m mod n" |
|
464 |
apply (cut_tac k = "natify (k) " in mod_mult_self1_raw) |
|
465 |
apply auto |
|
466 |
done |
|
467 |
||
468 |
lemma mod_mult_self2 [simp]: "(m #+ n#*k) mod n = m mod n" |
|
469 |
apply (simp (no_asm) add: mult_commute mod_mult_self1) |
|
470 |
done |
|
471 |
||
472 |
(*Lemma for gcd*) |
|
473 |
lemma mult_eq_self_implies_10: "m = m#*n ==> natify(n)=1 | m=0" |
|
474 |
apply (subgoal_tac "m: nat") |
|
46820 | 475 |
prefer 2 |
13259 | 476 |
apply (erule ssubst) |
46820 | 477 |
apply simp |
13259 | 478 |
apply (rule disjCI) |
479 |
apply (drule sym) |
|
480 |
apply (rule Ord_linear_lt [of "natify(n)" 1]) |
|
46820 | 481 |
apply simp_all |
482 |
apply (subgoal_tac "m #* n = 0", simp) |
|
13259 | 483 |
apply (subst mult_natify2 [symmetric]) |
484 |
apply (simp del: mult_natify2) |
|
485 |
apply (drule nat_into_Ord [THEN Ord_0_lt, THEN [2] mult_lt_mono2], auto) |
|
486 |
done |
|
487 |
||
488 |
lemma less_imp_succ_add [rule_format]: |
|
46820 | 489 |
"[| m<n; n: nat |] ==> \<exists>k\<in>nat. n = succ(m#+k)" |
13259 | 490 |
apply (frule lt_nat_in_nat, assumption) |
491 |
apply (erule rev_mp) |
|
492 |
apply (induct_tac "n") |
|
493 |
apply (simp_all (no_asm) add: le_iff) |
|
494 |
apply (blast elim!: leE intro!: add_0_right [symmetric] add_succ_right [symmetric]) |
|
495 |
done |
|
496 |
||
497 |
lemma less_iff_succ_add: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
498 |
"[| m: nat; n: nat |] ==> (m<n) \<longleftrightarrow> (\<exists>k\<in>nat. n = succ(m#+k))" |
13259 | 499 |
by (auto intro: less_imp_succ_add) |
500 |
||
14055 | 501 |
lemma add_lt_elim2: |
502 |
"\<lbrakk>a #+ d = b #+ c; a < b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c < d" |
|
46820 | 503 |
by (drule less_imp_succ_add, auto) |
14055 | 504 |
|
505 |
lemma add_le_elim2: |
|
46820 | 506 |
"\<lbrakk>a #+ d = b #+ c; a \<le> b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c \<le> d" |
507 |
by (drule less_imp_succ_add, auto) |
|
14055 | 508 |
|
13356 | 509 |
|
60770 | 510 |
subsubsection\<open>More Lemmas About Difference\<close> |
13259 | 511 |
|
512 |
lemma diff_is_0_lemma: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
513 |
"[| m: nat; n: nat |] ==> m #- n = 0 \<longleftrightarrow> m \<le> n" |
13784 | 514 |
apply (rule_tac m = m and n = n in diff_induct, simp_all) |
13259 | 515 |
done |
516 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
517 |
lemma diff_is_0_iff: "m #- n = 0 \<longleftrightarrow> natify(m) \<le> natify(n)" |
13259 | 518 |
by (simp add: diff_is_0_lemma [symmetric]) |
519 |
||
520 |
lemma nat_lt_imp_diff_eq_0: |
|
521 |
"[| a:nat; b:nat; a<b |] ==> a #- b = 0" |
|
46820 | 522 |
by (simp add: diff_is_0_iff le_iff) |
13259 | 523 |
|
14055 | 524 |
lemma raw_nat_diff_split: |
46820 | 525 |
"[| a:nat; b:nat |] ==> |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
526 |
(P(a #- b)) \<longleftrightarrow> ((a < b \<longrightarrow>P(0)) & (\<forall>d\<in>nat. a = b #+ d \<longrightarrow> P(d)))" |
13259 | 527 |
apply (case_tac "a < b") |
528 |
apply (force simp add: nat_lt_imp_diff_eq_0) |
|
46820 | 529 |
apply (rule iffI, force, simp) |
13259 | 530 |
apply (drule_tac x="a#-b" in bspec) |
46820 | 531 |
apply (simp_all add: Ordinal.not_lt_iff_le add_diff_inverse) |
13259 | 532 |
done |
533 |
||
14055 | 534 |
lemma nat_diff_split: |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
535 |
"(P(a #- b)) \<longleftrightarrow> |
46820 | 536 |
(natify(a) < natify(b) \<longrightarrow>P(0)) & (\<forall>d\<in>nat. natify(a) = b #+ d \<longrightarrow> P(d))" |
14055 | 537 |
apply (cut_tac P=P and a="natify(a)" and b="natify(b)" in raw_nat_diff_split) |
538 |
apply simp_all |
|
539 |
done |
|
540 |
||
60770 | 541 |
text\<open>Difference and less-than\<close> |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
542 |
|
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
543 |
lemma diff_lt_imp_lt: "[|(k#-i) < (k#-j); i\<in>nat; j\<in>nat; k\<in>nat|] ==> j<i" |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
544 |
apply (erule rev_mp) |
63648 | 545 |
apply (simp split: nat_diff_split, auto) |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
546 |
apply (blast intro: add_le_self lt_trans1) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
547 |
apply (rule not_le_iff_lt [THEN iffD1], auto) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
548 |
apply (subgoal_tac "i #+ da < j #+ d", force) |
46820 | 549 |
apply (blast intro: add_le_lt_mono) |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
550 |
done |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
551 |
|
46820 | 552 |
lemma lt_imp_diff_lt: "[|j<i; i\<le>k; k\<in>nat|] ==> (k#-i) < (k#-j)" |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
553 |
apply (frule le_in_nat, assumption) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
554 |
apply (frule lt_nat_in_nat, assumption) |
63648 | 555 |
apply (simp split: nat_diff_split, auto) |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
556 |
apply (blast intro: lt_asym lt_trans2) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
557 |
apply (blast intro: lt_irrefl lt_trans2) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
558 |
apply (rule not_le_iff_lt [THEN iffD1], auto) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
559 |
apply (subgoal_tac "j #+ d < i #+ da", force) |
46820 | 560 |
apply (blast intro: add_lt_le_mono) |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
561 |
done |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
562 |
|
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
563 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
564 |
lemma diff_lt_iff_lt: "[|i\<le>k; j\<in>nat; k\<in>nat|] ==> (k#-i) < (k#-j) \<longleftrightarrow> j<i" |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
565 |
apply (frule le_in_nat, assumption) |
46820 | 566 |
apply (blast intro: lt_imp_diff_lt diff_lt_imp_lt) |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
567 |
done |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
568 |
|
9548 | 569 |
end |