| author | wenzelm | 
| Sat, 29 May 2004 15:05:25 +0200 | |
| changeset 14830 | faa4865ba1ce | 
| parent 13819 | 78f5885b76a9 | 
| child 16417 | 9bc16273c2d4 | 
| permissions | -rw-r--r-- | 
| 6297 | 1 | (* Title: HOL/UNITY/Extend.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1998 University of Cambridge | |
| 5 | ||
| 13798 | 6 | Extending of state setsExtending of state sets | 
| 6297 | 7 | function f (forget) maps the extended state to the original state | 
| 8 | function g (forgotten) maps the extended state to the "extending part" | |
| 9 | *) | |
| 10 | ||
| 13798 | 11 | header{*Extending State Sets*}
 | 
| 12 | ||
| 13790 | 13 | theory Extend = Guar: | 
| 6297 | 14 | |
| 15 | constdefs | |
| 16 | ||
| 8948 
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
 paulson parents: 
8703diff
changeset | 17 | (*MOVE to Relation.thy?*) | 
| 
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
 paulson parents: 
8703diff
changeset | 18 |   Restrict :: "[ 'a set, ('a*'b) set] => ('a*'b) set"
 | 
| 13805 | 19 | "Restrict A r == r \<inter> (A <*> UNIV)" | 
| 8948 
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
 paulson parents: 
8703diff
changeset | 20 | |
| 7482 | 21 | good_map :: "['a*'b => 'c] => bool" | 
| 13805 | 22 | "good_map h == surj h & (\<forall>x y. fst (inv h (h (x,y))) = x)" | 
| 7482 | 23 | (*Using the locale constant "f", this is f (h (x,y))) = x*) | 
| 24 | ||
| 6297 | 25 | extend_set :: "['a*'b => 'c, 'a set] => 'c set" | 
| 10834 | 26 | "extend_set h A == h ` (A <*> UNIV)" | 
| 6297 | 27 | |
| 7342 | 28 | project_set :: "['a*'b => 'c, 'c set] => 'a set" | 
| 13805 | 29 |     "project_set h C == {x. \<exists>y. h(x,y) \<in> C}"
 | 
| 7342 | 30 | |
| 31 |   extend_act :: "['a*'b => 'c, ('a*'a) set] => ('c*'c) set"
 | |
| 13805 | 32 |     "extend_act h == %act. \<Union>(s,s') \<in> act. \<Union>y. {(h(s,y), h(s',y))}"
 | 
| 6297 | 33 | |
| 7878 
43b03d412b82
working version with localTo[C] instead of localTo
 paulson parents: 
7826diff
changeset | 34 |   project_act :: "['a*'b => 'c, ('c*'c) set] => ('a*'a) set"
 | 
| 13805 | 35 |     "project_act h act == {(x,x'). \<exists>y y'. (h(x,y), h(x',y')) \<in> act}"
 | 
| 7342 | 36 | |
| 6297 | 37 | extend :: "['a*'b => 'c, 'a program] => 'c program" | 
| 38 | "extend h F == mk_program (extend_set h (Init F), | |
| 10834 | 39 | extend_act h ` Acts F, | 
| 40 | project_act h -` AllowedActs F)" | |
| 6297 | 41 | |
| 7878 
43b03d412b82
working version with localTo[C] instead of localTo
 paulson parents: 
7826diff
changeset | 42 | (*Argument C allows weak safety laws to be projected*) | 
| 7880 
62fb24e28e5e
exchanged the first two args of "project" and "drop_prog"
 paulson parents: 
7878diff
changeset | 43 | project :: "['a*'b => 'c, 'c set, 'c program] => 'a program" | 
| 10064 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 paulson parents: 
8948diff
changeset | 44 | "project h C F == | 
| 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 paulson parents: 
8948diff
changeset | 45 | mk_program (project_set h (Init F), | 
| 10834 | 46 | project_act h ` Restrict C ` Acts F, | 
| 10064 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 paulson parents: 
8948diff
changeset | 47 | 		   {act. Restrict (project_set h C) act :
 | 
| 10834 | 48 | project_act h ` Restrict C ` AllowedActs F})" | 
| 7342 | 49 | |
| 6297 | 50 | locale Extend = | 
| 13790 | 51 | fixes f :: "'c => 'a" | 
| 52 | and g :: "'c => 'b" | |
| 53 | and h :: "'a*'b => 'c" (*isomorphism between 'a * 'b and 'c *) | |
| 54 | and slice :: "['c set, 'b] => 'a set" | |
| 55 | assumes | |
| 56 | good_h: "good_map h" | |
| 57 | defines f_def: "f z == fst (inv h z)" | |
| 58 | and g_def: "g z == snd (inv h z)" | |
| 13805 | 59 |       and slice_def: "slice Z y == {x. h(x,y) \<in> Z}"
 | 
| 13790 | 60 | |
| 61 | ||
| 62 | (** These we prove OUTSIDE the locale. **) | |
| 63 | ||
| 64 | ||
| 13798 | 65 | subsection{*Restrict*}
 | 
| 66 | (*MOVE to Relation.thy?*) | |
| 13790 | 67 | |
| 13805 | 68 | lemma Restrict_iff [iff]: "((x,y): Restrict A r) = ((x,y): r & x \<in> A)" | 
| 13790 | 69 | by (unfold Restrict_def, blast) | 
| 70 | ||
| 71 | lemma Restrict_UNIV [simp]: "Restrict UNIV = id" | |
| 72 | apply (rule ext) | |
| 73 | apply (auto simp add: Restrict_def) | |
| 74 | done | |
| 75 | ||
| 76 | lemma Restrict_empty [simp]: "Restrict {} r = {}"
 | |
| 77 | by (auto simp add: Restrict_def) | |
| 78 | ||
| 13805 | 79 | lemma Restrict_Int [simp]: "Restrict A (Restrict B r) = Restrict (A \<inter> B) r" | 
| 13790 | 80 | by (unfold Restrict_def, blast) | 
| 81 | ||
| 13805 | 82 | lemma Restrict_triv: "Domain r \<subseteq> A ==> Restrict A r = r" | 
| 13790 | 83 | by (unfold Restrict_def, auto) | 
| 84 | ||
| 13805 | 85 | lemma Restrict_subset: "Restrict A r \<subseteq> r" | 
| 13790 | 86 | by (unfold Restrict_def, auto) | 
| 87 | ||
| 88 | lemma Restrict_eq_mono: | |
| 13805 | 89 | "[| A \<subseteq> B; Restrict B r = Restrict B s |] | 
| 13790 | 90 | ==> Restrict A r = Restrict A s" | 
| 91 | by (unfold Restrict_def, blast) | |
| 92 | ||
| 93 | lemma Restrict_imageI: | |
| 13805 | 94 | "[| s \<in> RR; Restrict A r = Restrict A s |] | 
| 95 | ==> Restrict A r \<in> Restrict A ` RR" | |
| 13790 | 96 | by (unfold Restrict_def image_def, auto) | 
| 97 | ||
| 13805 | 98 | lemma Domain_Restrict [simp]: "Domain (Restrict A r) = A \<inter> Domain r" | 
| 13790 | 99 | by blast | 
| 100 | ||
| 13805 | 101 | lemma Image_Restrict [simp]: "(Restrict A r) `` B = r `` (A \<inter> B)" | 
| 13790 | 102 | by blast | 
| 103 | ||
| 104 | (*Possibly easier than reasoning about "inv h"*) | |
| 105 | lemma good_mapI: | |
| 106 | assumes surj_h: "surj h" | |
| 107 | and prem: "!! x x' y y'. h(x,y) = h(x',y') ==> x=x'" | |
| 108 | shows "good_map h" | |
| 109 | apply (simp add: good_map_def) | |
| 110 | apply (safe intro!: surj_h) | |
| 111 | apply (rule prem) | |
| 112 | apply (subst surjective_pairing [symmetric]) | |
| 113 | apply (subst surj_h [THEN surj_f_inv_f]) | |
| 114 | apply (rule refl) | |
| 115 | done | |
| 116 | ||
| 117 | lemma good_map_is_surj: "good_map h ==> surj h" | |
| 118 | by (unfold good_map_def, auto) | |
| 119 | ||
| 120 | (*A convenient way of finding a closed form for inv h*) | |
| 121 | lemma fst_inv_equalityI: | |
| 122 | assumes surj_h: "surj h" | |
| 123 | and prem: "!! x y. g (h(x,y)) = x" | |
| 124 | shows "fst (inv h z) = g z" | |
| 125 | apply (unfold inv_def) | |
| 126 | apply (rule_tac y1 = z in surj_h [THEN surjD, THEN exE]) | |
| 127 | apply (rule someI2) | |
| 128 | apply (drule_tac [2] f = g in arg_cong) | |
| 129 | apply (auto simp add: prem) | |
| 130 | done | |
| 131 | ||
| 132 | ||
| 13798 | 133 | subsection{*Trivial properties of f, g, h*}
 | 
| 13790 | 134 | |
| 135 | lemma (in Extend) f_h_eq [simp]: "f(h(x,y)) = x" | |
| 136 | by (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2]) | |
| 137 | ||
| 138 | lemma (in Extend) h_inject1 [dest]: "h(x,y) = h(x',y') ==> x=x'" | |
| 139 | apply (drule_tac f = f in arg_cong) | |
| 140 | apply (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2]) | |
| 141 | done | |
| 142 | ||
| 143 | lemma (in Extend) h_f_g_equiv: "h(f z, g z) == z" | |
| 144 | by (simp add: f_def g_def | |
| 145 | good_h [unfolded good_map_def, THEN conjunct1, THEN surj_f_inv_f]) | |
| 146 | ||
| 147 | lemma (in Extend) h_f_g_eq: "h(f z, g z) = z" | |
| 148 | by (simp add: h_f_g_equiv) | |
| 149 | ||
| 150 | ||
| 151 | lemma (in Extend) split_extended_all: | |
| 152 | "(!!z. PROP P z) == (!!u y. PROP P (h (u, y)))" | |
| 153 | proof | |
| 154 | assume allP: "\<And>z. PROP P z" | |
| 155 | fix u y | |
| 156 | show "PROP P (h (u, y))" by (rule allP) | |
| 157 | next | |
| 158 | assume allPh: "\<And>u y. PROP P (h(u,y))" | |
| 159 | fix z | |
| 160 | have Phfgz: "PROP P (h (f z, g z))" by (rule allPh) | |
| 161 | show "PROP P z" by (rule Phfgz [unfolded h_f_g_equiv]) | |
| 162 | qed | |
| 163 | ||
| 164 | ||
| 165 | ||
| 13798 | 166 | subsection{*@{term extend_set}: basic properties*}
 | 
| 13790 | 167 | |
| 168 | lemma project_set_iff [iff]: | |
| 13805 | 169 | "(x \<in> project_set h C) = (\<exists>y. h(x,y) \<in> C)" | 
| 13790 | 170 | by (simp add: project_set_def) | 
| 171 | ||
| 13805 | 172 | lemma extend_set_mono: "A \<subseteq> B ==> extend_set h A \<subseteq> extend_set h B" | 
| 13790 | 173 | by (unfold extend_set_def, blast) | 
| 174 | ||
| 13805 | 175 | lemma (in Extend) mem_extend_set_iff [iff]: "z \<in> extend_set h A = (f z \<in> A)" | 
| 13790 | 176 | apply (unfold extend_set_def) | 
| 177 | apply (force intro: h_f_g_eq [symmetric]) | |
| 178 | done | |
| 179 | ||
| 180 | lemma (in Extend) extend_set_strict_mono [iff]: | |
| 13805 | 181 | "(extend_set h A \<subseteq> extend_set h B) = (A \<subseteq> B)" | 
| 13790 | 182 | by (unfold extend_set_def, force) | 
| 183 | ||
| 184 | lemma extend_set_empty [simp]: "extend_set h {} = {}"
 | |
| 185 | by (unfold extend_set_def, auto) | |
| 186 | ||
| 187 | lemma (in Extend) extend_set_eq_Collect: "extend_set h {s. P s} = {s. P(f s)}"
 | |
| 188 | by auto | |
| 189 | ||
| 190 | lemma (in Extend) extend_set_sing: "extend_set h {x} = {s. f s = x}"
 | |
| 191 | by auto | |
| 192 | ||
| 193 | lemma (in Extend) extend_set_inverse [simp]: | |
| 194 | "project_set h (extend_set h C) = C" | |
| 195 | by (unfold extend_set_def, auto) | |
| 196 | ||
| 197 | lemma (in Extend) extend_set_project_set: | |
| 13805 | 198 | "C \<subseteq> extend_set h (project_set h C)" | 
| 13790 | 199 | apply (unfold extend_set_def) | 
| 200 | apply (auto simp add: split_extended_all, blast) | |
| 201 | done | |
| 202 | ||
| 203 | lemma (in Extend) inj_extend_set: "inj (extend_set h)" | |
| 204 | apply (rule inj_on_inverseI) | |
| 205 | apply (rule extend_set_inverse) | |
| 206 | done | |
| 207 | ||
| 208 | lemma (in Extend) extend_set_UNIV_eq [simp]: "extend_set h UNIV = UNIV" | |
| 209 | apply (unfold extend_set_def) | |
| 210 | apply (auto simp add: split_extended_all) | |
| 211 | done | |
| 212 | ||
| 13798 | 213 | subsection{*@{term project_set}: basic properties*}
 | 
| 13790 | 214 | |
| 215 | (*project_set is simply image!*) | |
| 216 | lemma (in Extend) project_set_eq: "project_set h C = f ` C" | |
| 217 | by (auto intro: f_h_eq [symmetric] simp add: split_extended_all) | |
| 218 | ||
| 219 | (*Converse appears to fail*) | |
| 13805 | 220 | lemma (in Extend) project_set_I: "!!z. z \<in> C ==> f z \<in> project_set h C" | 
| 13790 | 221 | by (auto simp add: split_extended_all) | 
| 222 | ||
| 223 | ||
| 13798 | 224 | subsection{*More laws*}
 | 
| 13790 | 225 | |
| 226 | (*Because A and B could differ on the "other" part of the state, | |
| 227 | cannot generalize to | |
| 13805 | 228 | project_set h (A \<inter> B) = project_set h A \<inter> project_set h B | 
| 13790 | 229 | *) | 
| 230 | lemma (in Extend) project_set_extend_set_Int: | |
| 13805 | 231 | "project_set h ((extend_set h A) \<inter> B) = A \<inter> (project_set h B)" | 
| 13790 | 232 | by auto | 
| 233 | ||
| 234 | (*Unused, but interesting?*) | |
| 235 | lemma (in Extend) project_set_extend_set_Un: | |
| 13805 | 236 | "project_set h ((extend_set h A) \<union> B) = A \<union> (project_set h B)" | 
| 13790 | 237 | by auto | 
| 238 | ||
| 239 | lemma project_set_Int_subset: | |
| 13805 | 240 | "project_set h (A \<inter> B) \<subseteq> (project_set h A) \<inter> (project_set h B)" | 
| 13790 | 241 | by auto | 
| 242 | ||
| 243 | lemma (in Extend) extend_set_Un_distrib: | |
| 13805 | 244 | "extend_set h (A \<union> B) = extend_set h A \<union> extend_set h B" | 
| 13790 | 245 | by auto | 
| 246 | ||
| 247 | lemma (in Extend) extend_set_Int_distrib: | |
| 13805 | 248 | "extend_set h (A \<inter> B) = extend_set h A \<inter> extend_set h B" | 
| 13790 | 249 | by auto | 
| 250 | ||
| 251 | lemma (in Extend) extend_set_INT_distrib: | |
| 13805 | 252 | "extend_set h (INTER A B) = (\<Inter>x \<in> A. extend_set h (B x))" | 
| 13790 | 253 | by auto | 
| 254 | ||
| 255 | lemma (in Extend) extend_set_Diff_distrib: | |
| 256 | "extend_set h (A - B) = extend_set h A - extend_set h B" | |
| 257 | by auto | |
| 258 | ||
| 259 | lemma (in Extend) extend_set_Union: | |
| 13805 | 260 | "extend_set h (Union A) = (\<Union>X \<in> A. extend_set h X)" | 
| 13790 | 261 | by blast | 
| 262 | ||
| 263 | lemma (in Extend) extend_set_subset_Compl_eq: | |
| 13805 | 264 | "(extend_set h A \<subseteq> - extend_set h B) = (A \<subseteq> - B)" | 
| 13790 | 265 | by (unfold extend_set_def, auto) | 
| 266 | ||
| 267 | ||
| 13798 | 268 | subsection{*@{term extend_act}*}
 | 
| 13790 | 269 | |
| 270 | (*Can't strengthen it to | |
| 13805 | 271 | ((h(s,y), h(s',y')) \<in> extend_act h act) = ((s, s') \<in> act & y=y') | 
| 13790 | 272 | because h doesn't have to be injective in the 2nd argument*) | 
| 273 | lemma (in Extend) mem_extend_act_iff [iff]: | |
| 13805 | 274 | "((h(s,y), h(s',y)) \<in> extend_act h act) = ((s, s') \<in> act)" | 
| 13790 | 275 | by (unfold extend_act_def, auto) | 
| 276 | ||
| 277 | (*Converse fails: (z,z') would include actions that changed the g-part*) | |
| 278 | lemma (in Extend) extend_act_D: | |
| 13805 | 279 | "(z, z') \<in> extend_act h act ==> (f z, f z') \<in> act" | 
| 13790 | 280 | by (unfold extend_act_def, auto) | 
| 281 | ||
| 282 | lemma (in Extend) extend_act_inverse [simp]: | |
| 283 | "project_act h (extend_act h act) = act" | |
| 284 | by (unfold extend_act_def project_act_def, blast) | |
| 285 | ||
| 286 | lemma (in Extend) project_act_extend_act_restrict [simp]: | |
| 287 | "project_act h (Restrict C (extend_act h act)) = | |
| 288 | Restrict (project_set h C) act" | |
| 289 | by (unfold extend_act_def project_act_def, blast) | |
| 290 | ||
| 291 | lemma (in Extend) subset_extend_act_D: | |
| 13805 | 292 | "act' \<subseteq> extend_act h act ==> project_act h act' \<subseteq> act" | 
| 13790 | 293 | by (unfold extend_act_def project_act_def, force) | 
| 294 | ||
| 295 | lemma (in Extend) inj_extend_act: "inj (extend_act h)" | |
| 296 | apply (rule inj_on_inverseI) | |
| 297 | apply (rule extend_act_inverse) | |
| 298 | done | |
| 299 | ||
| 300 | lemma (in Extend) extend_act_Image [simp]: | |
| 301 | "extend_act h act `` (extend_set h A) = extend_set h (act `` A)" | |
| 302 | by (unfold extend_set_def extend_act_def, force) | |
| 303 | ||
| 304 | lemma (in Extend) extend_act_strict_mono [iff]: | |
| 13805 | 305 | "(extend_act h act' \<subseteq> extend_act h act) = (act'<=act)" | 
| 13790 | 306 | by (unfold extend_act_def, auto) | 
| 307 | ||
| 308 | declare (in Extend) inj_extend_act [THEN inj_eq, iff] | |
| 309 | (*This theorem is (extend_act h act' = extend_act h act) = (act'=act) *) | |
| 310 | ||
| 311 | lemma Domain_extend_act: | |
| 312 | "Domain (extend_act h act) = extend_set h (Domain act)" | |
| 313 | by (unfold extend_set_def extend_act_def, force) | |
| 314 | ||
| 315 | lemma (in Extend) extend_act_Id [simp]: | |
| 316 | "extend_act h Id = Id" | |
| 317 | apply (unfold extend_act_def) | |
| 318 | apply (force intro: h_f_g_eq [symmetric]) | |
| 319 | done | |
| 320 | ||
| 321 | lemma (in Extend) project_act_I: | |
| 13805 | 322 | "!!z z'. (z, z') \<in> act ==> (f z, f z') \<in> project_act h act" | 
| 13790 | 323 | apply (unfold project_act_def) | 
| 324 | apply (force simp add: split_extended_all) | |
| 325 | done | |
| 326 | ||
| 327 | lemma (in Extend) project_act_Id [simp]: "project_act h Id = Id" | |
| 328 | by (unfold project_act_def, force) | |
| 329 | ||
| 330 | lemma (in Extend) Domain_project_act: | |
| 331 | "Domain (project_act h act) = project_set h (Domain act)" | |
| 332 | apply (unfold project_act_def) | |
| 333 | apply (force simp add: split_extended_all) | |
| 334 | done | |
| 335 | ||
| 336 | ||
| 337 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 338 | subsection{*extend*}
 | 
| 13790 | 339 | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 340 | text{*Basic properties*}
 | 
| 13790 | 341 | |
| 342 | lemma Init_extend [simp]: | |
| 343 | "Init (extend h F) = extend_set h (Init F)" | |
| 344 | by (unfold extend_def, auto) | |
| 345 | ||
| 346 | lemma Init_project [simp]: | |
| 347 | "Init (project h C F) = project_set h (Init F)" | |
| 348 | by (unfold project_def, auto) | |
| 349 | ||
| 350 | lemma (in Extend) Acts_extend [simp]: | |
| 351 | "Acts (extend h F) = (extend_act h ` Acts F)" | |
| 352 | by (simp add: extend_def insert_Id_image_Acts) | |
| 353 | ||
| 354 | lemma (in Extend) AllowedActs_extend [simp]: | |
| 355 | "AllowedActs (extend h F) = project_act h -` AllowedActs F" | |
| 356 | by (simp add: extend_def insert_absorb) | |
| 357 | ||
| 358 | lemma Acts_project [simp]: | |
| 359 | "Acts(project h C F) = insert Id (project_act h ` Restrict C ` Acts F)" | |
| 360 | by (auto simp add: project_def image_iff) | |
| 361 | ||
| 362 | lemma (in Extend) AllowedActs_project [simp]: | |
| 363 | "AllowedActs(project h C F) = | |
| 364 |         {act. Restrict (project_set h C) act  
 | |
| 13805 | 365 | \<in> project_act h ` Restrict C ` AllowedActs F}" | 
| 13790 | 366 | apply (simp (no_asm) add: project_def image_iff) | 
| 367 | apply (subst insert_absorb) | |
| 368 | apply (auto intro!: bexI [of _ Id] simp add: project_act_def) | |
| 369 | done | |
| 370 | ||
| 371 | lemma (in Extend) Allowed_extend: | |
| 372 | "Allowed (extend h F) = project h UNIV -` Allowed F" | |
| 373 | apply (simp (no_asm) add: AllowedActs_extend Allowed_def) | |
| 374 | apply blast | |
| 375 | done | |
| 376 | ||
| 377 | lemma (in Extend) extend_SKIP [simp]: "extend h SKIP = SKIP" | |
| 378 | apply (unfold SKIP_def) | |
| 379 | apply (rule program_equalityI, auto) | |
| 380 | done | |
| 381 | ||
| 382 | lemma project_set_UNIV [simp]: "project_set h UNIV = UNIV" | |
| 383 | by auto | |
| 384 | ||
| 385 | lemma project_set_Union: | |
| 13805 | 386 | "project_set h (Union A) = (\<Union>X \<in> A. project_set h X)" | 
| 13790 | 387 | by blast | 
| 388 | ||
| 6297 | 389 | |
| 13790 | 390 | (*Converse FAILS: the extended state contributing to project_set h C | 
| 391 | may not coincide with the one contributing to project_act h act*) | |
| 392 | lemma (in Extend) project_act_Restrict_subset: | |
| 13805 | 393 | "project_act h (Restrict C act) \<subseteq> | 
| 13790 | 394 | Restrict (project_set h C) (project_act h act)" | 
| 395 | by (auto simp add: project_act_def) | |
| 396 | ||
| 397 | lemma (in Extend) project_act_Restrict_Id_eq: | |
| 398 | "project_act h (Restrict C Id) = Restrict (project_set h C) Id" | |
| 399 | by (auto simp add: project_act_def) | |
| 400 | ||
| 401 | lemma (in Extend) project_extend_eq: | |
| 402 | "project h C (extend h F) = | |
| 403 | mk_program (Init F, Restrict (project_set h C) ` Acts F, | |
| 404 |                   {act. Restrict (project_set h C) act 
 | |
| 13805 | 405 | \<in> project_act h ` Restrict C ` | 
| 13790 | 406 | (project_act h -` AllowedActs F)})" | 
| 407 | apply (rule program_equalityI) | |
| 408 | apply simp | |
| 409 | apply (simp add: image_eq_UN) | |
| 410 | apply (simp add: project_def) | |
| 411 | done | |
| 412 | ||
| 413 | lemma (in Extend) extend_inverse [simp]: | |
| 414 | "project h UNIV (extend h F) = F" | |
| 415 | apply (simp (no_asm_simp) add: project_extend_eq image_eq_UN | |
| 416 | subset_UNIV [THEN subset_trans, THEN Restrict_triv]) | |
| 417 | apply (rule program_equalityI) | |
| 418 | apply (simp_all (no_asm)) | |
| 419 | apply (subst insert_absorb) | |
| 420 | apply (simp (no_asm) add: bexI [of _ Id]) | |
| 421 | apply auto | |
| 422 | apply (rename_tac "act") | |
| 423 | apply (rule_tac x = "extend_act h act" in bexI, auto) | |
| 424 | done | |
| 425 | ||
| 426 | lemma (in Extend) inj_extend: "inj (extend h)" | |
| 427 | apply (rule inj_on_inverseI) | |
| 428 | apply (rule extend_inverse) | |
| 429 | done | |
| 430 | ||
| 431 | lemma (in Extend) extend_Join [simp]: | |
| 13819 | 432 | "extend h (F\<squnion>G) = extend h F\<squnion>extend h G" | 
| 13790 | 433 | apply (rule program_equalityI) | 
| 434 | apply (simp (no_asm) add: extend_set_Int_distrib) | |
| 435 | apply (simp add: image_Un, auto) | |
| 436 | done | |
| 437 | ||
| 438 | lemma (in Extend) extend_JN [simp]: | |
| 13805 | 439 | "extend h (JOIN I F) = (\<Squnion>i \<in> I. extend h (F i))" | 
| 13790 | 440 | apply (rule program_equalityI) | 
| 441 | apply (simp (no_asm) add: extend_set_INT_distrib) | |
| 442 | apply (simp add: image_UN, auto) | |
| 443 | done | |
| 444 | ||
| 445 | (** These monotonicity results look natural but are UNUSED **) | |
| 446 | ||
| 13805 | 447 | lemma (in Extend) extend_mono: "F \<le> G ==> extend h F \<le> extend h G" | 
| 13790 | 448 | by (force simp add: component_eq_subset) | 
| 449 | ||
| 13805 | 450 | lemma (in Extend) project_mono: "F \<le> G ==> project h C F \<le> project h C G" | 
| 13790 | 451 | by (simp add: component_eq_subset, blast) | 
| 452 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 453 | lemma (in Extend) all_total_extend: "all_total F ==> all_total (extend h F)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 454 | by (simp add: all_total_def Domain_extend_act) | 
| 13790 | 455 | |
| 13798 | 456 | subsection{*Safety: co, stable*}
 | 
| 13790 | 457 | |
| 458 | lemma (in Extend) extend_constrains: | |
| 13805 | 459 | "(extend h F \<in> (extend_set h A) co (extend_set h B)) = | 
| 460 | (F \<in> A co B)" | |
| 13790 | 461 | by (simp add: constrains_def) | 
| 462 | ||
| 463 | lemma (in Extend) extend_stable: | |
| 13805 | 464 | "(extend h F \<in> stable (extend_set h A)) = (F \<in> stable A)" | 
| 13790 | 465 | by (simp add: stable_def extend_constrains) | 
| 466 | ||
| 467 | lemma (in Extend) extend_invariant: | |
| 13805 | 468 | "(extend h F \<in> invariant (extend_set h A)) = (F \<in> invariant A)" | 
| 13790 | 469 | by (simp add: invariant_def extend_stable) | 
| 470 | ||
| 471 | (*Projects the state predicates in the property satisfied by extend h F. | |
| 472 | Converse fails: A and B may differ in their extra variables*) | |
| 473 | lemma (in Extend) extend_constrains_project_set: | |
| 13805 | 474 | "extend h F \<in> A co B ==> F \<in> (project_set h A) co (project_set h B)" | 
| 13790 | 475 | by (auto simp add: constrains_def, force) | 
| 476 | ||
| 477 | lemma (in Extend) extend_stable_project_set: | |
| 13805 | 478 | "extend h F \<in> stable A ==> F \<in> stable (project_set h A)" | 
| 13790 | 479 | by (simp add: stable_def extend_constrains_project_set) | 
| 480 | ||
| 481 | ||
| 13798 | 482 | subsection{*Weak safety primitives: Co, Stable*}
 | 
| 13790 | 483 | |
| 484 | lemma (in Extend) reachable_extend_f: | |
| 13805 | 485 | "p \<in> reachable (extend h F) ==> f p \<in> reachable F" | 
| 13790 | 486 | apply (erule reachable.induct) | 
| 487 | apply (auto intro: reachable.intros simp add: extend_act_def image_iff) | |
| 488 | done | |
| 489 | ||
| 490 | lemma (in Extend) h_reachable_extend: | |
| 13805 | 491 | "h(s,y) \<in> reachable (extend h F) ==> s \<in> reachable F" | 
| 13790 | 492 | by (force dest!: reachable_extend_f) | 
| 493 | ||
| 494 | lemma (in Extend) reachable_extend_eq: | |
| 495 | "reachable (extend h F) = extend_set h (reachable F)" | |
| 496 | apply (unfold extend_set_def) | |
| 497 | apply (rule equalityI) | |
| 498 | apply (force intro: h_f_g_eq [symmetric] dest!: reachable_extend_f, clarify) | |
| 499 | apply (erule reachable.induct) | |
| 500 | apply (force intro: reachable.intros)+ | |
| 501 | done | |
| 502 | ||
| 503 | lemma (in Extend) extend_Constrains: | |
| 13805 | 504 | "(extend h F \<in> (extend_set h A) Co (extend_set h B)) = | 
| 505 | (F \<in> A Co B)" | |
| 13790 | 506 | by (simp add: Constrains_def reachable_extend_eq extend_constrains | 
| 507 | extend_set_Int_distrib [symmetric]) | |
| 508 | ||
| 509 | lemma (in Extend) extend_Stable: | |
| 13805 | 510 | "(extend h F \<in> Stable (extend_set h A)) = (F \<in> Stable A)" | 
| 13790 | 511 | by (simp add: Stable_def extend_Constrains) | 
| 512 | ||
| 513 | lemma (in Extend) extend_Always: | |
| 13805 | 514 | "(extend h F \<in> Always (extend_set h A)) = (F \<in> Always A)" | 
| 13790 | 515 | by (simp (no_asm_simp) add: Always_def extend_Stable) | 
| 516 | ||
| 517 | ||
| 518 | (** Safety and "project" **) | |
| 519 | ||
| 520 | (** projection: monotonicity for safety **) | |
| 521 | ||
| 522 | lemma project_act_mono: | |
| 13805 | 523 | "D \<subseteq> C ==> | 
| 524 | project_act h (Restrict D act) \<subseteq> project_act h (Restrict C act)" | |
| 13790 | 525 | by (auto simp add: project_act_def) | 
| 526 | ||
| 527 | lemma (in Extend) project_constrains_mono: | |
| 13805 | 528 | "[| D \<subseteq> C; project h C F \<in> A co B |] ==> project h D F \<in> A co B" | 
| 13790 | 529 | apply (auto simp add: constrains_def) | 
| 530 | apply (drule project_act_mono, blast) | |
| 531 | done | |
| 532 | ||
| 533 | lemma (in Extend) project_stable_mono: | |
| 13805 | 534 | "[| D \<subseteq> C; project h C F \<in> stable A |] ==> project h D F \<in> stable A" | 
| 13790 | 535 | by (simp add: stable_def project_constrains_mono) | 
| 536 | ||
| 537 | (*Key lemma used in several proofs about project and co*) | |
| 538 | lemma (in Extend) project_constrains: | |
| 13805 | 539 | "(project h C F \<in> A co B) = | 
| 540 | (F \<in> (C \<inter> extend_set h A) co (extend_set h B) & A \<subseteq> B)" | |
| 13790 | 541 | apply (unfold constrains_def) | 
| 542 | apply (auto intro!: project_act_I simp add: ball_Un) | |
| 543 | apply (force intro!: project_act_I dest!: subsetD) | |
| 544 | (*the <== direction*) | |
| 545 | apply (unfold project_act_def) | |
| 546 | apply (force dest!: subsetD) | |
| 547 | done | |
| 548 | ||
| 549 | lemma (in Extend) project_stable: | |
| 13805 | 550 | "(project h UNIV F \<in> stable A) = (F \<in> stable (extend_set h A))" | 
| 13790 | 551 | apply (unfold stable_def) | 
| 552 | apply (simp (no_asm) add: project_constrains) | |
| 553 | done | |
| 554 | ||
| 555 | lemma (in Extend) project_stable_I: | |
| 13805 | 556 | "F \<in> stable (extend_set h A) ==> project h C F \<in> stable A" | 
| 13790 | 557 | apply (drule project_stable [THEN iffD2]) | 
| 558 | apply (blast intro: project_stable_mono) | |
| 559 | done | |
| 560 | ||
| 561 | lemma (in Extend) Int_extend_set_lemma: | |
| 13805 | 562 | "A \<inter> extend_set h ((project_set h A) \<inter> B) = A \<inter> extend_set h B" | 
| 13790 | 563 | by (auto simp add: split_extended_all) | 
| 564 | ||
| 565 | (*Strange (look at occurrences of C) but used in leadsETo proofs*) | |
| 566 | lemma project_constrains_project_set: | |
| 13805 | 567 | "G \<in> C co B ==> project h C G \<in> project_set h C co project_set h B" | 
| 13790 | 568 | by (simp add: constrains_def project_def project_act_def, blast) | 
| 569 | ||
| 570 | lemma project_stable_project_set: | |
| 13805 | 571 | "G \<in> stable C ==> project h C G \<in> stable (project_set h C)" | 
| 13790 | 572 | by (simp add: stable_def project_constrains_project_set) | 
| 573 | ||
| 574 | ||
| 13798 | 575 | subsection{*Progress: transient, ensures*}
 | 
| 13790 | 576 | |
| 577 | lemma (in Extend) extend_transient: | |
| 13805 | 578 | "(extend h F \<in> transient (extend_set h A)) = (F \<in> transient A)" | 
| 13790 | 579 | by (auto simp add: transient_def extend_set_subset_Compl_eq Domain_extend_act) | 
| 580 | ||
| 581 | lemma (in Extend) extend_ensures: | |
| 13805 | 582 | "(extend h F \<in> (extend_set h A) ensures (extend_set h B)) = | 
| 583 | (F \<in> A ensures B)" | |
| 13790 | 584 | by (simp add: ensures_def extend_constrains extend_transient | 
| 585 | extend_set_Un_distrib [symmetric] extend_set_Diff_distrib [symmetric]) | |
| 586 | ||
| 587 | lemma (in Extend) leadsTo_imp_extend_leadsTo: | |
| 13805 | 588 | "F \<in> A leadsTo B | 
| 589 | ==> extend h F \<in> (extend_set h A) leadsTo (extend_set h B)" | |
| 13790 | 590 | apply (erule leadsTo_induct) | 
| 591 | apply (simp add: leadsTo_Basis extend_ensures) | |
| 592 | apply (blast intro: leadsTo_Trans) | |
| 593 | apply (simp add: leadsTo_UN extend_set_Union) | |
| 594 | done | |
| 595 | ||
| 13798 | 596 | subsection{*Proving the converse takes some doing!*}
 | 
| 13790 | 597 | |
| 13805 | 598 | lemma (in Extend) slice_iff [iff]: "(x \<in> slice C y) = (h(x,y) \<in> C)" | 
| 13790 | 599 | by (simp (no_asm) add: slice_def) | 
| 600 | ||
| 13805 | 601 | lemma (in Extend) slice_Union: "slice (Union S) y = (\<Union>x \<in> S. slice x y)" | 
| 13790 | 602 | by auto | 
| 603 | ||
| 604 | lemma (in Extend) slice_extend_set: "slice (extend_set h A) y = A" | |
| 605 | by auto | |
| 606 | ||
| 607 | lemma (in Extend) project_set_is_UN_slice: | |
| 13805 | 608 | "project_set h A = (\<Union>y. slice A y)" | 
| 13790 | 609 | by auto | 
| 610 | ||
| 611 | lemma (in Extend) extend_transient_slice: | |
| 13805 | 612 | "extend h F \<in> transient A ==> F \<in> transient (slice A y)" | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 613 | by (unfold transient_def, auto) | 
| 13790 | 614 | |
| 615 | (*Converse?*) | |
| 616 | lemma (in Extend) extend_constrains_slice: | |
| 13805 | 617 | "extend h F \<in> A co B ==> F \<in> (slice A y) co (slice B y)" | 
| 13790 | 618 | by (auto simp add: constrains_def) | 
| 619 | ||
| 620 | lemma (in Extend) extend_ensures_slice: | |
| 13805 | 621 | "extend h F \<in> A ensures B ==> F \<in> (slice A y) ensures (project_set h B)" | 
| 13790 | 622 | apply (auto simp add: ensures_def extend_constrains extend_transient) | 
| 623 | apply (erule_tac [2] extend_transient_slice [THEN transient_strengthen]) | |
| 624 | apply (erule extend_constrains_slice [THEN constrains_weaken], auto) | |
| 625 | done | |
| 626 | ||
| 627 | lemma (in Extend) leadsTo_slice_project_set: | |
| 13805 | 628 | "\<forall>y. F \<in> (slice B y) leadsTo CU ==> F \<in> (project_set h B) leadsTo CU" | 
| 13790 | 629 | apply (simp (no_asm) add: project_set_is_UN_slice) | 
| 630 | apply (blast intro: leadsTo_UN) | |
| 631 | done | |
| 632 | ||
| 13798 | 633 | lemma (in Extend) extend_leadsTo_slice [rule_format]: | 
| 13805 | 634 | "extend h F \<in> AU leadsTo BU | 
| 635 | ==> \<forall>y. F \<in> (slice AU y) leadsTo (project_set h BU)" | |
| 13790 | 636 | apply (erule leadsTo_induct) | 
| 637 | apply (blast intro: extend_ensures_slice leadsTo_Basis) | |
| 638 | apply (blast intro: leadsTo_slice_project_set leadsTo_Trans) | |
| 639 | apply (simp add: leadsTo_UN slice_Union) | |
| 640 | done | |
| 641 | ||
| 642 | lemma (in Extend) extend_leadsTo: | |
| 13805 | 643 | "(extend h F \<in> (extend_set h A) leadsTo (extend_set h B)) = | 
| 644 | (F \<in> A leadsTo B)" | |
| 13790 | 645 | apply safe | 
| 646 | apply (erule_tac [2] leadsTo_imp_extend_leadsTo) | |
| 647 | apply (drule extend_leadsTo_slice) | |
| 648 | apply (simp add: slice_extend_set) | |
| 649 | done | |
| 650 | ||
| 651 | lemma (in Extend) extend_LeadsTo: | |
| 13805 | 652 | "(extend h F \<in> (extend_set h A) LeadsTo (extend_set h B)) = | 
| 653 | (F \<in> A LeadsTo B)" | |
| 13790 | 654 | by (simp add: LeadsTo_def reachable_extend_eq extend_leadsTo | 
| 655 | extend_set_Int_distrib [symmetric]) | |
| 656 | ||
| 657 | ||
| 13798 | 658 | subsection{*preserves*}
 | 
| 13790 | 659 | |
| 660 | lemma (in Extend) project_preserves_I: | |
| 13805 | 661 | "G \<in> preserves (v o f) ==> project h C G \<in> preserves v" | 
| 13790 | 662 | by (auto simp add: preserves_def project_stable_I extend_set_eq_Collect) | 
| 663 | ||
| 664 | (*to preserve f is to preserve the whole original state*) | |
| 665 | lemma (in Extend) project_preserves_id_I: | |
| 13805 | 666 | "G \<in> preserves f ==> project h C G \<in> preserves id" | 
| 13790 | 667 | by (simp add: project_preserves_I) | 
| 668 | ||
| 669 | lemma (in Extend) extend_preserves: | |
| 13805 | 670 | "(extend h G \<in> preserves (v o f)) = (G \<in> preserves v)" | 
| 13790 | 671 | by (auto simp add: preserves_def extend_stable [symmetric] | 
| 672 | extend_set_eq_Collect) | |
| 673 | ||
| 13805 | 674 | lemma (in Extend) inj_extend_preserves: "inj h ==> (extend h G \<in> preserves g)" | 
| 13790 | 675 | by (auto simp add: preserves_def extend_def extend_act_def stable_def | 
| 676 | constrains_def g_def) | |
| 677 | ||
| 678 | ||
| 13798 | 679 | subsection{*Guarantees*}
 | 
| 13790 | 680 | |
| 681 | lemma (in Extend) project_extend_Join: | |
| 13819 | 682 | "project h UNIV ((extend h F)\<squnion>G) = F\<squnion>(project h UNIV G)" | 
| 13790 | 683 | apply (rule program_equalityI) | 
| 684 | apply (simp add: project_set_extend_set_Int) | |
| 685 | apply (simp add: image_eq_UN UN_Un, auto) | |
| 686 | done | |
| 687 | ||
| 688 | lemma (in Extend) extend_Join_eq_extend_D: | |
| 13819 | 689 | "(extend h F)\<squnion>G = extend h H ==> H = F\<squnion>(project h UNIV G)" | 
| 13790 | 690 | apply (drule_tac f = "project h UNIV" in arg_cong) | 
| 691 | apply (simp add: project_extend_Join) | |
| 692 | done | |
| 693 | ||
| 694 | (** Strong precondition and postcondition; only useful when | |
| 695 | the old and new state sets are in bijection **) | |
| 696 | ||
| 697 | ||
| 698 | lemma (in Extend) ok_extend_imp_ok_project: | |
| 699 | "extend h F ok G ==> F ok project h UNIV G" | |
| 700 | apply (auto simp add: ok_def) | |
| 701 | apply (drule subsetD) | |
| 702 | apply (auto intro!: rev_image_eqI) | |
| 703 | done | |
| 704 | ||
| 705 | lemma (in Extend) ok_extend_iff: "(extend h F ok extend h G) = (F ok G)" | |
| 706 | apply (simp add: ok_def, safe) | |
| 707 | apply (force+) | |
| 708 | done | |
| 709 | ||
| 710 | lemma (in Extend) OK_extend_iff: "OK I (%i. extend h (F i)) = (OK I F)" | |
| 711 | apply (unfold OK_def, safe) | |
| 712 | apply (drule_tac x = i in bspec) | |
| 713 | apply (drule_tac [2] x = j in bspec) | |
| 714 | apply (force+) | |
| 715 | done | |
| 716 | ||
| 717 | lemma (in Extend) guarantees_imp_extend_guarantees: | |
| 13805 | 718 | "F \<in> X guarantees Y ==> | 
| 719 | extend h F \<in> (extend h ` X) guarantees (extend h ` Y)" | |
| 13790 | 720 | apply (rule guaranteesI, clarify) | 
| 721 | apply (blast dest: ok_extend_imp_ok_project extend_Join_eq_extend_D | |
| 722 | guaranteesD) | |
| 723 | done | |
| 724 | ||
| 725 | lemma (in Extend) extend_guarantees_imp_guarantees: | |
| 13805 | 726 | "extend h F \<in> (extend h ` X) guarantees (extend h ` Y) | 
| 727 | ==> F \<in> X guarantees Y" | |
| 13790 | 728 | apply (auto simp add: guar_def) | 
| 729 | apply (drule_tac x = "extend h G" in spec) | |
| 730 | apply (simp del: extend_Join | |
| 731 | add: extend_Join [symmetric] ok_extend_iff | |
| 732 | inj_extend [THEN inj_image_mem_iff]) | |
| 733 | done | |
| 734 | ||
| 735 | lemma (in Extend) extend_guarantees_eq: | |
| 13805 | 736 | "(extend h F \<in> (extend h ` X) guarantees (extend h ` Y)) = | 
| 737 | (F \<in> X guarantees Y)" | |
| 13790 | 738 | by (blast intro: guarantees_imp_extend_guarantees | 
| 739 | extend_guarantees_imp_guarantees) | |
| 6297 | 740 | |
| 741 | end |