| author | wenzelm | 
| Sat, 29 May 2004 15:05:25 +0200 | |
| changeset 14830 | faa4865ba1ce | 
| parent 13812 | 91713a1915ee | 
| child 15102 | 04b0e943fcc9 | 
| permissions | -rw-r--r-- | 
| 6706 | 1 | (* Title: HOL/UNITY/Follows | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1998 University of Cambridge | |
| 13798 | 5 | *) | 
| 6706 | 6 | |
| 13798 | 7 | header{*The Follows Relation of Charpentier and Sivilotte*}
 | 
| 6706 | 8 | |
| 13796 | 9 | theory Follows = SubstAx + ListOrder + Multiset: | 
| 6706 | 10 | |
| 11 | constdefs | |
| 12 | ||
| 13 |   Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set"
 | |
| 6809 | 14 | (infixl "Fols" 65) | 
| 13805 | 15 | "f Fols g == Increasing g \<inter> Increasing f Int | 
| 16 |                 Always {s. f s \<le> g s} Int
 | |
| 17 |                 (\<Inter>k. {s. k \<le> g s} LeadsTo {s. k \<le> f s})"
 | |
| 6706 | 18 | |
| 19 | ||
| 13796 | 20 | (*Does this hold for "invariant"?*) | 
| 21 | lemma mono_Always_o: | |
| 13805 | 22 |      "mono h ==> Always {s. f s \<le> g s} \<subseteq> Always {s. h (f s) \<le> h (g s)}"
 | 
| 13796 | 23 | apply (simp add: Always_eq_includes_reachable) | 
| 24 | apply (blast intro: monoD) | |
| 25 | done | |
| 26 | ||
| 27 | lemma mono_LeadsTo_o: | |
| 28 | "mono (h::'a::order => 'b::order) | |
| 13805 | 29 |       ==> (\<Inter>j. {s. j \<le> g s} LeadsTo {s. j \<le> f s}) \<subseteq>  
 | 
| 30 |           (\<Inter>k. {s. k \<le> h (g s)} LeadsTo {s. k \<le> h (f s)})"
 | |
| 13796 | 31 | apply auto | 
| 32 | apply (rule single_LeadsTo_I) | |
| 33 | apply (drule_tac x = "g s" in spec) | |
| 34 | apply (erule LeadsTo_weaken) | |
| 35 | apply (blast intro: monoD order_trans)+ | |
| 36 | done | |
| 37 | ||
| 13805 | 38 | lemma Follows_constant [iff]: "F \<in> (%s. c) Fols (%s. c)" | 
| 13796 | 39 | by (unfold Follows_def, auto) | 
| 40 | ||
| 13805 | 41 | lemma mono_Follows_o: "mono h ==> f Fols g \<subseteq> (h o f) Fols (h o g)" | 
| 13796 | 42 | apply (unfold Follows_def, clarify) | 
| 43 | apply (simp add: mono_Increasing_o [THEN [2] rev_subsetD] | |
| 44 | mono_Always_o [THEN [2] rev_subsetD] | |
| 45 | mono_LeadsTo_o [THEN [2] rev_subsetD, THEN INT_D]) | |
| 46 | done | |
| 47 | ||
| 48 | lemma mono_Follows_apply: | |
| 13805 | 49 | "mono h ==> f Fols g \<subseteq> (%x. h (f x)) Fols (%x. h (g x))" | 
| 13796 | 50 | apply (drule mono_Follows_o) | 
| 51 | apply (force simp add: o_def) | |
| 52 | done | |
| 53 | ||
| 54 | lemma Follows_trans: | |
| 13805 | 55 | "[| F \<in> f Fols g; F \<in> g Fols h |] ==> F \<in> f Fols h" | 
| 13796 | 56 | apply (unfold Follows_def) | 
| 57 | apply (simp add: Always_eq_includes_reachable) | |
| 58 | apply (blast intro: order_trans LeadsTo_Trans) | |
| 59 | done | |
| 60 | ||
| 61 | ||
| 13798 | 62 | subsection{*Destruction rules*}
 | 
| 13796 | 63 | |
| 13805 | 64 | lemma Follows_Increasing1: "F \<in> f Fols g ==> F \<in> Increasing f" | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 65 | by (unfold Follows_def, blast) | 
| 13796 | 66 | |
| 13805 | 67 | lemma Follows_Increasing2: "F \<in> f Fols g ==> F \<in> Increasing g" | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 68 | by (unfold Follows_def, blast) | 
| 13796 | 69 | |
| 13805 | 70 | lemma Follows_Bounded: "F \<in> f Fols g ==> F \<in> Always {s. f s \<subseteq> g s}"
 | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 71 | by (unfold Follows_def, blast) | 
| 13796 | 72 | |
| 73 | lemma Follows_LeadsTo: | |
| 13805 | 74 |      "F \<in> f Fols g ==> F \<in> {s. k \<le> g s} LeadsTo {s. k \<le> f s}"
 | 
| 13798 | 75 | by (unfold Follows_def, blast) | 
| 13796 | 76 | |
| 77 | lemma Follows_LeadsTo_pfixLe: | |
| 13805 | 78 |      "F \<in> f Fols g ==> F \<in> {s. k pfixLe g s} LeadsTo {s. k pfixLe f s}"
 | 
| 13796 | 79 | apply (rule single_LeadsTo_I, clarify) | 
| 80 | apply (drule_tac k="g s" in Follows_LeadsTo) | |
| 81 | apply (erule LeadsTo_weaken) | |
| 82 | apply blast | |
| 83 | apply (blast intro: pfixLe_trans prefix_imp_pfixLe) | |
| 84 | done | |
| 85 | ||
| 86 | lemma Follows_LeadsTo_pfixGe: | |
| 13805 | 87 |      "F \<in> f Fols g ==> F \<in> {s. k pfixGe g s} LeadsTo {s. k pfixGe f s}"
 | 
| 13796 | 88 | apply (rule single_LeadsTo_I, clarify) | 
| 89 | apply (drule_tac k="g s" in Follows_LeadsTo) | |
| 90 | apply (erule LeadsTo_weaken) | |
| 91 | apply blast | |
| 92 | apply (blast intro: pfixGe_trans prefix_imp_pfixGe) | |
| 93 | done | |
| 94 | ||
| 95 | ||
| 96 | lemma Always_Follows1: | |
| 13805 | 97 |      "[| F \<in> Always {s. f s = f' s}; F \<in> f Fols g |] ==> F \<in> f' Fols g"
 | 
| 13796 | 98 | |
| 99 | apply (unfold Follows_def Increasing_def Stable_def, auto) | |
| 100 | apply (erule_tac [3] Always_LeadsTo_weaken) | |
| 13805 | 101 | apply (erule_tac A = "{s. z \<le> f s}" and A' = "{s. z \<le> f s}" 
 | 
| 13798 | 102 | in Always_Constrains_weaken, auto) | 
| 13796 | 103 | apply (drule Always_Int_I, assumption) | 
| 104 | apply (force intro: Always_weaken) | |
| 105 | done | |
| 106 | ||
| 107 | lemma Always_Follows2: | |
| 13805 | 108 |      "[| F \<in> Always {s. g s = g' s}; F \<in> f Fols g |] ==> F \<in> f Fols g'"
 | 
| 13796 | 109 | apply (unfold Follows_def Increasing_def Stable_def, auto) | 
| 110 | apply (erule_tac [3] Always_LeadsTo_weaken) | |
| 13805 | 111 | apply (erule_tac A = "{s. z \<le> g s}" and A' = "{s. z \<le> g s}"
 | 
| 13798 | 112 | in Always_Constrains_weaken, auto) | 
| 13796 | 113 | apply (drule Always_Int_I, assumption) | 
| 114 | apply (force intro: Always_weaken) | |
| 115 | done | |
| 116 | ||
| 117 | ||
| 13798 | 118 | subsection{*Union properties (with the subset ordering)*}
 | 
| 13796 | 119 | |
| 120 | (*Can replace "Un" by any sup. But existing max only works for linorders.*) | |
| 121 | lemma increasing_Un: | |
| 13805 | 122 | "[| F \<in> increasing f; F \<in> increasing g |] | 
| 123 | ==> F \<in> increasing (%s. (f s) \<union> (g s))" | |
| 13796 | 124 | apply (unfold increasing_def stable_def constrains_def, auto) | 
| 125 | apply (drule_tac x = "f xa" in spec) | |
| 126 | apply (drule_tac x = "g xa" in spec) | |
| 127 | apply (blast dest!: bspec) | |
| 128 | done | |
| 129 | ||
| 130 | lemma Increasing_Un: | |
| 13805 | 131 | "[| F \<in> Increasing f; F \<in> Increasing g |] | 
| 132 | ==> F \<in> Increasing (%s. (f s) \<union> (g s))" | |
| 13798 | 133 | apply (auto simp add: Increasing_def Stable_def Constrains_def | 
| 134 | stable_def constrains_def) | |
| 13796 | 135 | apply (drule_tac x = "f xa" in spec) | 
| 136 | apply (drule_tac x = "g xa" in spec) | |
| 137 | apply (blast dest!: bspec) | |
| 138 | done | |
| 139 | ||
| 140 | ||
| 141 | lemma Always_Un: | |
| 13805 | 142 |      "[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |]  
 | 
| 143 |       ==> F \<in> Always {s. f' s \<union> g' s \<le> f s \<union> g s}"
 | |
| 13798 | 144 | by (simp add: Always_eq_includes_reachable, blast) | 
| 13796 | 145 | |
| 146 | (*Lemma to re-use the argument that one variable increases (progress) | |
| 147 | while the other variable doesn't decrease (safety)*) | |
| 148 | lemma Follows_Un_lemma: | |
| 13805 | 149 | "[| F \<in> Increasing f; F \<in> Increasing g; | 
| 150 |          F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s}; 
 | |
| 151 |          \<forall>k. F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |] 
 | |
| 152 |       ==> F \<in> {s. k \<le> f s \<union> g s} LeadsTo {s. k \<le> f' s \<union> g s}"
 | |
| 13796 | 153 | apply (rule single_LeadsTo_I) | 
| 154 | apply (drule_tac x = "f s" in IncreasingD) | |
| 155 | apply (drule_tac x = "g s" in IncreasingD) | |
| 156 | apply (rule LeadsTo_weaken) | |
| 157 | apply (rule PSP_Stable) | |
| 158 | apply (erule_tac x = "f s" in spec) | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 159 | apply (erule Stable_Int, assumption, blast+) | 
| 13796 | 160 | done | 
| 161 | ||
| 162 | lemma Follows_Un: | |
| 13805 | 163 | "[| F \<in> f' Fols f; F \<in> g' Fols g |] | 
| 164 | ==> F \<in> (%s. (f' s) \<union> (g' s)) Fols (%s. (f s) \<union> (g s))" | |
| 13796 | 165 | apply (unfold Follows_def) | 
| 166 | apply (simp add: Increasing_Un Always_Un, auto) | |
| 167 | apply (rule LeadsTo_Trans) | |
| 168 | apply (blast intro: Follows_Un_lemma) | |
| 169 | (*Weakening is used to exchange Un's arguments*) | |
| 170 | apply (blast intro: Follows_Un_lemma [THEN LeadsTo_weaken]) | |
| 171 | done | |
| 172 | ||
| 173 | ||
| 13798 | 174 | subsection{*Multiset union properties (with the multiset ordering)*}
 | 
| 13796 | 175 | |
| 176 | lemma increasing_union: | |
| 13805 | 177 | "[| F \<in> increasing f; F \<in> increasing g |] | 
| 178 |      ==> F \<in> increasing (%s. (f s) + (g s :: ('a::order) multiset))"
 | |
| 13796 | 179 | apply (unfold increasing_def stable_def constrains_def, auto) | 
| 180 | apply (drule_tac x = "f xa" in spec) | |
| 181 | apply (drule_tac x = "g xa" in spec) | |
| 182 | apply (drule bspec, assumption) | |
| 183 | apply (blast intro: union_le_mono order_trans) | |
| 184 | done | |
| 185 | ||
| 186 | lemma Increasing_union: | |
| 13805 | 187 | "[| F \<in> Increasing f; F \<in> Increasing g |] | 
| 188 |      ==> F \<in> Increasing (%s. (f s) + (g s :: ('a::order) multiset))"
 | |
| 13798 | 189 | apply (auto simp add: Increasing_def Stable_def Constrains_def | 
| 190 | stable_def constrains_def) | |
| 13796 | 191 | apply (drule_tac x = "f xa" in spec) | 
| 192 | apply (drule_tac x = "g xa" in spec) | |
| 193 | apply (drule bspec, assumption) | |
| 194 | apply (blast intro: union_le_mono order_trans) | |
| 195 | done | |
| 196 | ||
| 197 | lemma Always_union: | |
| 13805 | 198 |      "[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |]  
 | 
| 199 |       ==> F \<in> Always {s. f' s + g' s \<le> f s + (g s :: ('a::order) multiset)}"
 | |
| 13796 | 200 | apply (simp add: Always_eq_includes_reachable) | 
| 201 | apply (blast intro: union_le_mono) | |
| 202 | done | |
| 203 | ||
| 204 | (*Except the last line, IDENTICAL to the proof script for Follows_Un_lemma*) | |
| 205 | lemma Follows_union_lemma: | |
| 13805 | 206 | "[| F \<in> Increasing f; F \<in> Increasing g; | 
| 207 |          F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s}; 
 | |
| 208 |          \<forall>k::('a::order) multiset.  
 | |
| 209 |            F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |] 
 | |
| 210 |       ==> F \<in> {s. k \<le> f s + g s} LeadsTo {s. k \<le> f' s + g s}"
 | |
| 13796 | 211 | apply (rule single_LeadsTo_I) | 
| 212 | apply (drule_tac x = "f s" in IncreasingD) | |
| 213 | apply (drule_tac x = "g s" in IncreasingD) | |
| 214 | apply (rule LeadsTo_weaken) | |
| 215 | apply (rule PSP_Stable) | |
| 216 | apply (erule_tac x = "f s" in spec) | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 217 | apply (erule Stable_Int, assumption, blast) | 
| 13796 | 218 | apply (blast intro: union_le_mono order_trans) | 
| 219 | done | |
| 220 | ||
| 221 | (*The !! is there to influence to effect of permutative rewriting at the end*) | |
| 222 | lemma Follows_union: | |
| 223 |      "!!g g' ::'b => ('a::order) multiset.  
 | |
| 13805 | 224 | [| F \<in> f' Fols f; F \<in> g' Fols g |] | 
| 225 | ==> F \<in> (%s. (f' s) + (g' s)) Fols (%s. (f s) + (g s))" | |
| 13796 | 226 | apply (unfold Follows_def) | 
| 227 | apply (simp add: Increasing_union Always_union, auto) | |
| 228 | apply (rule LeadsTo_Trans) | |
| 229 | apply (blast intro: Follows_union_lemma) | |
| 230 | (*now exchange union's arguments*) | |
| 231 | apply (simp add: union_commute) | |
| 232 | apply (blast intro: Follows_union_lemma) | |
| 233 | done | |
| 234 | ||
| 235 | lemma Follows_setsum: | |
| 236 |      "!!f ::['c,'b] => ('a::order) multiset.  
 | |
| 13805 | 237 | [| \<forall>i \<in> I. F \<in> f' i Fols f i; finite I |] | 
| 238 | ==> F \<in> (%s. \<Sum>i \<in> I. f' i s) Fols (%s. \<Sum>i \<in> I. f i s)" | |
| 13796 | 239 | apply (erule rev_mp) | 
| 240 | apply (erule finite_induct, simp) | |
| 241 | apply (simp add: Follows_union) | |
| 242 | done | |
| 243 | ||
| 244 | ||
| 245 | (*Currently UNUSED, but possibly of interest*) | |
| 246 | lemma Increasing_imp_Stable_pfixGe: | |
| 13805 | 247 |      "F \<in> Increasing func ==> F \<in> Stable {s. h pfixGe (func s)}"
 | 
| 13796 | 248 | apply (simp add: Increasing_def Stable_def Constrains_def constrains_def) | 
| 249 | apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] | |
| 250 | prefix_imp_pfixGe) | |
| 251 | done | |
| 252 | ||
| 253 | (*Currently UNUSED, but possibly of interest*) | |
| 254 | lemma LeadsTo_le_imp_pfixGe: | |
| 13805 | 255 |      "\<forall>z. F \<in> {s. z \<le> f s} LeadsTo {s. z \<le> g s}  
 | 
| 256 |       ==> F \<in> {s. z pfixGe f s} LeadsTo {s. z pfixGe g s}"
 | |
| 13796 | 257 | apply (rule single_LeadsTo_I) | 
| 258 | apply (drule_tac x = "f s" in spec) | |
| 259 | apply (erule LeadsTo_weaken) | |
| 260 | prefer 2 | |
| 261 | apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] | |
| 262 | prefix_imp_pfixGe, blast) | |
| 263 | done | |
| 264 | ||
| 6706 | 265 | end |