author | paulson |
Wed, 05 Jun 2002 15:34:55 +0200 | |
changeset 13203 | fac77a839aa2 |
parent 13172 | 03a5afa7b888 |
child 13243 | ba53d07d32d5 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Ordinal.thy |
435 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
435 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
Ordinals in Zermelo-Fraenkel Set Theory |
|
7 |
*) |
|
8 |
||
13155 | 9 |
theory Ordinal = WF + Bool + equalities: |
10 |
||
11 |
constdefs |
|
12 |
||
13 |
Memrel :: "i=>i" |
|
14 |
"Memrel(A) == {z: A*A . EX x y. z=<x,y> & x:y }" |
|
15 |
||
16 |
Transset :: "i=>o" |
|
17 |
"Transset(i) == ALL x:i. x<=i" |
|
18 |
||
19 |
Ord :: "i=>o" |
|
20 |
"Ord(i) == Transset(i) & (ALL x:i. Transset(x))" |
|
21 |
||
22 |
lt :: "[i,i] => o" (infixl "<" 50) (*less-than on ordinals*) |
|
23 |
"i<j == i:j & Ord(j)" |
|
24 |
||
25 |
Limit :: "i=>o" |
|
26 |
"Limit(i) == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)" |
|
2539 | 27 |
|
28 |
syntax |
|
13155 | 29 |
"le" :: "[i,i] => o" (infixl 50) (*less-than or equals*) |
435 | 30 |
|
31 |
translations |
|
32 |
"x le y" == "x < succ(y)" |
|
33 |
||
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
2540
diff
changeset
|
34 |
syntax (xsymbols) |
13155 | 35 |
"op le" :: "[i,i] => o" (infixl "\<le>" 50) (*less-than or equals*) |
36 |
||
37 |
||
38 |
(*** Rules for Transset ***) |
|
39 |
||
40 |
(** Three neat characterisations of Transset **) |
|
41 |
||
42 |
lemma Transset_iff_Pow: "Transset(A) <-> A<=Pow(A)" |
|
43 |
by (unfold Transset_def, blast) |
|
44 |
||
45 |
lemma Transset_iff_Union_succ: "Transset(A) <-> Union(succ(A)) = A" |
|
46 |
apply (unfold Transset_def) |
|
47 |
apply (blast elim!: equalityE) |
|
48 |
done |
|
49 |
||
50 |
lemma Transset_iff_Union_subset: "Transset(A) <-> Union(A) <= A" |
|
51 |
by (unfold Transset_def, blast) |
|
52 |
||
53 |
(** Consequences of downwards closure **) |
|
54 |
||
55 |
lemma Transset_doubleton_D: |
|
56 |
"[| Transset(C); {a,b}: C |] ==> a:C & b: C" |
|
57 |
by (unfold Transset_def, blast) |
|
58 |
||
59 |
lemma Transset_Pair_D: |
|
60 |
"[| Transset(C); <a,b>: C |] ==> a:C & b: C" |
|
61 |
apply (simp add: Pair_def) |
|
62 |
apply (blast dest: Transset_doubleton_D) |
|
63 |
done |
|
64 |
||
65 |
lemma Transset_includes_domain: |
|
66 |
"[| Transset(C); A*B <= C; b: B |] ==> A <= C" |
|
67 |
by (blast dest: Transset_Pair_D) |
|
68 |
||
69 |
lemma Transset_includes_range: |
|
70 |
"[| Transset(C); A*B <= C; a: A |] ==> B <= C" |
|
71 |
by (blast dest: Transset_Pair_D) |
|
72 |
||
73 |
(** Closure properties **) |
|
74 |
||
75 |
lemma Transset_0: "Transset(0)" |
|
76 |
by (unfold Transset_def, blast) |
|
77 |
||
78 |
lemma Transset_Un: |
|
79 |
"[| Transset(i); Transset(j) |] ==> Transset(i Un j)" |
|
80 |
by (unfold Transset_def, blast) |
|
81 |
||
82 |
lemma Transset_Int: |
|
83 |
"[| Transset(i); Transset(j) |] ==> Transset(i Int j)" |
|
84 |
by (unfold Transset_def, blast) |
|
85 |
||
86 |
lemma Transset_succ: "Transset(i) ==> Transset(succ(i))" |
|
87 |
by (unfold Transset_def, blast) |
|
88 |
||
89 |
lemma Transset_Pow: "Transset(i) ==> Transset(Pow(i))" |
|
90 |
by (unfold Transset_def, blast) |
|
91 |
||
92 |
lemma Transset_Union: "Transset(A) ==> Transset(Union(A))" |
|
93 |
by (unfold Transset_def, blast) |
|
94 |
||
95 |
lemma Transset_Union_family: |
|
96 |
"[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))" |
|
97 |
by (unfold Transset_def, blast) |
|
98 |
||
99 |
lemma Transset_Inter_family: |
|
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
100 |
"[| !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))" |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
101 |
by (unfold Inter_def Transset_def, blast) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
102 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
103 |
lemma Transset_UN: |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
104 |
"(!!x. x \<in> A ==> Transset(B(x))) ==> Transset (UN x:A. B(x))" |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
105 |
by (rule Transset_Union_family, auto) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
106 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
107 |
lemma Transset_INT: |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
108 |
"(!!x. x \<in> A ==> Transset(B(x))) ==> Transset (INT x:A. B(x))" |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
109 |
by (rule Transset_Inter_family, auto) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
110 |
|
13155 | 111 |
|
112 |
(*** Natural Deduction rules for Ord ***) |
|
113 |
||
114 |
lemma OrdI: |
|
115 |
"[| Transset(i); !!x. x:i ==> Transset(x) |] ==> Ord(i)" |
|
116 |
by (simp add: Ord_def) |
|
117 |
||
118 |
lemma Ord_is_Transset: "Ord(i) ==> Transset(i)" |
|
119 |
by (simp add: Ord_def) |
|
120 |
||
121 |
lemma Ord_contains_Transset: |
|
122 |
"[| Ord(i); j:i |] ==> Transset(j) " |
|
123 |
by (unfold Ord_def, blast) |
|
124 |
||
125 |
(*** Lemmas for ordinals ***) |
|
126 |
||
127 |
lemma Ord_in_Ord: "[| Ord(i); j:i |] ==> Ord(j)" |
|
128 |
by (unfold Ord_def Transset_def, blast) |
|
129 |
||
130 |
(* Ord(succ(j)) ==> Ord(j) *) |
|
131 |
lemmas Ord_succD = Ord_in_Ord [OF _ succI1] |
|
132 |
||
133 |
lemma Ord_subset_Ord: "[| Ord(i); Transset(j); j<=i |] ==> Ord(j)" |
|
134 |
by (simp add: Ord_def Transset_def, blast) |
|
135 |
||
136 |
lemma OrdmemD: "[| j:i; Ord(i) |] ==> j<=i" |
|
137 |
by (unfold Ord_def Transset_def, blast) |
|
138 |
||
139 |
lemma Ord_trans: "[| i:j; j:k; Ord(k) |] ==> i:k" |
|
140 |
by (blast dest: OrdmemD) |
|
141 |
||
142 |
lemma Ord_succ_subsetI: "[| i:j; Ord(j) |] ==> succ(i) <= j" |
|
143 |
by (blast dest: OrdmemD) |
|
144 |
||
145 |
||
146 |
(*** The construction of ordinals: 0, succ, Union ***) |
|
147 |
||
148 |
lemma Ord_0 [iff,TC]: "Ord(0)" |
|
149 |
by (blast intro: OrdI Transset_0) |
|
150 |
||
151 |
lemma Ord_succ [TC]: "Ord(i) ==> Ord(succ(i))" |
|
152 |
by (blast intro: OrdI Transset_succ Ord_is_Transset Ord_contains_Transset) |
|
153 |
||
154 |
lemmas Ord_1 = Ord_0 [THEN Ord_succ] |
|
155 |
||
156 |
lemma Ord_succ_iff [iff]: "Ord(succ(i)) <-> Ord(i)" |
|
157 |
by (blast intro: Ord_succ dest!: Ord_succD) |
|
158 |
||
13172 | 159 |
lemma Ord_Un [intro,simp,TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Un j)" |
13155 | 160 |
apply (unfold Ord_def) |
161 |
apply (blast intro!: Transset_Un) |
|
162 |
done |
|
163 |
||
164 |
lemma Ord_Int [TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Int j)" |
|
165 |
apply (unfold Ord_def) |
|
166 |
apply (blast intro!: Transset_Int) |
|
167 |
done |
|
168 |
||
169 |
(*There is no set of all ordinals, for then it would contain itself*) |
|
170 |
lemma ON_class: "~ (ALL i. i:X <-> Ord(i))" |
|
171 |
apply (rule notI) |
|
172 |
apply (frule_tac x = "X" in spec) |
|
173 |
apply (safe elim!: mem_irrefl) |
|
174 |
apply (erule swap, rule OrdI [OF _ Ord_is_Transset]) |
|
175 |
apply (simp add: Transset_def) |
|
176 |
apply (blast intro: Ord_in_Ord)+ |
|
177 |
done |
|
178 |
||
179 |
(*** < is 'less than' for ordinals ***) |
|
180 |
||
181 |
lemma ltI: "[| i:j; Ord(j) |] ==> i<j" |
|
182 |
by (unfold lt_def, blast) |
|
183 |
||
184 |
lemma ltE: |
|
185 |
"[| i<j; [| i:j; Ord(i); Ord(j) |] ==> P |] ==> P" |
|
186 |
apply (unfold lt_def) |
|
187 |
apply (blast intro: Ord_in_Ord) |
|
188 |
done |
|
189 |
||
190 |
lemma ltD: "i<j ==> i:j" |
|
191 |
by (erule ltE, assumption) |
|
192 |
||
193 |
lemma not_lt0 [simp]: "~ i<0" |
|
194 |
by (unfold lt_def, blast) |
|
195 |
||
196 |
lemma lt_Ord: "j<i ==> Ord(j)" |
|
197 |
by (erule ltE, assumption) |
|
198 |
||
199 |
lemma lt_Ord2: "j<i ==> Ord(i)" |
|
200 |
by (erule ltE, assumption) |
|
201 |
||
202 |
(* "ja le j ==> Ord(j)" *) |
|
203 |
lemmas le_Ord2 = lt_Ord2 [THEN Ord_succD] |
|
204 |
||
205 |
(* i<0 ==> R *) |
|
206 |
lemmas lt0E = not_lt0 [THEN notE, elim!] |
|
207 |
||
208 |
lemma lt_trans: "[| i<j; j<k |] ==> i<k" |
|
209 |
by (blast intro!: ltI elim!: ltE intro: Ord_trans) |
|
210 |
||
211 |
lemma lt_not_sym: "i<j ==> ~ (j<i)" |
|
212 |
apply (unfold lt_def) |
|
213 |
apply (blast elim: mem_asym) |
|
214 |
done |
|
215 |
||
216 |
(* [| i<j; ~P ==> j<i |] ==> P *) |
|
217 |
lemmas lt_asym = lt_not_sym [THEN swap] |
|
218 |
||
219 |
lemma lt_irrefl [elim!]: "i<i ==> P" |
|
220 |
by (blast intro: lt_asym) |
|
221 |
||
222 |
lemma lt_not_refl: "~ i<i" |
|
223 |
apply (rule notI) |
|
224 |
apply (erule lt_irrefl) |
|
225 |
done |
|
226 |
||
227 |
||
228 |
(** le is less than or equals; recall i le j abbrevs i<succ(j) !! **) |
|
229 |
||
230 |
lemma le_iff: "i le j <-> i<j | (i=j & Ord(j))" |
|
231 |
by (unfold lt_def, blast) |
|
232 |
||
233 |
(*Equivalently, i<j ==> i < succ(j)*) |
|
234 |
lemma leI: "i<j ==> i le j" |
|
235 |
by (simp (no_asm_simp) add: le_iff) |
|
236 |
||
237 |
lemma le_eqI: "[| i=j; Ord(j) |] ==> i le j" |
|
238 |
by (simp (no_asm_simp) add: le_iff) |
|
239 |
||
240 |
lemmas le_refl = refl [THEN le_eqI] |
|
241 |
||
242 |
lemma le_refl_iff [iff]: "i le i <-> Ord(i)" |
|
243 |
by (simp (no_asm_simp) add: lt_not_refl le_iff) |
|
244 |
||
245 |
lemma leCI: "(~ (i=j & Ord(j)) ==> i<j) ==> i le j" |
|
246 |
by (simp add: le_iff, blast) |
|
247 |
||
248 |
lemma leE: |
|
249 |
"[| i le j; i<j ==> P; [| i=j; Ord(j) |] ==> P |] ==> P" |
|
250 |
by (simp add: le_iff, blast) |
|
251 |
||
252 |
lemma le_anti_sym: "[| i le j; j le i |] ==> i=j" |
|
253 |
apply (simp add: le_iff) |
|
254 |
apply (blast elim: lt_asym) |
|
255 |
done |
|
256 |
||
257 |
lemma le0_iff [simp]: "i le 0 <-> i=0" |
|
258 |
by (blast elim!: leE) |
|
259 |
||
260 |
lemmas le0D = le0_iff [THEN iffD1, dest!] |
|
261 |
||
262 |
(*** Natural Deduction rules for Memrel ***) |
|
263 |
||
264 |
(*The lemmas MemrelI/E give better speed than [iff] here*) |
|
265 |
lemma Memrel_iff [simp]: "<a,b> : Memrel(A) <-> a:b & a:A & b:A" |
|
266 |
by (unfold Memrel_def, blast) |
|
267 |
||
268 |
lemma MemrelI [intro!]: "[| a: b; a: A; b: A |] ==> <a,b> : Memrel(A)" |
|
269 |
by auto |
|
270 |
||
271 |
lemma MemrelE [elim!]: |
|
272 |
"[| <a,b> : Memrel(A); |
|
273 |
[| a: A; b: A; a:b |] ==> P |] |
|
274 |
==> P" |
|
275 |
by auto |
|
276 |
||
277 |
lemma Memrel_type: "Memrel(A) <= A*A" |
|
278 |
by (unfold Memrel_def, blast) |
|
279 |
||
280 |
lemma Memrel_mono: "A<=B ==> Memrel(A) <= Memrel(B)" |
|
281 |
by (unfold Memrel_def, blast) |
|
282 |
||
283 |
lemma Memrel_0 [simp]: "Memrel(0) = 0" |
|
284 |
by (unfold Memrel_def, blast) |
|
285 |
||
286 |
lemma Memrel_1 [simp]: "Memrel(1) = 0" |
|
287 |
by (unfold Memrel_def, blast) |
|
288 |
||
289 |
(*The membership relation (as a set) is well-founded. |
|
290 |
Proof idea: show A<=B by applying the foundation axiom to A-B *) |
|
291 |
lemma wf_Memrel: "wf(Memrel(A))" |
|
292 |
apply (unfold wf_def) |
|
293 |
apply (rule foundation [THEN disjE, THEN allI], erule disjI1, blast) |
|
294 |
done |
|
295 |
||
296 |
(*Transset(i) does not suffice, though ALL j:i.Transset(j) does*) |
|
297 |
lemma trans_Memrel: |
|
298 |
"Ord(i) ==> trans(Memrel(i))" |
|
299 |
by (unfold Ord_def Transset_def trans_def, blast) |
|
300 |
||
301 |
(*If Transset(A) then Memrel(A) internalizes the membership relation below A*) |
|
302 |
lemma Transset_Memrel_iff: |
|
303 |
"Transset(A) ==> <a,b> : Memrel(A) <-> a:b & b:A" |
|
304 |
by (unfold Transset_def, blast) |
|
305 |
||
306 |
||
307 |
(*** Transfinite induction ***) |
|
308 |
||
309 |
(*Epsilon induction over a transitive set*) |
|
310 |
lemma Transset_induct: |
|
311 |
"[| i: k; Transset(k); |
|
312 |
!!x.[| x: k; ALL y:x. P(y) |] ==> P(x) |] |
|
313 |
==> P(i)" |
|
314 |
apply (simp add: Transset_def) |
|
315 |
apply (erule wf_Memrel [THEN wf_induct2], blast) |
|
316 |
apply blast |
|
317 |
done |
|
318 |
||
319 |
(*Induction over an ordinal*) |
|
320 |
lemmas Ord_induct = Transset_induct [OF _ Ord_is_Transset] |
|
321 |
||
322 |
(*Induction over the class of ordinals -- a useful corollary of Ord_induct*) |
|
323 |
||
324 |
lemma trans_induct: |
|
325 |
"[| Ord(i); |
|
326 |
!!x.[| Ord(x); ALL y:x. P(y) |] ==> P(x) |] |
|
327 |
==> P(i)" |
|
328 |
apply (rule Ord_succ [THEN succI1 [THEN Ord_induct]], assumption) |
|
329 |
apply (blast intro: Ord_succ [THEN Ord_in_Ord]) |
|
330 |
done |
|
331 |
||
332 |
||
333 |
(*** Fundamental properties of the epsilon ordering (< on ordinals) ***) |
|
334 |
||
335 |
||
336 |
(** Proving that < is a linear ordering on the ordinals **) |
|
337 |
||
338 |
lemma Ord_linear [rule_format]: |
|
339 |
"Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)" |
|
340 |
apply (erule trans_induct) |
|
341 |
apply (rule impI [THEN allI]) |
|
342 |
apply (erule_tac i=j in trans_induct) |
|
343 |
apply (blast dest: Ord_trans) |
|
344 |
done |
|
345 |
||
346 |
(*The trichotomy law for ordinals!*) |
|
347 |
lemma Ord_linear_lt: |
|
348 |
"[| Ord(i); Ord(j); i<j ==> P; i=j ==> P; j<i ==> P |] ==> P" |
|
349 |
apply (simp add: lt_def) |
|
350 |
apply (rule_tac i1=i and j1=j in Ord_linear [THEN disjE], blast+) |
|
351 |
done |
|
352 |
||
353 |
lemma Ord_linear2: |
|
354 |
"[| Ord(i); Ord(j); i<j ==> P; j le i ==> P |] ==> P" |
|
355 |
apply (rule_tac i = "i" and j = "j" in Ord_linear_lt) |
|
356 |
apply (blast intro: leI le_eqI sym ) + |
|
357 |
done |
|
358 |
||
359 |
lemma Ord_linear_le: |
|
360 |
"[| Ord(i); Ord(j); i le j ==> P; j le i ==> P |] ==> P" |
|
361 |
apply (rule_tac i = "i" and j = "j" in Ord_linear_lt) |
|
362 |
apply (blast intro: leI le_eqI ) + |
|
363 |
done |
|
364 |
||
365 |
lemma le_imp_not_lt: "j le i ==> ~ i<j" |
|
366 |
by (blast elim!: leE elim: lt_asym) |
|
367 |
||
368 |
lemma not_lt_imp_le: "[| ~ i<j; Ord(i); Ord(j) |] ==> j le i" |
|
369 |
by (rule_tac i = "i" and j = "j" in Ord_linear2, auto) |
|
370 |
||
371 |
(** Some rewrite rules for <, le **) |
|
372 |
||
373 |
lemma Ord_mem_iff_lt: "Ord(j) ==> i:j <-> i<j" |
|
374 |
by (unfold lt_def, blast) |
|
375 |
||
376 |
lemma not_lt_iff_le: "[| Ord(i); Ord(j) |] ==> ~ i<j <-> j le i" |
|
377 |
by (blast dest: le_imp_not_lt not_lt_imp_le) |
|
2540 | 378 |
|
13155 | 379 |
lemma not_le_iff_lt: "[| Ord(i); Ord(j) |] ==> ~ i le j <-> j<i" |
380 |
by (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym]) |
|
381 |
||
382 |
(*This is identical to 0<succ(i) *) |
|
383 |
lemma Ord_0_le: "Ord(i) ==> 0 le i" |
|
384 |
by (erule not_lt_iff_le [THEN iffD1], auto) |
|
385 |
||
386 |
lemma Ord_0_lt: "[| Ord(i); i~=0 |] ==> 0<i" |
|
387 |
apply (erule not_le_iff_lt [THEN iffD1]) |
|
388 |
apply (rule Ord_0, blast) |
|
389 |
done |
|
390 |
||
391 |
lemma Ord_0_lt_iff: "Ord(i) ==> i~=0 <-> 0<i" |
|
392 |
by (blast intro: Ord_0_lt) |
|
393 |
||
394 |
||
395 |
(*** Results about less-than or equals ***) |
|
396 |
||
397 |
(** For ordinals, j<=i (subset) implies j le i (less-than or equals) **) |
|
398 |
||
399 |
lemma zero_le_succ_iff [iff]: "0 le succ(x) <-> Ord(x)" |
|
400 |
by (blast intro: Ord_0_le elim: ltE) |
|
401 |
||
402 |
lemma subset_imp_le: "[| j<=i; Ord(i); Ord(j) |] ==> j le i" |
|
403 |
apply (rule not_lt_iff_le [THEN iffD1], assumption) |
|
404 |
apply assumption |
|
405 |
apply (blast elim: ltE mem_irrefl) |
|
406 |
done |
|
407 |
||
408 |
lemma le_imp_subset: "i le j ==> i<=j" |
|
409 |
by (blast dest: OrdmemD elim: ltE leE) |
|
410 |
||
411 |
lemma le_subset_iff: "j le i <-> j<=i & Ord(i) & Ord(j)" |
|
412 |
by (blast dest: subset_imp_le le_imp_subset elim: ltE) |
|
413 |
||
414 |
lemma le_succ_iff: "i le succ(j) <-> i le j | i=succ(j) & Ord(i)" |
|
415 |
apply (simp (no_asm) add: le_iff) |
|
416 |
apply blast |
|
417 |
done |
|
418 |
||
419 |
(*Just a variant of subset_imp_le*) |
|
420 |
lemma all_lt_imp_le: "[| Ord(i); Ord(j); !!x. x<j ==> x<i |] ==> j le i" |
|
421 |
by (blast intro: not_lt_imp_le dest: lt_irrefl) |
|
422 |
||
423 |
(** Transitive laws **) |
|
424 |
||
425 |
lemma lt_trans1: "[| i le j; j<k |] ==> i<k" |
|
426 |
by (blast elim!: leE intro: lt_trans) |
|
427 |
||
428 |
lemma lt_trans2: "[| i<j; j le k |] ==> i<k" |
|
429 |
by (blast elim!: leE intro: lt_trans) |
|
430 |
||
431 |
lemma le_trans: "[| i le j; j le k |] ==> i le k" |
|
432 |
by (blast intro: lt_trans1) |
|
433 |
||
434 |
lemma succ_leI: "i<j ==> succ(i) le j" |
|
435 |
apply (rule not_lt_iff_le [THEN iffD1]) |
|
436 |
apply (blast elim: ltE leE lt_asym)+ |
|
437 |
done |
|
438 |
||
439 |
(*Identical to succ(i) < succ(j) ==> i<j *) |
|
440 |
lemma succ_leE: "succ(i) le j ==> i<j" |
|
441 |
apply (rule not_le_iff_lt [THEN iffD1]) |
|
442 |
apply (blast elim: ltE leE lt_asym)+ |
|
443 |
done |
|
444 |
||
445 |
lemma succ_le_iff [iff]: "succ(i) le j <-> i<j" |
|
446 |
by (blast intro: succ_leI succ_leE) |
|
447 |
||
448 |
lemma succ_le_imp_le: "succ(i) le succ(j) ==> i le j" |
|
449 |
by (blast dest!: succ_leE) |
|
450 |
||
451 |
lemma lt_subset_trans: "[| i <= j; j<k; Ord(i) |] ==> i<k" |
|
452 |
apply (rule subset_imp_le [THEN lt_trans1]) |
|
453 |
apply (blast intro: elim: ltE) + |
|
454 |
done |
|
455 |
||
13172 | 456 |
lemma lt_imp_0_lt: "j<i ==> 0<i" |
457 |
by (blast intro: lt_trans1 Ord_0_le [OF lt_Ord]) |
|
458 |
||
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
459 |
lemma succ_lt_iff: "succ(i) < j \<longleftrightarrow> i<j & succ(i) \<noteq> j" |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
460 |
apply auto |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
461 |
apply (blast intro: lt_trans le_refl dest: lt_Ord) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
462 |
apply (frule lt_Ord) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
463 |
apply (rule not_le_iff_lt [THEN iffD1]) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
464 |
apply (blast intro: lt_Ord2) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
465 |
apply blast |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
466 |
apply (simp add: lt_Ord lt_Ord2 le_iff) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
467 |
apply (blast dest: lt_asym) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
468 |
done |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
469 |
|
13155 | 470 |
(** Union and Intersection **) |
471 |
||
472 |
lemma Un_upper1_le: "[| Ord(i); Ord(j) |] ==> i le i Un j" |
|
473 |
by (rule Un_upper1 [THEN subset_imp_le], auto) |
|
474 |
||
475 |
lemma Un_upper2_le: "[| Ord(i); Ord(j) |] ==> j le i Un j" |
|
476 |
by (rule Un_upper2 [THEN subset_imp_le], auto) |
|
477 |
||
478 |
(*Replacing k by succ(k') yields the similar rule for le!*) |
|
479 |
lemma Un_least_lt: "[| i<k; j<k |] ==> i Un j < k" |
|
480 |
apply (rule_tac i = "i" and j = "j" in Ord_linear_le) |
|
481 |
apply (auto simp add: Un_commute le_subset_iff subset_Un_iff lt_Ord) |
|
482 |
done |
|
483 |
||
484 |
lemma Un_least_lt_iff: "[| Ord(i); Ord(j) |] ==> i Un j < k <-> i<k & j<k" |
|
485 |
apply (safe intro!: Un_least_lt) |
|
486 |
apply (rule_tac [2] Un_upper2_le [THEN lt_trans1]) |
|
487 |
apply (rule Un_upper1_le [THEN lt_trans1], auto) |
|
488 |
done |
|
489 |
||
490 |
lemma Un_least_mem_iff: |
|
491 |
"[| Ord(i); Ord(j); Ord(k) |] ==> i Un j : k <-> i:k & j:k" |
|
492 |
apply (insert Un_least_lt_iff [of i j k]) |
|
493 |
apply (simp add: lt_def) |
|
494 |
done |
|
495 |
||
496 |
(*Replacing k by succ(k') yields the similar rule for le!*) |
|
497 |
lemma Int_greatest_lt: "[| i<k; j<k |] ==> i Int j < k" |
|
498 |
apply (rule_tac i = "i" and j = "j" in Ord_linear_le) |
|
499 |
apply (auto simp add: Int_commute le_subset_iff subset_Int_iff lt_Ord) |
|
500 |
done |
|
501 |
||
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
502 |
lemma Ord_Un_if: |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
503 |
"[| Ord(i); Ord(j) |] ==> i \<union> j = (if j<i then i else j)" |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
504 |
by (simp add: not_lt_iff_le le_imp_subset leI |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
505 |
subset_Un_iff [symmetric] subset_Un_iff2 [symmetric]) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
506 |
|
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
507 |
lemma succ_Un_distrib: |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
508 |
"[| Ord(i); Ord(j) |] ==> succ(i \<union> j) = succ(i) \<union> succ(j)" |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
509 |
by (simp add: Ord_Un_if lt_Ord le_Ord2) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
510 |
|
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
511 |
lemma lt_Un_iff: |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
512 |
"[| Ord(i); Ord(j) |] ==> k < i \<union> j <-> k < i | k < j"; |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
513 |
apply (simp add: Ord_Un_if not_lt_iff_le) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
514 |
apply (blast intro: leI lt_trans2)+ |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
515 |
done |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
516 |
|
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
517 |
lemma le_Un_iff: |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
518 |
"[| Ord(i); Ord(j) |] ==> k \<le> i \<union> j <-> k \<le> i | k \<le> j"; |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
519 |
by (simp add: succ_Un_distrib lt_Un_iff [symmetric]) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
520 |
|
13172 | 521 |
lemma Un_upper1_lt: "[|k < i; Ord(j)|] ==> k < i Un j" |
522 |
by (simp add: lt_Un_iff lt_Ord2) |
|
523 |
||
524 |
lemma Un_upper2_lt: "[|k < j; Ord(i)|] ==> k < i Un j" |
|
525 |
by (simp add: lt_Un_iff lt_Ord2) |
|
526 |
||
527 |
(*See also Transset_iff_Union_succ*) |
|
528 |
lemma Ord_Union_succ_eq: "Ord(i) ==> \<Union>(succ(i)) = i" |
|
529 |
by (blast intro: Ord_trans) |
|
530 |
||
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
531 |
|
13155 | 532 |
(*** Results about limits ***) |
533 |
||
13172 | 534 |
lemma Ord_Union [intro,simp,TC]: "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))" |
13155 | 535 |
apply (rule Ord_is_Transset [THEN Transset_Union_family, THEN OrdI]) |
536 |
apply (blast intro: Ord_contains_Transset)+ |
|
537 |
done |
|
538 |
||
13172 | 539 |
lemma Ord_UN [intro,simp,TC]: |
540 |
"[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(UN x:A. B(x))" |
|
13155 | 541 |
by (rule Ord_Union, blast) |
542 |
||
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
543 |
lemma Ord_Inter [intro,simp,TC]: |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
544 |
"[| !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))" |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
545 |
apply (rule Transset_Inter_family [THEN OrdI]) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
546 |
apply (blast intro: Ord_is_Transset) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
547 |
apply (simp add: Inter_def) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
548 |
apply (blast intro: Ord_contains_Transset) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
549 |
done |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
550 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
551 |
lemma Ord_INT [intro,simp,TC]: |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
552 |
"[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(INT x:A. B(x))" |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
553 |
by (rule Ord_Inter, blast) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
554 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
555 |
|
13155 | 556 |
(* No < version; consider (UN i:nat.i)=nat *) |
557 |
lemma UN_least_le: |
|
558 |
"[| Ord(i); !!x. x:A ==> b(x) le i |] ==> (UN x:A. b(x)) le i" |
|
559 |
apply (rule le_imp_subset [THEN UN_least, THEN subset_imp_le]) |
|
560 |
apply (blast intro: Ord_UN elim: ltE)+ |
|
561 |
done |
|
562 |
||
563 |
lemma UN_succ_least_lt: |
|
564 |
"[| j<i; !!x. x:A ==> b(x)<j |] ==> (UN x:A. succ(b(x))) < i" |
|
565 |
apply (rule ltE, assumption) |
|
566 |
apply (rule UN_least_le [THEN lt_trans2]) |
|
567 |
apply (blast intro: succ_leI)+ |
|
568 |
done |
|
569 |
||
13172 | 570 |
lemma UN_upper_lt: |
571 |
"[| a\<in>A; i < b(a); Ord(\<Union>x\<in>A. b(x)) |] ==> i < (\<Union>x\<in>A. b(x))" |
|
572 |
by (unfold lt_def, blast) |
|
573 |
||
13155 | 574 |
lemma UN_upper_le: |
575 |
"[| a: A; i le b(a); Ord(UN x:A. b(x)) |] ==> i le (UN x:A. b(x))" |
|
576 |
apply (frule ltD) |
|
577 |
apply (rule le_imp_subset [THEN subset_trans, THEN subset_imp_le]) |
|
578 |
apply (blast intro: lt_Ord UN_upper)+ |
|
579 |
done |
|
580 |
||
13172 | 581 |
lemma lt_Union_iff: "\<forall>i\<in>A. Ord(i) ==> (j < \<Union>(A)) <-> (\<exists>i\<in>A. j<i)" |
582 |
by (auto simp: lt_def Ord_Union) |
|
583 |
||
584 |
lemma Union_upper_le: |
|
585 |
"[| j: J; i\<le>j; Ord(\<Union>(J)) |] ==> i \<le> \<Union>J" |
|
586 |
apply (subst Union_eq_UN) |
|
587 |
apply (rule UN_upper_le, auto) |
|
588 |
done |
|
589 |
||
13155 | 590 |
lemma le_implies_UN_le_UN: |
591 |
"[| !!x. x:A ==> c(x) le d(x) |] ==> (UN x:A. c(x)) le (UN x:A. d(x))" |
|
592 |
apply (rule UN_least_le) |
|
593 |
apply (rule_tac [2] UN_upper_le) |
|
594 |
apply (blast intro: Ord_UN le_Ord2)+ |
|
595 |
done |
|
596 |
||
597 |
lemma Ord_equality: "Ord(i) ==> (UN y:i. succ(y)) = i" |
|
598 |
by (blast intro: Ord_trans) |
|
599 |
||
600 |
(*Holds for all transitive sets, not just ordinals*) |
|
601 |
lemma Ord_Union_subset: "Ord(i) ==> Union(i) <= i" |
|
602 |
by (blast intro: Ord_trans) |
|
603 |
||
604 |
||
605 |
(*** Limit ordinals -- general properties ***) |
|
606 |
||
607 |
lemma Limit_Union_eq: "Limit(i) ==> Union(i) = i" |
|
608 |
apply (unfold Limit_def) |
|
609 |
apply (fast intro!: ltI elim!: ltE elim: Ord_trans) |
|
610 |
done |
|
611 |
||
612 |
lemma Limit_is_Ord: "Limit(i) ==> Ord(i)" |
|
613 |
apply (unfold Limit_def) |
|
614 |
apply (erule conjunct1) |
|
615 |
done |
|
616 |
||
617 |
lemma Limit_has_0: "Limit(i) ==> 0 < i" |
|
618 |
apply (unfold Limit_def) |
|
619 |
apply (erule conjunct2 [THEN conjunct1]) |
|
620 |
done |
|
621 |
||
622 |
lemma Limit_has_succ: "[| Limit(i); j<i |] ==> succ(j) < i" |
|
623 |
by (unfold Limit_def, blast) |
|
624 |
||
13172 | 625 |
lemma zero_not_Limit [iff]: "~ Limit(0)" |
626 |
by (simp add: Limit_def) |
|
627 |
||
628 |
lemma Limit_has_1: "Limit(i) ==> 1 < i" |
|
629 |
by (blast intro: Limit_has_0 Limit_has_succ) |
|
630 |
||
631 |
lemma increasing_LimitI: "[| 0<l; \<forall>x\<in>l. \<exists>y\<in>l. x<y |] ==> Limit(l)" |
|
632 |
apply (simp add: Limit_def lt_Ord2, clarify) |
|
633 |
apply (drule_tac i=y in ltD) |
|
634 |
apply (blast intro: lt_trans1 [OF _ ltI] lt_Ord2) |
|
635 |
done |
|
636 |
||
13155 | 637 |
lemma non_succ_LimitI: |
638 |
"[| 0<i; ALL y. succ(y) ~= i |] ==> Limit(i)" |
|
639 |
apply (unfold Limit_def) |
|
640 |
apply (safe del: subsetI) |
|
641 |
apply (rule_tac [2] not_le_iff_lt [THEN iffD1]) |
|
642 |
apply (simp_all add: lt_Ord lt_Ord2) |
|
643 |
apply (blast elim: leE lt_asym) |
|
644 |
done |
|
645 |
||
646 |
lemma succ_LimitE [elim!]: "Limit(succ(i)) ==> P" |
|
647 |
apply (rule lt_irrefl) |
|
648 |
apply (rule Limit_has_succ, assumption) |
|
649 |
apply (erule Limit_is_Ord [THEN Ord_succD, THEN le_refl]) |
|
650 |
done |
|
651 |
||
652 |
lemma not_succ_Limit [simp]: "~ Limit(succ(i))" |
|
653 |
by blast |
|
654 |
||
655 |
lemma Limit_le_succD: "[| Limit(i); i le succ(j) |] ==> i le j" |
|
656 |
by (blast elim!: leE) |
|
657 |
||
13172 | 658 |
|
13155 | 659 |
(** Traditional 3-way case analysis on ordinals **) |
660 |
||
661 |
lemma Ord_cases_disj: "Ord(i) ==> i=0 | (EX j. Ord(j) & i=succ(j)) | Limit(i)" |
|
662 |
by (blast intro!: non_succ_LimitI Ord_0_lt) |
|
663 |
||
664 |
lemma Ord_cases: |
|
665 |
"[| Ord(i); |
|
666 |
i=0 ==> P; |
|
667 |
!!j. [| Ord(j); i=succ(j) |] ==> P; |
|
668 |
Limit(i) ==> P |
|
669 |
|] ==> P" |
|
670 |
by (drule Ord_cases_disj, blast) |
|
671 |
||
672 |
lemma trans_induct3: |
|
673 |
"[| Ord(i); |
|
674 |
P(0); |
|
675 |
!!x. [| Ord(x); P(x) |] ==> P(succ(x)); |
|
676 |
!!x. [| Limit(x); ALL y:x. P(y) |] ==> P(x) |
|
677 |
|] ==> P(i)" |
|
678 |
apply (erule trans_induct) |
|
679 |
apply (erule Ord_cases, blast+) |
|
680 |
done |
|
681 |
||
13172 | 682 |
text{*A set of ordinals is either empty, contains its own union, or its |
683 |
union is a limit ordinal.*} |
|
684 |
lemma Ord_set_cases: |
|
685 |
"\<forall>i\<in>I. Ord(i) ==> I=0 \<or> \<Union>(I) \<in> I \<or> (\<Union>(I) \<notin> I \<and> Limit(\<Union>(I)))" |
|
686 |
apply (clarify elim!: not_emptyE) |
|
687 |
apply (cases "\<Union>(I)" rule: Ord_cases) |
|
688 |
apply (blast intro: Ord_Union) |
|
689 |
apply (blast intro: subst_elem) |
|
690 |
apply auto |
|
691 |
apply (clarify elim!: equalityE succ_subsetE) |
|
692 |
apply (simp add: Union_subset_iff) |
|
693 |
apply (subgoal_tac "B = succ(j)", blast) |
|
694 |
apply (rule le_anti_sym) |
|
695 |
apply (simp add: le_subset_iff) |
|
696 |
apply (simp add: ltI) |
|
697 |
done |
|
698 |
||
699 |
text{*If the union of a set of ordinals is a successor, then it is |
|
700 |
an element of that set.*} |
|
701 |
lemma Ord_Union_eq_succD: "[|\<forall>x\<in>X. Ord(x); \<Union>X = succ(j)|] ==> succ(j) \<in> X" |
|
702 |
by (drule Ord_set_cases, auto) |
|
703 |
||
704 |
lemma Limit_Union [rule_format]: "[| I \<noteq> 0; \<forall>i\<in>I. Limit(i) |] ==> Limit(\<Union>I)" |
|
705 |
apply (simp add: Limit_def lt_def) |
|
706 |
apply (blast intro!: equalityI) |
|
707 |
done |
|
708 |
||
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
709 |
(*special induction rules for the "induct" method*) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
710 |
lemmas Ord_induct = Ord_induct [consumes 2] |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
711 |
and Ord_induct_rule = Ord_induct [rule_format, consumes 2] |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
712 |
and trans_induct = trans_induct [consumes 1] |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
713 |
and trans_induct_rule = trans_induct [rule_format, consumes 1] |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
714 |
and trans_induct3 = trans_induct3 [case_names 0 succ limit, consumes 1] |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
715 |
and trans_induct3_rule = trans_induct3 [rule_format, case_names 0 succ limit, consumes 1] |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
716 |
|
13155 | 717 |
ML |
718 |
{* |
|
719 |
val Memrel_def = thm "Memrel_def"; |
|
720 |
val Transset_def = thm "Transset_def"; |
|
721 |
val Ord_def = thm "Ord_def"; |
|
722 |
val lt_def = thm "lt_def"; |
|
723 |
val Limit_def = thm "Limit_def"; |
|
724 |
||
725 |
val Transset_iff_Pow = thm "Transset_iff_Pow"; |
|
726 |
val Transset_iff_Union_succ = thm "Transset_iff_Union_succ"; |
|
727 |
val Transset_iff_Union_subset = thm "Transset_iff_Union_subset"; |
|
728 |
val Transset_doubleton_D = thm "Transset_doubleton_D"; |
|
729 |
val Transset_Pair_D = thm "Transset_Pair_D"; |
|
730 |
val Transset_includes_domain = thm "Transset_includes_domain"; |
|
731 |
val Transset_includes_range = thm "Transset_includes_range"; |
|
732 |
val Transset_0 = thm "Transset_0"; |
|
733 |
val Transset_Un = thm "Transset_Un"; |
|
734 |
val Transset_Int = thm "Transset_Int"; |
|
735 |
val Transset_succ = thm "Transset_succ"; |
|
736 |
val Transset_Pow = thm "Transset_Pow"; |
|
737 |
val Transset_Union = thm "Transset_Union"; |
|
738 |
val Transset_Union_family = thm "Transset_Union_family"; |
|
739 |
val Transset_Inter_family = thm "Transset_Inter_family"; |
|
740 |
val OrdI = thm "OrdI"; |
|
741 |
val Ord_is_Transset = thm "Ord_is_Transset"; |
|
742 |
val Ord_contains_Transset = thm "Ord_contains_Transset"; |
|
743 |
val Ord_in_Ord = thm "Ord_in_Ord"; |
|
744 |
val Ord_succD = thm "Ord_succD"; |
|
745 |
val Ord_subset_Ord = thm "Ord_subset_Ord"; |
|
746 |
val OrdmemD = thm "OrdmemD"; |
|
747 |
val Ord_trans = thm "Ord_trans"; |
|
748 |
val Ord_succ_subsetI = thm "Ord_succ_subsetI"; |
|
749 |
val Ord_0 = thm "Ord_0"; |
|
750 |
val Ord_succ = thm "Ord_succ"; |
|
751 |
val Ord_1 = thm "Ord_1"; |
|
752 |
val Ord_succ_iff = thm "Ord_succ_iff"; |
|
753 |
val Ord_Un = thm "Ord_Un"; |
|
754 |
val Ord_Int = thm "Ord_Int"; |
|
755 |
val Ord_Inter = thm "Ord_Inter"; |
|
756 |
val Ord_INT = thm "Ord_INT"; |
|
757 |
val ON_class = thm "ON_class"; |
|
758 |
val ltI = thm "ltI"; |
|
759 |
val ltE = thm "ltE"; |
|
760 |
val ltD = thm "ltD"; |
|
761 |
val not_lt0 = thm "not_lt0"; |
|
762 |
val lt_Ord = thm "lt_Ord"; |
|
763 |
val lt_Ord2 = thm "lt_Ord2"; |
|
764 |
val le_Ord2 = thm "le_Ord2"; |
|
765 |
val lt0E = thm "lt0E"; |
|
766 |
val lt_trans = thm "lt_trans"; |
|
767 |
val lt_not_sym = thm "lt_not_sym"; |
|
768 |
val lt_asym = thm "lt_asym"; |
|
769 |
val lt_irrefl = thm "lt_irrefl"; |
|
770 |
val lt_not_refl = thm "lt_not_refl"; |
|
771 |
val le_iff = thm "le_iff"; |
|
772 |
val leI = thm "leI"; |
|
773 |
val le_eqI = thm "le_eqI"; |
|
774 |
val le_refl = thm "le_refl"; |
|
775 |
val le_refl_iff = thm "le_refl_iff"; |
|
776 |
val leCI = thm "leCI"; |
|
777 |
val leE = thm "leE"; |
|
778 |
val le_anti_sym = thm "le_anti_sym"; |
|
779 |
val le0_iff = thm "le0_iff"; |
|
780 |
val le0D = thm "le0D"; |
|
781 |
val Memrel_iff = thm "Memrel_iff"; |
|
782 |
val MemrelI = thm "MemrelI"; |
|
783 |
val MemrelE = thm "MemrelE"; |
|
784 |
val Memrel_type = thm "Memrel_type"; |
|
785 |
val Memrel_mono = thm "Memrel_mono"; |
|
786 |
val Memrel_0 = thm "Memrel_0"; |
|
787 |
val Memrel_1 = thm "Memrel_1"; |
|
788 |
val wf_Memrel = thm "wf_Memrel"; |
|
789 |
val trans_Memrel = thm "trans_Memrel"; |
|
790 |
val Transset_Memrel_iff = thm "Transset_Memrel_iff"; |
|
791 |
val Transset_induct = thm "Transset_induct"; |
|
792 |
val Ord_induct = thm "Ord_induct"; |
|
793 |
val trans_induct = thm "trans_induct"; |
|
794 |
val Ord_linear = thm "Ord_linear"; |
|
795 |
val Ord_linear_lt = thm "Ord_linear_lt"; |
|
796 |
val Ord_linear2 = thm "Ord_linear2"; |
|
797 |
val Ord_linear_le = thm "Ord_linear_le"; |
|
798 |
val le_imp_not_lt = thm "le_imp_not_lt"; |
|
799 |
val not_lt_imp_le = thm "not_lt_imp_le"; |
|
800 |
val Ord_mem_iff_lt = thm "Ord_mem_iff_lt"; |
|
801 |
val not_lt_iff_le = thm "not_lt_iff_le"; |
|
802 |
val not_le_iff_lt = thm "not_le_iff_lt"; |
|
803 |
val Ord_0_le = thm "Ord_0_le"; |
|
804 |
val Ord_0_lt = thm "Ord_0_lt"; |
|
805 |
val Ord_0_lt_iff = thm "Ord_0_lt_iff"; |
|
806 |
val zero_le_succ_iff = thm "zero_le_succ_iff"; |
|
807 |
val subset_imp_le = thm "subset_imp_le"; |
|
808 |
val le_imp_subset = thm "le_imp_subset"; |
|
809 |
val le_subset_iff = thm "le_subset_iff"; |
|
810 |
val le_succ_iff = thm "le_succ_iff"; |
|
811 |
val all_lt_imp_le = thm "all_lt_imp_le"; |
|
812 |
val lt_trans1 = thm "lt_trans1"; |
|
813 |
val lt_trans2 = thm "lt_trans2"; |
|
814 |
val le_trans = thm "le_trans"; |
|
815 |
val succ_leI = thm "succ_leI"; |
|
816 |
val succ_leE = thm "succ_leE"; |
|
817 |
val succ_le_iff = thm "succ_le_iff"; |
|
818 |
val succ_le_imp_le = thm "succ_le_imp_le"; |
|
819 |
val lt_subset_trans = thm "lt_subset_trans"; |
|
820 |
val Un_upper1_le = thm "Un_upper1_le"; |
|
821 |
val Un_upper2_le = thm "Un_upper2_le"; |
|
822 |
val Un_least_lt = thm "Un_least_lt"; |
|
823 |
val Un_least_lt_iff = thm "Un_least_lt_iff"; |
|
824 |
val Un_least_mem_iff = thm "Un_least_mem_iff"; |
|
825 |
val Int_greatest_lt = thm "Int_greatest_lt"; |
|
826 |
val Ord_Union = thm "Ord_Union"; |
|
827 |
val Ord_UN = thm "Ord_UN"; |
|
828 |
val UN_least_le = thm "UN_least_le"; |
|
829 |
val UN_succ_least_lt = thm "UN_succ_least_lt"; |
|
830 |
val UN_upper_le = thm "UN_upper_le"; |
|
831 |
val le_implies_UN_le_UN = thm "le_implies_UN_le_UN"; |
|
832 |
val Ord_equality = thm "Ord_equality"; |
|
833 |
val Ord_Union_subset = thm "Ord_Union_subset"; |
|
834 |
val Limit_Union_eq = thm "Limit_Union_eq"; |
|
835 |
val Limit_is_Ord = thm "Limit_is_Ord"; |
|
836 |
val Limit_has_0 = thm "Limit_has_0"; |
|
837 |
val Limit_has_succ = thm "Limit_has_succ"; |
|
838 |
val non_succ_LimitI = thm "non_succ_LimitI"; |
|
839 |
val succ_LimitE = thm "succ_LimitE"; |
|
840 |
val not_succ_Limit = thm "not_succ_Limit"; |
|
841 |
val Limit_le_succD = thm "Limit_le_succD"; |
|
842 |
val Ord_cases_disj = thm "Ord_cases_disj"; |
|
843 |
val Ord_cases = thm "Ord_cases"; |
|
844 |
val trans_induct3 = thm "trans_induct3"; |
|
845 |
*} |
|
435 | 846 |
|
847 |
end |