author | nipkow |
Thu, 08 Jun 2006 13:49:53 +0200 | |
changeset 19824 | fafceecebef0 |
parent 18678 | dd0c569fa43d |
child 20049 | f48c4a3a34bc |
permissions | -rw-r--r-- |
516 | 1 |
(* Title: ZF/Datatype.ML |
0 | 2 |
ID: $Id$ |
516 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1993 University of Cambridge |
5 |
||
120 | 6 |
(Co)Datatype Definitions for Zermelo-Fraenkel Set Theory |
0 | 7 |
*) |
8 |
||
9 |
||
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
10 |
(*Typechecking rules for most datatypes involving univ*) |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
11 |
structure Data_Arg = |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
12 |
struct |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
13 |
val intrs = |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
14 |
[SigmaI, InlI, InrI, |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
15 |
Pair_in_univ, Inl_in_univ, Inr_in_univ, |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
16 |
zero_in_univ, A_into_univ, nat_into_univ, UnCI]; |
0 | 17 |
|
6112 | 18 |
|
19 |
val elims = [make_elim InlD, make_elim InrD, (*for mutual recursion*) |
|
12134 | 20 |
SigmaE, sumE]; (*allows * and + in spec*) |
516 | 21 |
end; |
22 |
||
23 |
||
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
24 |
structure Data_Package = |
12183 | 25 |
Add_datatype_def_Fun |
26 |
(structure Fp=Lfp and Pr=Standard_Prod and CP=Standard_CP |
|
27 |
and Su=Standard_Sum |
|
28 |
and Ind_Package = Ind_Package |
|
29 |
and Datatype_Arg = Data_Arg |
|
30 |
val coind = false); |
|
516 | 31 |
|
32 |
||
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
33 |
(*Typechecking rules for most codatatypes involving quniv*) |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
34 |
structure CoData_Arg = |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
35 |
struct |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
36 |
val intrs = |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
37 |
[QSigmaI, QInlI, QInrI, |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
38 |
QPair_in_quniv, QInl_in_quniv, QInr_in_quniv, |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
39 |
zero_in_quniv, A_into_quniv, nat_into_quniv, UnCI]; |
516 | 40 |
|
6112 | 41 |
val elims = [make_elim QInlD, make_elim QInrD, (*for mutual recursion*) |
12134 | 42 |
QSigmaE, qsumE]; (*allows * and + in spec*) |
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
43 |
end; |
516 | 44 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1461
diff
changeset
|
45 |
structure CoData_Package = |
12183 | 46 |
Add_datatype_def_Fun |
47 |
(structure Fp=Gfp and Pr=Quine_Prod and CP=Quine_CP |
|
48 |
and Su=Quine_Sum |
|
49 |
and Ind_Package = CoInd_Package |
|
50 |
and Datatype_Arg = CoData_Arg |
|
51 |
val coind = true); |
|
516 | 52 |
|
6141 | 53 |
|
54 |
||
55 |
(*Simproc for freeness reasoning: compare datatype constructors for equality*) |
|
56 |
structure DataFree = |
|
57 |
struct |
|
58 |
val trace = ref false; |
|
59 |
||
60 |
fun mk_new ([],[]) = Const("True",FOLogic.oT) |
|
61 |
| mk_new (largs,rargs) = |
|
12134 | 62 |
fold_bal FOLogic.mk_conj |
63 |
(map FOLogic.mk_eq (ListPair.zip (largs,rargs))); |
|
6141 | 64 |
|
16973 | 65 |
val datatype_ss = simpset (); |
6141 | 66 |
|
16973 | 67 |
fun proc sg ss old = |
6141 | 68 |
let val _ = if !trace then writeln ("data_free: OLD = " ^ |
12134 | 69 |
string_of_cterm (cterm_of sg old)) |
70 |
else () |
|
6141 | 71 |
val (lhs,rhs) = FOLogic.dest_eq old |
72 |
val (lhead, largs) = strip_comb lhs |
|
73 |
and (rhead, rargs) = strip_comb rhs |
|
12203 | 74 |
val lname = #1 (dest_Const lhead) handle TERM _ => raise Match; |
75 |
val rname = #1 (dest_Const rhead) handle TERM _ => raise Match; |
|
17412 | 76 |
val lcon_info = the (Symtab.lookup (ConstructorsData.get sg) lname) |
15531 | 77 |
handle Option => raise Match; |
17412 | 78 |
val rcon_info = the (Symtab.lookup (ConstructorsData.get sg) rname) |
15531 | 79 |
handle Option => raise Match; |
6141 | 80 |
val new = |
12134 | 81 |
if #big_rec_name lcon_info = #big_rec_name rcon_info |
82 |
andalso not (null (#free_iffs lcon_info)) then |
|
83 |
if lname = rname then mk_new (largs, rargs) |
|
84 |
else Const("False",FOLogic.oT) |
|
85 |
else raise Match |
|
6141 | 86 |
val _ = if !trace then |
12134 | 87 |
writeln ("NEW = " ^ string_of_cterm (Thm.cterm_of sg new)) |
88 |
else (); |
|
89 |
val goal = Logic.mk_equals (old, new) |
|
17956 | 90 |
val thm = Goal.prove sg [] [] goal (fn _ => rtac iff_reflection 1 THEN |
17877
67d5ab1cb0d8
Simplifier.inherit_context instead of Simplifier.inherit_bounds;
wenzelm
parents:
17412
diff
changeset
|
91 |
simp_tac (Simplifier.inherit_context ss datatype_ss addsimps #free_iffs lcon_info) 1) |
18678 | 92 |
handle ERROR msg => |
12203 | 93 |
(warning (msg ^ "\ndata_free simproc:\nfailed to prove " ^ Sign.string_of_term sg goal); |
94 |
raise Match) |
|
15531 | 95 |
in SOME thm end |
96 |
handle Match => NONE; |
|
6141 | 97 |
|
98 |
||
16973 | 99 |
val conv = Simplifier.simproc (theory "ZF") "data_free" ["(x::i) = y"] proc; |
100 |
||
6141 | 101 |
end; |
102 |
||
103 |
||
104 |
Addsimprocs [DataFree.conv]; |