src/HOLCF/Porder.ML
author wenzelm
Mon, 22 Jun 1998 17:13:09 +0200
changeset 5068 fb28eaa07e01
parent 4721 c8a8482a8124
child 5192 704dd3a6d47d
permissions -rw-r--r--
isatool fixgoal;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
     1
(*  Title:      HOLCF/Porder.thy
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     2
    ID:         $Id$
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
     3
    Author:     Franz Regensburger
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     4
    Copyright   1993 Technische Universitaet Muenchen
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     5
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
     6
Lemmas for theory Porder.thy 
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     7
*)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     8
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     9
open Porder;
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    10
625
119391dd1d59 New version
nipkow
parents: 442
diff changeset
    11
(* ------------------------------------------------------------------------ *)
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    12
(* lubs are unique                                                          *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    13
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    14
4031
42cbf6256d60 fixed spaces in qed;
wenzelm
parents: 3842
diff changeset
    15
qed_goalw "unique_lub" thy [is_lub, is_ub] 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    16
        "[| S <<| x ; S <<| y |] ==> x=y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    17
( fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    18
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    19
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    20
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    21
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    22
        (rtac antisym_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    23
        (rtac mp 1),((etac allE 1) THEN (atac 1) THEN (atac 1)),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    24
        (rtac mp 1),((etac allE 1) THEN (atac 1) THEN (atac 1))
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    25
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    26
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    27
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    28
(* chains are monotone functions                                            *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    29
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    30
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
    31
qed_goalw "chain_mono" thy [chain] "chain F ==> x<y --> F x<<F y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    32
( fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    33
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    34
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    35
        (nat_ind_tac "y" 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    36
        (rtac impI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    37
        (etac less_zeroE 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1886
diff changeset
    38
        (stac less_Suc_eq 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    39
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    40
        (etac disjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    41
        (rtac trans_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    42
        (etac allE 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    43
        (atac 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    44
        (fast_tac HOL_cs 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    45
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    46
        (etac allE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    47
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    48
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    49
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
    50
qed_goal "chain_mono3" thy "[| chain F; x <= y |] ==> F x << F y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    51
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    52
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    53
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    54
        (rtac (le_imp_less_or_eq RS disjE) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    55
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    56
        (etac (chain_mono RS mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    57
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    58
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    59
        (rtac refl_less 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    60
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    61
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    62
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    63
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    64
(* The range of a chain is a totaly ordered     <<                           *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    65
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    66
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
    67
qed_goalw "chain_tord" thy [tord] 
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
    68
"!!F. chain(F) ==> tord(range(F))"
1886
0922b597b53d Redefining "range" as a macro -- new proof needed
paulson
parents: 1779
diff changeset
    69
 (fn _ =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    70
        [
3724
f33e301a89f5 Step_tac -> Safe_tac
paulson
parents: 3026
diff changeset
    71
        Safe_tac,
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    72
        (rtac nat_less_cases 1),
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 4031
diff changeset
    73
        (ALLGOALS (fast_tac (claset() addIs [refl_less, chain_mono RS mp])))]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    74
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    75
(* ------------------------------------------------------------------------ *)
625
119391dd1d59 New version
nipkow
parents: 442
diff changeset
    76
(* technical lemmas about lub and is_lub                                    *)
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    77
(* ------------------------------------------------------------------------ *)
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    78
bind_thm("lub",lub_def RS meta_eq_to_obj_eq);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    79
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    80
qed_goal "lubI" thy "? x. M <<| x ==> M <<| lub(M)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    81
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    82
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    83
        (cut_facts_tac prems 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1886
diff changeset
    84
        (stac lub 1),
1675
36ba4da350c3 adapted several proofs
oheimb
parents: 1461
diff changeset
    85
        (etac (select_eq_Ex RS iffD2) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    86
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    87
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    88
qed_goal "lubE" thy "M <<| lub(M) ==> ? x. M <<| x"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    89
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    90
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    91
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    92
        (etac exI 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    93
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    94
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    95
qed_goal "lub_eq" thy "(? x. M <<| x)  = M <<| lub(M)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    96
(fn prems => 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    97
        [
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1886
diff changeset
    98
        (stac lub 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    99
        (rtac (select_eq_Ex RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   100
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   101
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   102
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   103
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   104
qed_goal "thelubI" thy "M <<| l ==> lub(M) = l"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   105
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   106
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   107
        (cut_facts_tac prems 1), 
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   108
        (rtac unique_lub 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1886
diff changeset
   109
        (stac lub 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   110
        (etac selectI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   111
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   112
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   113
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   114
5068
fb28eaa07e01 isatool fixgoal;
wenzelm
parents: 4721
diff changeset
   115
Goal "lub{x} = x";
3018
e65b60b28341 Ran expandshort
paulson
parents: 2841
diff changeset
   116
by (rtac thelubI 1);
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 4031
diff changeset
   117
by (simp_tac (simpset() addsimps [is_lub,is_ub]) 1);
2841
c2508f4ab739 Added "discrete" CPOs and modified IMP to use those rather than "lift"
nipkow
parents: 2640
diff changeset
   118
qed "lub_singleton";
c2508f4ab739 Added "discrete" CPOs and modified IMP to use those rather than "lift"
nipkow
parents: 2640
diff changeset
   119
Addsimps [lub_singleton];
c2508f4ab739 Added "discrete" CPOs and modified IMP to use those rather than "lift"
nipkow
parents: 2640
diff changeset
   120
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   121
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   122
(* access to some definition as inference rule                              *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   123
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   124
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   125
qed_goalw "is_lubE" thy [is_lub]
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   126
        "S <<| x  ==> S <| x & (! u. S <| u  --> x << u)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   127
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   128
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   129
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   130
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   131
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   132
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   133
qed_goalw "is_lubI" thy [is_lub]
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   134
        "S <| x & (! u. S <| u  --> x << u) ==> S <<| x"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   135
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   136
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   137
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   138
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   139
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   140
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   141
qed_goalw "chainE" thy [chain] "chain F ==> !i. F(i) << F(Suc(i))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   142
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   143
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   144
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   145
        (atac 1)]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   146
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   147
qed_goalw "chainI" thy [chain] "!i. F i << F(Suc i) ==> chain F"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   148
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   149
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   150
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   151
        (atac 1)]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   152
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   153
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   154
(* technical lemmas about (least) upper bounds of chains                    *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   155
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   156
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   157
qed_goalw "ub_rangeE" thy [is_ub] "range S <| x  ==> !i. S(i) << x"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   158
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   159
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   160
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   161
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   162
        (rtac mp 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   163
        (etac spec 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   164
        (rtac rangeI 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   165
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   166
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   167
qed_goalw "ub_rangeI" thy [is_ub] "!i. S i << x  ==> range S <| x"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   168
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   169
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   170
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   171
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   172
        (etac rangeE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   173
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   174
        (etac spec 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   175
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   176
1779
1155c06fa956 introduced forgotten bind_thm calls
oheimb
parents: 1675
diff changeset
   177
bind_thm ("is_ub_lub", is_lubE RS conjunct1 RS ub_rangeE RS spec);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   178
(* range(?S1) <<| ?x1 ==> ?S1(?x) << ?x1                                    *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   179
1779
1155c06fa956 introduced forgotten bind_thm calls
oheimb
parents: 1675
diff changeset
   180
bind_thm ("is_lub_lub", is_lubE RS conjunct2 RS spec RS mp);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   181
(* [| ?S3 <<| ?x3; ?S3 <| ?x1 |] ==> ?x3 << ?x1                             *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   182
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   183
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   184
(* results about finite chains                                              *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   185
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   186
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   187
qed_goalw "lub_finch1" thy [max_in_chain_def]
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   188
        "[| chain C; max_in_chain i C|] ==> range C <<| C i"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   189
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   190
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   191
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   192
        (rtac is_lubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   193
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   194
        (rtac ub_rangeI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   195
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   196
        (res_inst_tac [("m","i")] nat_less_cases 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   197
        (rtac (antisym_less_inverse RS conjunct2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   198
        (etac (disjI1 RS less_or_eq_imp_le RS rev_mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   199
        (etac spec 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   200
        (rtac (antisym_less_inverse RS conjunct2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   201
        (etac (disjI2 RS less_or_eq_imp_le RS rev_mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   202
        (etac spec 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   203
        (etac (chain_mono RS mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   204
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   205
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   206
        (etac (ub_rangeE RS spec) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   207
        ]);     
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   208
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   209
qed_goalw "lub_finch2" thy [finite_chain_def]
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   210
        "finite_chain(C) ==> range(C) <<| C(@ i. max_in_chain i C)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   211
 (fn prems=>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   212
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   213
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   214
        (rtac lub_finch1 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   215
        (etac conjunct1 1),
1675
36ba4da350c3 adapted several proofs
oheimb
parents: 1461
diff changeset
   216
        (rtac (select_eq_Ex RS iffD2) 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   217
        (etac conjunct2 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   218
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   219
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   220
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   221
qed_goal "bin_chain" thy "x<<y ==> chain (%i. if i=0 then x else y)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   222
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   223
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   224
        (cut_facts_tac prems 1),
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   225
        (rtac chainI 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   226
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   227
        (nat_ind_tac "i" 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   228
        (Asm_simp_tac 1),
2841
c2508f4ab739 Added "discrete" CPOs and modified IMP to use those rather than "lift"
nipkow
parents: 2640
diff changeset
   229
        (Asm_simp_tac 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   230
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   231
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   232
qed_goalw "bin_chainmax" thy [max_in_chain_def,le_def]
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   233
        "x<<y ==> max_in_chain (Suc 0) (%i. if (i=0) then x else y)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   234
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   235
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   236
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   237
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   238
        (nat_ind_tac "j" 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   239
        (Asm_simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   240
        (Asm_simp_tac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   241
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   242
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   243
qed_goal "lub_bin_chain" thy 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   244
        "x << y ==> range(%i. if (i=0) then x else y) <<| y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   245
(fn prems=>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   246
        [ (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   247
        (res_inst_tac [("s","if (Suc 0) = 0 then x else y")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   248
        (rtac lub_finch1 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   249
        (etac bin_chain 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   250
        (etac bin_chainmax 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   251
        (Simp_tac  1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   252
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   253
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   254
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   255
(* the maximal element in a chain is its lub                                *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   256
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   257
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   258
qed_goal "lub_chain_maxelem" thy
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3724
diff changeset
   259
"[|? i. Y i=c;!i. Y i<<c|] ==> lub(range Y) = c"
1043
ffa68eb2730b adjusted HOLCF for new hyp_subst_tac
regensbu
parents: 892
diff changeset
   260
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   261
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   262
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   263
        (rtac thelubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   264
        (rtac is_lubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   265
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   266
        (etac ub_rangeI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   267
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   268
        (etac exE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   269
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   270
        (etac (ub_rangeE RS spec) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   271
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   272
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   273
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   274
(* the lub of a constant chain is the constant                              *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   275
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   276
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3724
diff changeset
   277
qed_goal "lub_const" thy "range(%x. c) <<| c"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   278
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   279
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   280
        (rtac is_lubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   281
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   282
        (rtac ub_rangeI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   283
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   284
        (rtac refl_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   285
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   286
        (etac (ub_rangeE RS spec) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   287
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   288
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   289
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   290