| author | haftmann | 
| Tue, 18 Oct 2016 18:48:53 +0200 | |
| changeset 64290 | fb5c74a58796 | 
| parent 63981 | 6f7db4f8df4c | 
| child 64591 | 240a39af9ec4 | 
| permissions | -rw-r--r-- | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
1  | 
(* Title: HOL/Hilbert_Choice.thy  | 
| 32988 | 2  | 
Author: Lawrence C Paulson, Tobias Nipkow  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
3  | 
Copyright 2001 University of Cambridge  | 
| 12023 | 4  | 
*)  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
5  | 
|
| 60758 | 6  | 
section \<open>Hilbert's Epsilon-Operator and the Axiom of Choice\<close>  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
7  | 
|
| 15131 | 8  | 
theory Hilbert_Choice  | 
| 63612 | 9  | 
imports Wellfounded  | 
10  | 
keywords "specification" :: thy_goal  | 
|
| 15131 | 11  | 
begin  | 
| 12298 | 12  | 
|
| 60758 | 13  | 
subsection \<open>Hilbert's epsilon\<close>  | 
| 12298 | 14  | 
|
| 63612 | 15  | 
axiomatization Eps :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
16  | 
where someI: "P x \<Longrightarrow> P (Eps P)"  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
17  | 
|
| 
14872
 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 
wenzelm 
parents: 
14760 
diff
changeset
 | 
18  | 
syntax (epsilon)  | 
| 63612 | 19  | 
  "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 62521 | 20  | 
syntax (input)  | 
| 63612 | 21  | 
  "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3@ _./ _)" [0, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
22  | 
syntax  | 
| 63612 | 23  | 
  "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3SOME _./ _)" [0, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
24  | 
translations  | 
| 63612 | 25  | 
"SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)"  | 
| 
13763
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
26  | 
|
| 60758 | 27  | 
print_translation \<open>  | 
| 52143 | 28  | 
  [(@{const_syntax Eps}, fn _ => fn [Abs abs] =>
 | 
| 42284 | 29  | 
let val (x, t) = Syntax_Trans.atomic_abs_tr' abs  | 
| 35115 | 30  | 
      in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
 | 
| 61799 | 31  | 
\<close> \<comment> \<open>to avoid eta-contraction of body\<close>  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
32  | 
|
| 63612 | 33  | 
definition inv_into :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"
 | 
34  | 
where "inv_into A f \<equiv> \<lambda>x. SOME y. y \<in> A \<and> f y = x"  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
35  | 
|
| 63612 | 36  | 
abbreviation inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"
 | 
37  | 
where "inv \<equiv> inv_into UNIV"  | 
|
| 14760 | 38  | 
|
39  | 
||
| 60758 | 40  | 
subsection \<open>Hilbert's Epsilon-operator\<close>  | 
| 14760 | 41  | 
|
| 63612 | 42  | 
text \<open>  | 
43  | 
Easier to apply than \<open>someI\<close> if the witness comes from an  | 
|
44  | 
existential formula.  | 
|
45  | 
\<close>  | 
|
46  | 
lemma someI_ex [elim?]: "\<exists>x. P x \<Longrightarrow> P (SOME x. P x)"  | 
|
47  | 
apply (erule exE)  | 
|
48  | 
apply (erule someI)  | 
|
49  | 
done  | 
|
| 14760 | 50  | 
|
| 63612 | 51  | 
text \<open>  | 
52  | 
Easier to apply than \<open>someI\<close> because the conclusion has only one  | 
|
53  | 
  occurrence of @{term P}.
 | 
|
54  | 
\<close>  | 
|
55  | 
lemma someI2: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)"  | 
|
| 
60974
 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 
paulson <lp15@cam.ac.uk> 
parents: 
60758 
diff
changeset
 | 
56  | 
by (blast intro: someI)  | 
| 14760 | 57  | 
|
| 63612 | 58  | 
text \<open>  | 
59  | 
Easier to apply than \<open>someI2\<close> if the witness comes from an  | 
|
60  | 
existential formula.  | 
|
61  | 
\<close>  | 
|
62  | 
lemma someI2_ex: "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)"  | 
|
| 
60974
 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 
paulson <lp15@cam.ac.uk> 
parents: 
60758 
diff
changeset
 | 
63  | 
by (blast intro: someI2)  | 
| 14760 | 64  | 
|
| 63612 | 65  | 
lemma someI2_bex: "\<exists>a\<in>A. P a \<Longrightarrow> (\<And>x. x \<in> A \<and> P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. x \<in> A \<and> P x)"  | 
66  | 
by (blast intro: someI2)  | 
|
67  | 
||
68  | 
lemma some_equality [intro]: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> x = a) \<Longrightarrow> (SOME x. P x) = a"  | 
|
69  | 
by (blast intro: someI2)  | 
|
| 14760 | 70  | 
|
| 63629 | 71  | 
lemma some1_equality: "\<exists>!x. P x \<Longrightarrow> P a \<Longrightarrow> (SOME x. P x) = a"  | 
| 63612 | 72  | 
by blast  | 
| 14760 | 73  | 
|
| 63612 | 74  | 
lemma some_eq_ex: "P (SOME x. P x) \<longleftrightarrow> (\<exists>x. P x)"  | 
75  | 
by (blast intro: someI)  | 
|
| 14760 | 76  | 
|
| 59000 | 77  | 
lemma some_in_eq: "(SOME x. x \<in> A) \<in> A \<longleftrightarrow> A \<noteq> {}"
 | 
78  | 
unfolding ex_in_conv[symmetric] by (rule some_eq_ex)  | 
|
79  | 
||
| 63612 | 80  | 
lemma some_eq_trivial [simp]: "(SOME y. y = x) = x"  | 
81  | 
by (rule some_equality) (rule refl)  | 
|
| 14760 | 82  | 
|
| 63612 | 83  | 
lemma some_sym_eq_trivial [simp]: "(SOME y. x = y) = x"  | 
84  | 
apply (rule some_equality)  | 
|
85  | 
apply (rule refl)  | 
|
86  | 
apply (erule sym)  | 
|
87  | 
done  | 
|
| 14760 | 88  | 
|
89  | 
||
| 63612 | 90  | 
subsection \<open>Axiom of Choice, Proved Using the Description Operator\<close>  | 
| 14760 | 91  | 
|
| 63612 | 92  | 
lemma choice: "\<forall>x. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)"  | 
93  | 
by (fast elim: someI)  | 
|
| 14760 | 94  | 
|
| 63612 | 95  | 
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)"  | 
96  | 
by (fast elim: someI)  | 
|
| 14760 | 97  | 
|
| 50105 | 98  | 
lemma choice_iff: "(\<forall>x. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x. Q x (f x))"  | 
| 63612 | 99  | 
by (fast elim: someI)  | 
| 50105 | 100  | 
|
101  | 
lemma choice_iff': "(\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x. P x \<longrightarrow> Q x (f x))"  | 
|
| 63612 | 102  | 
by (fast elim: someI)  | 
| 50105 | 103  | 
|
104  | 
lemma bchoice_iff: "(\<forall>x\<in>S. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. Q x (f x))"  | 
|
| 63612 | 105  | 
by (fast elim: someI)  | 
| 50105 | 106  | 
|
107  | 
lemma bchoice_iff': "(\<forall>x\<in>S. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. P x \<longrightarrow> Q x (f x))"  | 
|
| 63612 | 108  | 
by (fast elim: someI)  | 
| 14760 | 109  | 
|
| 
57275
 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 
hoelzl 
parents: 
56740 
diff
changeset
 | 
110  | 
lemma dependent_nat_choice:  | 
| 63612 | 111  | 
assumes 1: "\<exists>x. P 0 x"  | 
112  | 
and 2: "\<And>x n. P n x \<Longrightarrow> \<exists>y. P (Suc n) y \<and> Q n x y"  | 
|
| 
57448
 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 
hoelzl 
parents: 
57275 
diff
changeset
 | 
113  | 
shows "\<exists>f. \<forall>n. P n (f n) \<and> Q n (f n) (f (Suc n))"  | 
| 
57275
 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 
hoelzl 
parents: 
56740 
diff
changeset
 | 
114  | 
proof (intro exI allI conjI)  | 
| 63040 | 115  | 
fix n  | 
116  | 
define f where "f = rec_nat (SOME x. P 0 x) (\<lambda>n x. SOME y. P (Suc n) y \<and> Q n x y)"  | 
|
| 63612 | 117  | 
then have "P 0 (f 0)" "\<And>n. P n (f n) \<Longrightarrow> P (Suc n) (f (Suc n)) \<and> Q n (f n) (f (Suc n))"  | 
118  | 
using someI_ex[OF 1] someI_ex[OF 2] by simp_all  | 
|
| 
57448
 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 
hoelzl 
parents: 
57275 
diff
changeset
 | 
119  | 
then show "P n (f n)" "Q n (f n) (f (Suc n))"  | 
| 
57275
 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 
hoelzl 
parents: 
56740 
diff
changeset
 | 
120  | 
by (induct n) auto  | 
| 
 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 
hoelzl 
parents: 
56740 
diff
changeset
 | 
121  | 
qed  | 
| 
 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 
hoelzl 
parents: 
56740 
diff
changeset
 | 
122  | 
|
| 58074 | 123  | 
|
| 60758 | 124  | 
subsection \<open>Function Inverse\<close>  | 
| 14760 | 125  | 
|
| 63612 | 126  | 
lemma inv_def: "inv f = (\<lambda>y. SOME x. f x = y)"  | 
127  | 
by (simp add: inv_into_def)  | 
|
| 33014 | 128  | 
|
| 63612 | 129  | 
lemma inv_into_into: "x \<in> f ` A \<Longrightarrow> inv_into A f x \<in> A"  | 
130  | 
by (simp add: inv_into_def) (fast intro: someI2)  | 
|
| 14760 | 131  | 
|
| 63612 | 132  | 
lemma inv_identity [simp]: "inv (\<lambda>a. a) = (\<lambda>a. a)"  | 
| 63365 | 133  | 
by (simp add: inv_def)  | 
134  | 
||
| 63612 | 135  | 
lemma inv_id [simp]: "inv id = id"  | 
| 63365 | 136  | 
by (simp add: id_def)  | 
| 14760 | 137  | 
|
| 63612 | 138  | 
lemma inv_into_f_f [simp]: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> inv_into A f (f x) = x"  | 
139  | 
by (simp add: inv_into_def inj_on_def) (blast intro: someI2)  | 
|
| 14760 | 140  | 
|
| 63612 | 141  | 
lemma inv_f_f: "inj f \<Longrightarrow> inv f (f x) = x"  | 
142  | 
by simp  | 
|
| 32988 | 143  | 
|
| 63612 | 144  | 
lemma f_inv_into_f: "y : f`A \<Longrightarrow> f (inv_into A f y) = y"  | 
145  | 
by (simp add: inv_into_def) (fast intro: someI2)  | 
|
| 32988 | 146  | 
|
| 63612 | 147  | 
lemma inv_into_f_eq: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> f x = y \<Longrightarrow> inv_into A f y = x"  | 
148  | 
by (erule subst) (fast intro: inv_into_f_f)  | 
|
| 32988 | 149  | 
|
| 63612 | 150  | 
lemma inv_f_eq: "inj f \<Longrightarrow> f x = y \<Longrightarrow> inv f y = x"  | 
151  | 
by (simp add:inv_into_f_eq)  | 
|
| 32988 | 152  | 
|
| 63612 | 153  | 
lemma inj_imp_inv_eq: "inj f \<Longrightarrow> \<forall>x. f (g x) = x \<Longrightarrow> inv f = g"  | 
| 44921 | 154  | 
by (blast intro: inv_into_f_eq)  | 
| 14760 | 155  | 
|
| 63612 | 156  | 
text \<open>But is it useful?\<close>  | 
| 14760 | 157  | 
lemma inj_transfer:  | 
| 63612 | 158  | 
assumes inj: "inj f"  | 
159  | 
and minor: "\<And>y. y \<in> range f \<Longrightarrow> P (inv f y)"  | 
|
| 14760 | 160  | 
shows "P x"  | 
161  | 
proof -  | 
|
162  | 
have "f x \<in> range f" by auto  | 
|
| 63612 | 163  | 
then have "P(inv f (f x))" by (rule minor)  | 
164  | 
then show "P x" by (simp add: inv_into_f_f [OF inj])  | 
|
| 14760 | 165  | 
qed  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
166  | 
|
| 63612 | 167  | 
lemma inj_iff: "inj f \<longleftrightarrow> inv f \<circ> f = id"  | 
168  | 
by (simp add: o_def fun_eq_iff) (blast intro: inj_on_inverseI inv_into_f_f)  | 
|
| 14760 | 169  | 
|
| 63612 | 170  | 
lemma inv_o_cancel[simp]: "inj f \<Longrightarrow> inv f \<circ> f = id"  | 
171  | 
by (simp add: inj_iff)  | 
|
172  | 
||
173  | 
lemma o_inv_o_cancel[simp]: "inj f \<Longrightarrow> g \<circ> inv f \<circ> f = g"  | 
|
174  | 
by (simp add: comp_assoc)  | 
|
| 23433 | 175  | 
|
| 63612 | 176  | 
lemma inv_into_image_cancel[simp]: "inj_on f A \<Longrightarrow> S \<subseteq> A \<Longrightarrow> inv_into A f ` f ` S = S"  | 
177  | 
by (fastforce simp: image_def)  | 
|
| 23433 | 178  | 
|
| 63612 | 179  | 
lemma inj_imp_surj_inv: "inj f \<Longrightarrow> surj (inv f)"  | 
180  | 
by (blast intro!: surjI inv_into_f_f)  | 
|
| 32988 | 181  | 
|
| 63612 | 182  | 
lemma surj_f_inv_f: "surj f \<Longrightarrow> f (inv f y) = y"  | 
183  | 
by (simp add: f_inv_into_f)  | 
|
| 14760 | 184  | 
|
| 33057 | 185  | 
lemma inv_into_injective:  | 
186  | 
assumes eq: "inv_into A f x = inv_into A f y"  | 
|
| 63612 | 187  | 
and x: "x \<in> f`A"  | 
188  | 
and y: "y \<in> f`A"  | 
|
189  | 
shows "x = y"  | 
|
| 14760 | 190  | 
proof -  | 
| 63612 | 191  | 
from eq have "f (inv_into A f x) = f (inv_into A f y)"  | 
192  | 
by simp  | 
|
193  | 
with x y show ?thesis  | 
|
194  | 
by (simp add: f_inv_into_f)  | 
|
| 14760 | 195  | 
qed  | 
196  | 
||
| 63612 | 197  | 
lemma inj_on_inv_into: "B \<subseteq> f`A \<Longrightarrow> inj_on (inv_into A f) B"  | 
198  | 
by (blast intro: inj_onI dest: inv_into_injective injD)  | 
|
| 32988 | 199  | 
|
| 63612 | 200  | 
lemma bij_betw_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (inv_into A f) B A"  | 
201  | 
by (auto simp add: bij_betw_def inj_on_inv_into)  | 
|
| 14760 | 202  | 
|
| 63612 | 203  | 
lemma surj_imp_inj_inv: "surj f \<Longrightarrow> inj (inv f)"  | 
204  | 
by (simp add: inj_on_inv_into)  | 
|
| 14760 | 205  | 
|
| 63612 | 206  | 
lemma surj_iff: "surj f \<longleftrightarrow> f \<circ> inv f = id"  | 
207  | 
by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a])  | 
|
| 40702 | 208  | 
|
209  | 
lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)"  | 
|
| 63612 | 210  | 
by (simp add: o_def surj_iff fun_eq_iff)  | 
| 14760 | 211  | 
|
| 63612 | 212  | 
lemma surj_imp_inv_eq: "surj f \<Longrightarrow> \<forall>x. g (f x) = x \<Longrightarrow> inv f = g"  | 
213  | 
apply (rule ext)  | 
|
214  | 
apply (drule_tac x = "inv f x" in spec)  | 
|
215  | 
apply (simp add: surj_f_inv_f)  | 
|
216  | 
done  | 
|
| 14760 | 217  | 
|
| 63612 | 218  | 
lemma bij_imp_bij_inv: "bij f \<Longrightarrow> bij (inv f)"  | 
219  | 
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)  | 
|
| 12372 | 220  | 
|
| 63612 | 221  | 
lemma inv_equality: "(\<And>x. g (f x) = x) \<Longrightarrow> (\<And>y. f (g y) = y) \<Longrightarrow> inv f = g"  | 
222  | 
by (rule ext) (auto simp add: inv_into_def)  | 
|
223  | 
||
224  | 
lemma inv_inv_eq: "bij f \<Longrightarrow> inv (inv f) = f"  | 
|
225  | 
by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f)  | 
|
| 14760 | 226  | 
|
| 63612 | 227  | 
text \<open>  | 
228  | 
\<open>bij (inv f)\<close> implies little about \<open>f\<close>. Consider \<open>f :: bool \<Rightarrow> bool\<close> such  | 
|
229  | 
that \<open>f True = f False = True\<close>. Then it ia consistent with axiom \<open>someI\<close>  | 
|
230  | 
that \<open>inv f\<close> could be any function at all, including the identity function.  | 
|
231  | 
If \<open>inv f = id\<close> then \<open>inv f\<close> is a bijection, but \<open>inj f\<close>, \<open>surj f\<close> and \<open>inv  | 
|
232  | 
(inv f) = f\<close> all fail.  | 
|
233  | 
\<close>  | 
|
| 14760 | 234  | 
|
| 33057 | 235  | 
lemma inv_into_comp:  | 
| 63612 | 236  | 
"inj_on f (g ` A) \<Longrightarrow> inj_on g A \<Longrightarrow> x \<in> f ` g ` A \<Longrightarrow>  | 
237  | 
inv_into A (f \<circ> g) x = (inv_into A g \<circ> inv_into (g ` A) f) x"  | 
|
238  | 
apply (rule inv_into_f_eq)  | 
|
239  | 
apply (fast intro: comp_inj_on)  | 
|
240  | 
apply (simp add: inv_into_into)  | 
|
241  | 
apply (simp add: f_inv_into_f inv_into_into)  | 
|
242  | 
done  | 
|
| 32988 | 243  | 
|
| 63612 | 244  | 
lemma o_inv_distrib: "bij f \<Longrightarrow> bij g \<Longrightarrow> inv (f \<circ> g) = inv g \<circ> inv f"  | 
245  | 
by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f)  | 
|
| 14760 | 246  | 
|
| 63807 | 247  | 
lemma image_f_inv_f: "surj f \<Longrightarrow> f ` (inv f ` A) = A"  | 
| 
62343
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61859 
diff
changeset
 | 
248  | 
by (simp add: surj_f_inv_f image_comp comp_def)  | 
| 14760 | 249  | 
|
| 63612 | 250  | 
lemma image_inv_f_f: "inj f \<Longrightarrow> inv f ` (f ` A) = A"  | 
| 
62343
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61859 
diff
changeset
 | 
251  | 
by simp  | 
| 14760 | 252  | 
|
| 63612 | 253  | 
lemma bij_image_Collect_eq: "bij f \<Longrightarrow> f ` Collect P = {y. P (inv f y)}"
 | 
254  | 
apply auto  | 
|
255  | 
apply (force simp add: bij_is_inj)  | 
|
256  | 
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])  | 
|
257  | 
done  | 
|
| 14760 | 258  | 
|
| 63612 | 259  | 
lemma bij_vimage_eq_inv_image: "bij f \<Longrightarrow> f -` A = inv f ` A"  | 
260  | 
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])  | 
|
261  | 
apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])  | 
|
262  | 
done  | 
|
| 14760 | 263  | 
|
| 31380 | 264  | 
lemma finite_fun_UNIVD1:  | 
265  | 
  assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
 | 
|
| 63612 | 266  | 
and card: "card (UNIV :: 'b set) \<noteq> Suc 0"  | 
| 31380 | 267  | 
shows "finite (UNIV :: 'a set)"  | 
268  | 
proof -  | 
|
| 63630 | 269  | 
let ?UNIV_b = "UNIV :: 'b set"  | 
270  | 
from fin have "finite ?UNIV_b"  | 
|
| 63612 | 271  | 
by (rule finite_fun_UNIVD2)  | 
| 63630 | 272  | 
with card have "card ?UNIV_b \<ge> Suc (Suc 0)"  | 
273  | 
by (cases "card ?UNIV_b") (auto simp: card_eq_0_iff)  | 
|
274  | 
then have "card ?UNIV_b = Suc (Suc (card ?UNIV_b - Suc (Suc 0)))"  | 
|
275  | 
by simp  | 
|
| 63629 | 276  | 
then obtain b1 b2 :: 'b where b1b2: "b1 \<noteq> b2"  | 
277  | 
by (auto simp: card_Suc_eq)  | 
|
| 63630 | 278  | 
from fin have fin': "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))"  | 
| 63612 | 279  | 
by (rule finite_imageI)  | 
| 63630 | 280  | 
have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)"  | 
| 31380 | 281  | 
proof (rule UNIV_eq_I)  | 
282  | 
fix x :: 'a  | 
|
| 63612 | 283  | 
from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1"  | 
284  | 
by (simp add: inv_into_def)  | 
|
285  | 
then show "x \<in> range (\<lambda>f::'a \<Rightarrow> 'b. inv f b1)"  | 
|
286  | 
by blast  | 
|
| 31380 | 287  | 
qed  | 
| 63630 | 288  | 
with fin' show ?thesis  | 
| 63612 | 289  | 
by simp  | 
| 31380 | 290  | 
qed  | 
| 14760 | 291  | 
|
| 60758 | 292  | 
text \<open>  | 
| 
54578
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
293  | 
Every infinite set contains a countable subset. More precisely we  | 
| 61799 | 294  | 
show that a set \<open>S\<close> is infinite if and only if there exists an  | 
295  | 
injective function from the naturals into \<open>S\<close>.  | 
|
| 
54578
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
296  | 
|
| 
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
297  | 
The ``only if'' direction is harder because it requires the  | 
| 
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
298  | 
construction of a sequence of pairwise different elements of an  | 
| 61799 | 299  | 
infinite set \<open>S\<close>. The idea is to construct a sequence of  | 
300  | 
non-empty and infinite subsets of \<open>S\<close> obtained by successively  | 
|
301  | 
removing elements of \<open>S\<close>.  | 
|
| 60758 | 302  | 
\<close>  | 
| 
54578
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
303  | 
|
| 
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
304  | 
lemma infinite_countable_subset:  | 
| 63629 | 305  | 
assumes inf: "\<not> finite S"  | 
306  | 
shows "\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S"  | 
|
| 61799 | 307  | 
\<comment> \<open>Courtesy of Stephan Merz\<close>  | 
| 
54578
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
308  | 
proof -  | 
| 63040 | 309  | 
  define Sseq where "Sseq = rec_nat S (\<lambda>n T. T - {SOME e. e \<in> T})"
 | 
310  | 
define pick where "pick n = (SOME e. e \<in> Sseq n)" for n  | 
|
| 63540 | 311  | 
have *: "Sseq n \<subseteq> S" "\<not> finite (Sseq n)" for n  | 
| 63612 | 312  | 
by (induct n) (auto simp: Sseq_def inf)  | 
| 63540 | 313  | 
then have **: "\<And>n. pick n \<in> Sseq n"  | 
| 55811 | 314  | 
unfolding pick_def by (subst (asm) finite.simps) (auto simp add: ex_in_conv intro: someI_ex)  | 
| 63540 | 315  | 
with * have "range pick \<subseteq> S" by auto  | 
| 63612 | 316  | 
moreover have "pick n \<noteq> pick (n + Suc m)" for m n  | 
317  | 
proof -  | 
|
| 63540 | 318  | 
have "pick n \<notin> Sseq (n + Suc m)"  | 
319  | 
by (induct m) (auto simp add: Sseq_def pick_def)  | 
|
| 63612 | 320  | 
with ** show ?thesis by auto  | 
321  | 
qed  | 
|
322  | 
then have "inj pick"  | 
|
323  | 
by (intro linorder_injI) (auto simp add: less_iff_Suc_add)  | 
|
| 
54578
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
324  | 
ultimately show ?thesis by blast  | 
| 
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
325  | 
qed  | 
| 
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
326  | 
|
| 63629 | 327  | 
lemma infinite_iff_countable_subset: "\<not> finite S \<longleftrightarrow> (\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S)"  | 
| 61799 | 328  | 
\<comment> \<open>Courtesy of Stephan Merz\<close>  | 
| 55811 | 329  | 
using finite_imageD finite_subset infinite_UNIV_char_0 infinite_countable_subset by auto  | 
| 
54578
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54295 
diff
changeset
 | 
330  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
331  | 
lemma image_inv_into_cancel:  | 
| 63612 | 332  | 
assumes surj: "f`A = A'"  | 
333  | 
and sub: "B' \<subseteq> A'"  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
334  | 
shows "f `((inv_into A f)`B') = B'"  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
335  | 
using assms  | 
| 63612 | 336  | 
proof (auto simp: f_inv_into_f)  | 
337  | 
let ?f' = "inv_into A f"  | 
|
338  | 
fix a'  | 
|
339  | 
assume *: "a' \<in> B'"  | 
|
340  | 
with sub have "a' \<in> A'" by auto  | 
|
341  | 
with surj have "a' = f (?f' a')"  | 
|
342  | 
by (auto simp: f_inv_into_f)  | 
|
343  | 
with * show "a' \<in> f ` (?f' ` B')" by blast  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
344  | 
qed  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
345  | 
|
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
346  | 
lemma inv_into_inv_into_eq:  | 
| 63612 | 347  | 
assumes "bij_betw f A A'"  | 
348  | 
and a: "a \<in> A"  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
349  | 
shows "inv_into A' (inv_into A f) a = f a"  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
350  | 
proof -  | 
| 63612 | 351  | 
let ?f' = "inv_into A f"  | 
352  | 
let ?f'' = "inv_into A' ?f'"  | 
|
353  | 
from assms have *: "bij_betw ?f' A' A"  | 
|
354  | 
by (auto simp: bij_betw_inv_into)  | 
|
355  | 
with a obtain a' where a': "a' \<in> A'" "?f' a' = a"  | 
|
356  | 
unfolding bij_betw_def by force  | 
|
357  | 
with a * have "?f'' a = a'"  | 
|
358  | 
by (auto simp: f_inv_into_f bij_betw_def)  | 
|
359  | 
moreover from assms a' have "f a = a'"  | 
|
360  | 
by (auto simp: bij_betw_def)  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
361  | 
ultimately show "?f'' a = f a" by simp  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
362  | 
qed  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
363  | 
|
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
364  | 
lemma inj_on_iff_surj:  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
365  | 
  assumes "A \<noteq> {}"
 | 
| 63629 | 366  | 
shows "(\<exists>f. inj_on f A \<and> f ` A \<subseteq> A') \<longleftrightarrow> (\<exists>g. g ` A' = A)"  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
367  | 
proof safe  | 
| 63612 | 368  | 
fix f  | 
369  | 
assume inj: "inj_on f A" and incl: "f ` A \<subseteq> A'"  | 
|
370  | 
let ?phi = "\<lambda>a' a. a \<in> A \<and> f a = a'"  | 
|
371  | 
let ?csi = "\<lambda>a. a \<in> A"  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
372  | 
let ?g = "\<lambda>a'. if a' \<in> f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)"  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
373  | 
have "?g ` A' = A"  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
374  | 
proof  | 
| 63612 | 375  | 
show "?g ` A' \<subseteq> A"  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
376  | 
proof clarify  | 
| 63612 | 377  | 
fix a'  | 
378  | 
assume *: "a' \<in> A'"  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
379  | 
show "?g a' \<in> A"  | 
| 63612 | 380  | 
proof (cases "a' \<in> f ` A")  | 
381  | 
case True  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
382  | 
then obtain a where "?phi a' a" by blast  | 
| 63612 | 383  | 
then have "?phi a' (SOME a. ?phi a' a)"  | 
384  | 
using someI[of "?phi a'" a] by blast  | 
|
385  | 
with True show ?thesis by auto  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
386  | 
next  | 
| 63612 | 387  | 
case False  | 
388  | 
with assms have "?csi (SOME a. ?csi a)"  | 
|
389  | 
using someI_ex[of ?csi] by blast  | 
|
390  | 
with False show ?thesis by auto  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
391  | 
qed  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
392  | 
qed  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
393  | 
next  | 
| 63612 | 394  | 
show "A \<subseteq> ?g ` A'"  | 
395  | 
proof -  | 
|
396  | 
have "?g (f a) = a \<and> f a \<in> A'" if a: "a \<in> A" for a  | 
|
397  | 
proof -  | 
|
398  | 
let ?b = "SOME aa. ?phi (f a) aa"  | 
|
399  | 
from a have "?phi (f a) a" by auto  | 
|
400  | 
then have *: "?phi (f a) ?b"  | 
|
401  | 
using someI[of "?phi(f a)" a] by blast  | 
|
402  | 
then have "?g (f a) = ?b" using a by auto  | 
|
403  | 
moreover from inj * a have "a = ?b"  | 
|
404  | 
by (auto simp add: inj_on_def)  | 
|
405  | 
ultimately have "?g(f a) = a" by simp  | 
|
406  | 
with incl a show ?thesis by auto  | 
|
407  | 
qed  | 
|
408  | 
then show ?thesis by force  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
409  | 
qed  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
410  | 
qed  | 
| 63612 | 411  | 
then show "\<exists>g. g ` A' = A" by blast  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
412  | 
next  | 
| 63612 | 413  | 
fix g  | 
414  | 
let ?f = "inv_into A' g"  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
415  | 
have "inj_on ?f (g ` A')"  | 
| 63612 | 416  | 
by (auto simp: inj_on_inv_into)  | 
417  | 
moreover have "?f (g a') \<in> A'" if a': "a' \<in> A'" for a'  | 
|
418  | 
proof -  | 
|
419  | 
let ?phi = "\<lambda> b'. b' \<in> A' \<and> g b' = g a'"  | 
|
420  | 
from a' have "?phi a'" by auto  | 
|
421  | 
then have "?phi (SOME b'. ?phi b')"  | 
|
422  | 
using someI[of ?phi] by blast  | 
|
423  | 
then show ?thesis by (auto simp: inv_into_def)  | 
|
424  | 
qed  | 
|
425  | 
ultimately show "\<exists>f. inj_on f (g ` A') \<and> f ` g ` A' \<subseteq> A'"  | 
|
426  | 
by auto  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
427  | 
qed  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
428  | 
|
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
429  | 
lemma Ex_inj_on_UNION_Sigma:  | 
| 63629 | 430  | 
"\<exists>f. (inj_on f (\<Union>i \<in> I. A i) \<and> f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i))"  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
431  | 
proof  | 
| 63612 | 432  | 
let ?phi = "\<lambda>a i. i \<in> I \<and> a \<in> A i"  | 
433  | 
let ?sm = "\<lambda>a. SOME i. ?phi a i"  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
434  | 
let ?f = "\<lambda>a. (?sm a, a)"  | 
| 63612 | 435  | 
have "inj_on ?f (\<Union>i \<in> I. A i)"  | 
436  | 
by (auto simp: inj_on_def)  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
437  | 
moreover  | 
| 63612 | 438  | 
have "?sm a \<in> I \<and> a \<in> A(?sm a)" if "i \<in> I" and "a \<in> A i" for i a  | 
439  | 
using that someI[of "?phi a" i] by auto  | 
|
| 63629 | 440  | 
then have "?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)"  | 
| 63612 | 441  | 
by auto  | 
| 63629 | 442  | 
ultimately show "inj_on ?f (\<Union>i \<in> I. A i) \<and> ?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)"  | 
| 63612 | 443  | 
by auto  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
444  | 
qed  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
445  | 
|
| 56608 | 446  | 
lemma inv_unique_comp:  | 
447  | 
assumes fg: "f \<circ> g = id"  | 
|
448  | 
and gf: "g \<circ> f = id"  | 
|
449  | 
shows "inv f = g"  | 
|
450  | 
using fg gf inv_equality[of g f] by (auto simp add: fun_eq_iff)  | 
|
451  | 
||
452  | 
||
| 60758 | 453  | 
subsection \<open>Other Consequences of Hilbert's Epsilon\<close>  | 
| 14760 | 454  | 
|
| 60758 | 455  | 
text \<open>Hilbert's Epsilon and the @{term split} Operator\<close>
 | 
| 14760 | 456  | 
|
| 63612 | 457  | 
text \<open>Looping simprule!\<close>  | 
458  | 
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a, b). P (a, b))"  | 
|
| 26347 | 459  | 
by simp  | 
| 14760 | 460  | 
|
| 
61424
 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 
haftmann 
parents: 
61076 
diff
changeset
 | 
461  | 
lemma Eps_case_prod: "Eps (case_prod P) = (SOME xy. P (fst xy) (snd xy))"  | 
| 26347 | 462  | 
by (simp add: split_def)  | 
| 14760 | 463  | 
|
| 63612 | 464  | 
lemma Eps_case_prod_eq [simp]: "(SOME (x', y'). x = x' \<and> y = y') = (x, y)"  | 
| 26347 | 465  | 
by blast  | 
| 14760 | 466  | 
|
467  | 
||
| 63612 | 468  | 
text \<open>A relation is wellfounded iff it has no infinite descending chain.\<close>  | 
| 63981 | 469  | 
lemma wf_iff_no_infinite_down_chain: "wf r \<longleftrightarrow> (\<nexists>f. \<forall>i. (f (Suc i), f i) \<in> r)"  | 
470  | 
(is "_ \<longleftrightarrow> \<not> ?ex")  | 
|
471  | 
proof  | 
|
472  | 
assume "wf r"  | 
|
473  | 
show "\<not> ?ex"  | 
|
474  | 
proof  | 
|
475  | 
assume ?ex  | 
|
476  | 
then obtain f where f: "(f (Suc i), f i) \<in> r" for i  | 
|
477  | 
by blast  | 
|
478  | 
from \<open>wf r\<close> have minimal: "x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q" for x Q  | 
|
479  | 
by (auto simp: wf_eq_minimal)  | 
|
480  | 
    let ?Q = "{w. \<exists>i. w = f i}"
 | 
|
481  | 
fix n  | 
|
482  | 
have "f n \<in> ?Q" by blast  | 
|
483  | 
from minimal [OF this] obtain j where "(y, f j) \<in> r \<Longrightarrow> y \<notin> ?Q" for y by blast  | 
|
484  | 
with this [OF \<open>(f (Suc j), f j) \<in> r\<close>] have "f (Suc j) \<notin> ?Q" by simp  | 
|
485  | 
then show False by blast  | 
|
486  | 
qed  | 
|
487  | 
next  | 
|
488  | 
assume "\<not> ?ex"  | 
|
489  | 
then show "wf r"  | 
|
490  | 
proof (rule contrapos_np)  | 
|
491  | 
assume "\<not> wf r"  | 
|
492  | 
then obtain Q x where x: "x \<in> Q" and rec: "z \<in> Q \<Longrightarrow> \<exists>y. (y, z) \<in> r \<and> y \<in> Q" for z  | 
|
493  | 
by (auto simp add: wf_eq_minimal)  | 
|
494  | 
obtain descend :: "nat \<Rightarrow> 'a"  | 
|
495  | 
where descend_0: "descend 0 = x"  | 
|
496  | 
and descend_Suc: "descend (Suc n) = (SOME y. y \<in> Q \<and> (y, descend n) \<in> r)" for n  | 
|
497  | 
by (rule that [of "rec_nat x (\<lambda>_ rec. (SOME y. y \<in> Q \<and> (y, rec) \<in> r))"]) simp_all  | 
|
498  | 
have descend_Q: "descend n \<in> Q" for n  | 
|
499  | 
proof (induct n)  | 
|
500  | 
case 0  | 
|
501  | 
with x show ?case by (simp only: descend_0)  | 
|
502  | 
next  | 
|
503  | 
case Suc  | 
|
504  | 
then show ?case by (simp only: descend_Suc) (rule someI2_ex; use rec in blast)  | 
|
505  | 
qed  | 
|
506  | 
have "(descend (Suc i), descend i) \<in> r" for i  | 
|
507  | 
by (simp only: descend_Suc) (rule someI2_ex; use descend_Q rec in blast)  | 
|
508  | 
then show "\<exists>f. \<forall>i. (f (Suc i), f i) \<in> r" by blast  | 
|
509  | 
qed  | 
|
510  | 
qed  | 
|
| 14760 | 511  | 
|
| 27760 | 512  | 
lemma wf_no_infinite_down_chainE:  | 
| 63612 | 513  | 
assumes "wf r"  | 
514  | 
obtains k where "(f (Suc k), f k) \<notin> r"  | 
|
515  | 
using assms wf_iff_no_infinite_down_chain[of r] by blast  | 
|
| 27760 | 516  | 
|
517  | 
||
| 63612 | 518  | 
text \<open>A dynamically-scoped fact for TFL\<close>  | 
519  | 
lemma tfl_some: "\<forall>P x. P x \<longrightarrow> P (Eps P)"  | 
|
| 12298 | 520  | 
by (blast intro: someI)  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
521  | 
|
| 12298 | 522  | 
|
| 60758 | 523  | 
subsection \<open>Least value operator\<close>  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
524  | 
|
| 63612 | 525  | 
definition LeastM :: "('a \<Rightarrow> 'b::ord) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
526  | 
where "LeastM m P \<equiv> (SOME x. P x \<and> (\<forall>y. P y \<longrightarrow> m x \<le> m y))"  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
527  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
528  | 
syntax  | 
| 63612 | 529  | 
  "_LeastM" :: "pttrn \<Rightarrow> ('a \<Rightarrow> 'b::ord) \<Rightarrow> bool \<Rightarrow> 'a"  ("LEAST _ WRT _. _" [0, 4, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
530  | 
translations  | 
| 63612 | 531  | 
"LEAST x WRT m. P" \<rightleftharpoons> "CONST LeastM m (\<lambda>x. P)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
532  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
533  | 
lemma LeastMI2:  | 
| 63612 | 534  | 
"P x \<Longrightarrow>  | 
535  | 
(\<And>y. P y \<Longrightarrow> m x \<le> m y) \<Longrightarrow>  | 
|
536  | 
(\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> m x \<le> m y \<Longrightarrow> Q x) \<Longrightarrow>  | 
|
537  | 
Q (LeastM m P)"  | 
|
| 14760 | 538  | 
apply (simp add: LeastM_def)  | 
| 63612 | 539  | 
apply (rule someI2_ex)  | 
540  | 
apply blast  | 
|
541  | 
apply blast  | 
|
| 12298 | 542  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
543  | 
|
| 63629 | 544  | 
lemma LeastM_equality: "P k \<Longrightarrow> (\<And>x. P x \<Longrightarrow> m k \<le> m x) \<Longrightarrow> m (LEAST x WRT m. P x) = m k"  | 
545  | 
for m :: "_ \<Rightarrow> 'a::order"  | 
|
| 63612 | 546  | 
apply (rule LeastMI2)  | 
547  | 
apply assumption  | 
|
548  | 
apply blast  | 
|
| 12298 | 549  | 
apply (blast intro!: order_antisym)  | 
550  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
551  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
552  | 
lemma wf_linord_ex_has_least:  | 
| 63612 | 553  | 
"wf r \<Longrightarrow> \<forall>x y. (x, y) \<in> r\<^sup>+ \<longleftrightarrow> (y, x) \<notin> r\<^sup>* \<Longrightarrow> P k \<Longrightarrow> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> (m x, m y) \<in> r\<^sup>*)"  | 
| 12298 | 554  | 
apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])  | 
| 63612 | 555  | 
apply (drule_tac x = "m ` Collect P" in spec)  | 
556  | 
apply force  | 
|
| 12298 | 557  | 
done  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
558  | 
|
| 63629 | 559  | 
lemma ex_has_least_nat: "P k \<Longrightarrow> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> m x \<le> m y)"  | 
560  | 
for m :: "'a \<Rightarrow> nat"  | 
|
| 12298 | 561  | 
apply (simp only: pred_nat_trancl_eq_le [symmetric])  | 
562  | 
apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])  | 
|
| 63612 | 563  | 
apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le)  | 
564  | 
apply assumption  | 
|
| 12298 | 565  | 
done  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
566  | 
|
| 63629 | 567  | 
lemma LeastM_nat_lemma: "P k \<Longrightarrow> P (LeastM m P) \<and> (\<forall>y. P y \<longrightarrow> m (LeastM m P) \<le> m y)"  | 
568  | 
for m :: "'a \<Rightarrow> nat"  | 
|
| 14760 | 569  | 
apply (simp add: LeastM_def)  | 
| 12298 | 570  | 
apply (rule someI_ex)  | 
571  | 
apply (erule ex_has_least_nat)  | 
|
572  | 
done  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
573  | 
|
| 45607 | 574  | 
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1]  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
575  | 
|
| 63629 | 576  | 
lemma LeastM_nat_le: "P x \<Longrightarrow> m (LeastM m P) \<le> m x"  | 
577  | 
for m :: "'a \<Rightarrow> nat"  | 
|
| 63612 | 578  | 
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp])  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
579  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
580  | 
|
| 60758 | 581  | 
subsection \<open>Greatest value operator\<close>  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
582  | 
|
| 63612 | 583  | 
definition GreatestM :: "('a \<Rightarrow> 'b::ord) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
584  | 
where "GreatestM m P \<equiv> SOME x. P x \<and> (\<forall>y. P y \<longrightarrow> m y \<le> m x)"  | 
|
| 12298 | 585  | 
|
| 63612 | 586  | 
definition Greatest :: "('a::ord \<Rightarrow> bool) \<Rightarrow> 'a"  (binder "GREATEST " 10)
 | 
587  | 
where "Greatest \<equiv> GreatestM (\<lambda>x. x)"  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
588  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
589  | 
syntax  | 
| 63612 | 590  | 
  "_GreatestM" :: "pttrn \<Rightarrow> ('a \<Rightarrow> 'b::ord) \<Rightarrow> bool \<Rightarrow> 'a"  ("GREATEST _ WRT _. _" [0, 4, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
591  | 
translations  | 
| 63612 | 592  | 
"GREATEST x WRT m. P" \<rightleftharpoons> "CONST GreatestM m (\<lambda>x. P)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
593  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
594  | 
lemma GreatestMI2:  | 
| 63612 | 595  | 
"P x \<Longrightarrow>  | 
596  | 
(\<And>y. P y \<Longrightarrow> m y \<le> m x) \<Longrightarrow>  | 
|
597  | 
(\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> m y \<le> m x \<Longrightarrow> Q x) \<Longrightarrow>  | 
|
598  | 
Q (GreatestM m P)"  | 
|
| 14760 | 599  | 
apply (simp add: GreatestM_def)  | 
| 63612 | 600  | 
apply (rule someI2_ex)  | 
601  | 
apply blast  | 
|
602  | 
apply blast  | 
|
| 12298 | 603  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
604  | 
|
| 63629 | 605  | 
lemma GreatestM_equality: "P k \<Longrightarrow> (\<And>x. P x \<Longrightarrow> m x \<le> m k) \<Longrightarrow> m (GREATEST x WRT m. P x) = m k"  | 
606  | 
for m :: "_ \<Rightarrow> 'a::order"  | 
|
| 63612 | 607  | 
apply (rule GreatestMI2 [where m = m])  | 
608  | 
apply assumption  | 
|
609  | 
apply blast  | 
|
| 12298 | 610  | 
apply (blast intro!: order_antisym)  | 
611  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
612  | 
|
| 63612 | 613  | 
lemma Greatest_equality: "P k \<Longrightarrow> (\<And>x. P x \<Longrightarrow> x \<le> k) \<Longrightarrow> (GREATEST x. P x) = k"  | 
614  | 
for k :: "'a::order"  | 
|
| 14760 | 615  | 
apply (simp add: Greatest_def)  | 
| 63612 | 616  | 
apply (erule GreatestM_equality)  | 
617  | 
apply blast  | 
|
| 12298 | 618  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
619  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
620  | 
lemma ex_has_greatest_nat_lemma:  | 
| 63629 | 621  | 
"P k \<Longrightarrow> \<forall>x. P x \<longrightarrow> (\<exists>y. P y \<and> \<not> m y \<le> m x) \<Longrightarrow> \<exists>y. P y \<and> \<not> m y < m k + n"  | 
622  | 
for m :: "'a \<Rightarrow> nat"  | 
|
| 63612 | 623  | 
by (induct n) (force simp: le_Suc_eq)+  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
624  | 
|
| 12298 | 625  | 
lemma ex_has_greatest_nat:  | 
| 63629 | 626  | 
"P k \<Longrightarrow> \<forall>y. P y \<longrightarrow> m y < b \<Longrightarrow> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> m y \<le> m x)"  | 
627  | 
for m :: "'a \<Rightarrow> nat"  | 
|
| 12298 | 628  | 
apply (rule ccontr)  | 
629  | 
apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)  | 
|
| 63612 | 630  | 
apply (subgoal_tac [3] "m k \<le> b")  | 
631  | 
apply auto  | 
|
| 12298 | 632  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
633  | 
|
| 12298 | 634  | 
lemma GreatestM_nat_lemma:  | 
| 63629 | 635  | 
"P k \<Longrightarrow> \<forall>y. P y \<longrightarrow> m y < b \<Longrightarrow> P (GreatestM m P) \<and> (\<forall>y. P y \<longrightarrow> m y \<le> m (GreatestM m P))"  | 
636  | 
for m :: "'a \<Rightarrow> nat"  | 
|
| 14760 | 637  | 
apply (simp add: GreatestM_def)  | 
| 12298 | 638  | 
apply (rule someI_ex)  | 
| 63612 | 639  | 
apply (erule ex_has_greatest_nat)  | 
640  | 
apply assumption  | 
|
| 12298 | 641  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
642  | 
|
| 45607 | 643  | 
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1]  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
644  | 
|
| 63629 | 645  | 
lemma GreatestM_nat_le: "P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> m y < b \<Longrightarrow> m x \<le> m (GreatestM m P)"  | 
646  | 
for m :: "'a \<Rightarrow> nat"  | 
|
| 63612 | 647  | 
by (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P])  | 
| 12298 | 648  | 
|
649  | 
||
| 63612 | 650  | 
text \<open>\<^medskip> Specialization to \<open>GREATEST\<close>.\<close>  | 
| 12298 | 651  | 
|
| 63612 | 652  | 
lemma GreatestI: "P k \<Longrightarrow> \<forall>y. P y \<longrightarrow> y < b \<Longrightarrow> P (GREATEST x. P x)"  | 
653  | 
for k :: nat  | 
|
654  | 
unfolding Greatest_def by (rule GreatestM_natI) auto  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
655  | 
|
| 63612 | 656  | 
lemma Greatest_le: "P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> y < b \<Longrightarrow> x \<le> (GREATEST x. P x)"  | 
657  | 
for x :: nat  | 
|
658  | 
unfolding Greatest_def by (rule GreatestM_nat_le) auto  | 
|
| 12298 | 659  | 
|
660  | 
||
| 60758 | 661  | 
subsection \<open>An aside: bounded accessible part\<close>  | 
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
662  | 
|
| 60758 | 663  | 
text \<open>Finite monotone eventually stable sequences\<close>  | 
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
664  | 
|
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
665  | 
lemma finite_mono_remains_stable_implies_strict_prefix:  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
666  | 
fixes f :: "nat \<Rightarrow> 'a::order"  | 
| 63612 | 667  | 
assumes S: "finite (range f)" "mono f"  | 
668  | 
and eq: "\<forall>n. f n = f (Suc n) \<longrightarrow> f (Suc n) = f (Suc (Suc n))"  | 
|
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
669  | 
shows "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m < f n) \<and> (\<forall>n\<ge>N. f N = f n)"  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
670  | 
using assms  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
671  | 
proof -  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
672  | 
have "\<exists>n. f n = f (Suc n)"  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
673  | 
proof (rule ccontr)  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
674  | 
assume "\<not> ?thesis"  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
675  | 
then have "\<And>n. f n \<noteq> f (Suc n)" by auto  | 
| 63612 | 676  | 
with \<open>mono f\<close> have "\<And>n. f n < f (Suc n)"  | 
677  | 
by (auto simp: le_less mono_iff_le_Suc)  | 
|
678  | 
with lift_Suc_mono_less_iff[of f] have *: "\<And>n m. n < m \<Longrightarrow> f n < f m"  | 
|
679  | 
by auto  | 
|
| 55811 | 680  | 
have "inj f"  | 
681  | 
proof (intro injI)  | 
|
682  | 
fix x y  | 
|
683  | 
assume "f x = f y"  | 
|
| 63612 | 684  | 
then show "x = y"  | 
685  | 
by (cases x y rule: linorder_cases) (auto dest: *)  | 
|
| 55811 | 686  | 
qed  | 
| 60758 | 687  | 
with \<open>finite (range f)\<close> have "finite (UNIV::nat set)"  | 
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
688  | 
by (rule finite_imageD)  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
689  | 
then show False by simp  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
690  | 
qed  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
691  | 
then obtain n where n: "f n = f (Suc n)" ..  | 
| 63040 | 692  | 
define N where "N = (LEAST n. f n = f (Suc n))"  | 
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
693  | 
have N: "f N = f (Suc N)"  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
694  | 
unfolding N_def using n by (rule LeastI)  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
695  | 
show ?thesis  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
696  | 
proof (intro exI[of _ N] conjI allI impI)  | 
| 63612 | 697  | 
fix n  | 
698  | 
assume "N \<le> n"  | 
|
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
699  | 
then have "\<And>m. N \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m = f N"  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
700  | 
proof (induct rule: dec_induct)  | 
| 63612 | 701  | 
case base  | 
702  | 
then show ?case by simp  | 
|
703  | 
next  | 
|
704  | 
case (step n)  | 
|
705  | 
then show ?case  | 
|
706  | 
using eq [rule_format, of "n - 1"] N  | 
|
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
707  | 
by (cases n) (auto simp add: le_Suc_eq)  | 
| 63612 | 708  | 
qed  | 
| 60758 | 709  | 
from this[of n] \<open>N \<le> n\<close> show "f N = f n" by auto  | 
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
710  | 
next  | 
| 63612 | 711  | 
fix n m :: nat  | 
712  | 
assume "m < n" "n \<le> N"  | 
|
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
713  | 
then show "f m < f n"  | 
| 62683 | 714  | 
proof (induct rule: less_Suc_induct)  | 
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
715  | 
case (1 i)  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
716  | 
then have "i < N" by simp  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
717  | 
then have "f i \<noteq> f (Suc i)"  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
718  | 
unfolding N_def by (rule not_less_Least)  | 
| 60758 | 719  | 
with \<open>mono f\<close> show ?case by (simp add: mono_iff_le_Suc less_le)  | 
| 63612 | 720  | 
next  | 
721  | 
case 2  | 
|
722  | 
then show ?case by simp  | 
|
723  | 
qed  | 
|
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
724  | 
qed  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
725  | 
qed  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
726  | 
|
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
727  | 
lemma finite_mono_strict_prefix_implies_finite_fixpoint:  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
728  | 
fixes f :: "nat \<Rightarrow> 'a set"  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
729  | 
assumes S: "\<And>i. f i \<subseteq> S" "finite S"  | 
| 63612 | 730  | 
and ex: "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m \<subset> f n) \<and> (\<forall>n\<ge>N. f N = f n)"  | 
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
731  | 
shows "f (card S) = (\<Union>n. f n)"  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
732  | 
proof -  | 
| 63612 | 733  | 
from ex obtain N where inj: "\<And>n m. n \<le> N \<Longrightarrow> m \<le> N \<Longrightarrow> m < n \<Longrightarrow> f m \<subset> f n"  | 
734  | 
and eq: "\<forall>n\<ge>N. f N = f n"  | 
|
735  | 
by atomize auto  | 
|
736  | 
have "i \<le> N \<Longrightarrow> i \<le> card (f i)" for i  | 
|
737  | 
proof (induct i)  | 
|
738  | 
case 0  | 
|
739  | 
then show ?case by simp  | 
|
740  | 
next  | 
|
741  | 
case (Suc i)  | 
|
742  | 
with inj [of "Suc i" i] have "(f i) \<subset> (f (Suc i))" by auto  | 
|
743  | 
moreover have "finite (f (Suc i))" using S by (rule finite_subset)  | 
|
744  | 
ultimately have "card (f i) < card (f (Suc i))" by (intro psubset_card_mono)  | 
|
745  | 
with Suc inj show ?case by auto  | 
|
746  | 
qed  | 
|
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
747  | 
then have "N \<le> card (f N)" by simp  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
748  | 
also have "\<dots> \<le> card S" using S by (intro card_mono)  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
749  | 
finally have "f (card S) = f N" using eq by auto  | 
| 63612 | 750  | 
then show ?thesis  | 
751  | 
using eq inj [of N]  | 
|
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
752  | 
apply auto  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
753  | 
apply (case_tac "n < N")  | 
| 63612 | 754  | 
apply (auto simp: not_less)  | 
| 
49948
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
755  | 
done  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
756  | 
qed  | 
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
757  | 
|
| 
 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 
haftmann 
parents: 
49739 
diff
changeset
 | 
758  | 
|
| 60758 | 759  | 
subsection \<open>More on injections, bijections, and inverses\<close>  | 
| 55020 | 760  | 
|
| 63374 | 761  | 
locale bijection =  | 
762  | 
fixes f :: "'a \<Rightarrow> 'a"  | 
|
763  | 
assumes bij: "bij f"  | 
|
764  | 
begin  | 
|
765  | 
||
| 63612 | 766  | 
lemma bij_inv: "bij (inv f)"  | 
| 63374 | 767  | 
using bij by (rule bij_imp_bij_inv)  | 
768  | 
||
| 63612 | 769  | 
lemma surj [simp]: "surj f"  | 
| 63374 | 770  | 
using bij by (rule bij_is_surj)  | 
771  | 
||
| 63612 | 772  | 
lemma inj: "inj f"  | 
| 63374 | 773  | 
using bij by (rule bij_is_inj)  | 
774  | 
||
| 63612 | 775  | 
lemma surj_inv [simp]: "surj (inv f)"  | 
| 63374 | 776  | 
using inj by (rule inj_imp_surj_inv)  | 
777  | 
||
| 63612 | 778  | 
lemma inj_inv: "inj (inv f)"  | 
| 63374 | 779  | 
using surj by (rule surj_imp_inj_inv)  | 
780  | 
||
| 63612 | 781  | 
lemma eqI: "f a = f b \<Longrightarrow> a = b"  | 
| 63374 | 782  | 
using inj by (rule injD)  | 
783  | 
||
| 63612 | 784  | 
lemma eq_iff [simp]: "f a = f b \<longleftrightarrow> a = b"  | 
| 63374 | 785  | 
by (auto intro: eqI)  | 
786  | 
||
| 63612 | 787  | 
lemma eq_invI: "inv f a = inv f b \<Longrightarrow> a = b"  | 
| 63374 | 788  | 
using inj_inv by (rule injD)  | 
789  | 
||
| 63612 | 790  | 
lemma eq_inv_iff [simp]: "inv f a = inv f b \<longleftrightarrow> a = b"  | 
| 63374 | 791  | 
by (auto intro: eq_invI)  | 
792  | 
||
| 63612 | 793  | 
lemma inv_left [simp]: "inv f (f a) = a"  | 
| 63374 | 794  | 
using inj by (simp add: inv_f_eq)  | 
795  | 
||
| 63612 | 796  | 
lemma inv_comp_left [simp]: "inv f \<circ> f = id"  | 
| 63374 | 797  | 
by (simp add: fun_eq_iff)  | 
798  | 
||
| 63612 | 799  | 
lemma inv_right [simp]: "f (inv f a) = a"  | 
| 63374 | 800  | 
using surj by (simp add: surj_f_inv_f)  | 
801  | 
||
| 63612 | 802  | 
lemma inv_comp_right [simp]: "f \<circ> inv f = id"  | 
| 63374 | 803  | 
by (simp add: fun_eq_iff)  | 
804  | 
||
| 63612 | 805  | 
lemma inv_left_eq_iff [simp]: "inv f a = b \<longleftrightarrow> f b = a"  | 
| 63374 | 806  | 
by auto  | 
807  | 
||
| 63612 | 808  | 
lemma inv_right_eq_iff [simp]: "b = inv f a \<longleftrightarrow> f b = a"  | 
| 63374 | 809  | 
by auto  | 
810  | 
||
811  | 
end  | 
|
812  | 
||
| 55020 | 813  | 
lemma infinite_imp_bij_betw:  | 
| 63612 | 814  | 
assumes infinite: "\<not> finite A"  | 
815  | 
  shows "\<exists>h. bij_betw h A (A - {a})"
 | 
|
816  | 
proof (cases "a \<in> A")  | 
|
817  | 
case False  | 
|
818  | 
  then have "A - {a} = A" by blast
 | 
|
819  | 
then show ?thesis  | 
|
820  | 
using bij_betw_id[of A] by auto  | 
|
| 55020 | 821  | 
next  | 
| 63612 | 822  | 
case True  | 
823  | 
  with infinite have "\<not> finite (A - {a})" by auto
 | 
|
824  | 
  with infinite_iff_countable_subset[of "A - {a}"]
 | 
|
825  | 
  obtain f :: "nat \<Rightarrow> 'a" where 1: "inj f" and 2: "f ` UNIV \<subseteq> A - {a}" by blast
 | 
|
826  | 
define g where "g n = (if n = 0 then a else f (Suc n))" for n  | 
|
827  | 
define A' where "A' = g ` UNIV"  | 
|
828  | 
have *: "\<forall>y. f y \<noteq> a" using 2 by blast  | 
|
829  | 
have 3: "inj_on g UNIV \<and> g ` UNIV \<subseteq> A \<and> a \<in> g ` UNIV"  | 
|
830  | 
apply (auto simp add: True g_def [abs_def])  | 
|
831  | 
apply (unfold inj_on_def)  | 
|
832  | 
apply (intro ballI impI)  | 
|
833  | 
apply (case_tac "x = 0")  | 
|
834  | 
apply (auto simp add: 2)  | 
|
835  | 
proof -  | 
|
836  | 
fix y  | 
|
837  | 
assume "a = (if y = 0 then a else f (Suc y))"  | 
|
838  | 
then show "y = 0" by (cases "y = 0") (use * in auto)  | 
|
| 55020 | 839  | 
next  | 
840  | 
fix x y  | 
|
841  | 
assume "f (Suc x) = (if y = 0 then a else f (Suc y))"  | 
|
| 63612 | 842  | 
with 1 * show "x = y" by (cases "y = 0") (auto simp: inj_on_def)  | 
| 55020 | 843  | 
next  | 
| 63612 | 844  | 
fix n  | 
845  | 
from 2 show "f (Suc n) \<in> A" by blast  | 
|
| 55020 | 846  | 
qed  | 
| 63612 | 847  | 
then have 4: "bij_betw g UNIV A' \<and> a \<in> A' \<and> A' \<subseteq> A"  | 
848  | 
using inj_on_imp_bij_betw[of g] by (auto simp: A'_def)  | 
|
849  | 
then have 5: "bij_betw (inv g) A' UNIV"  | 
|
850  | 
by (auto simp add: bij_betw_inv_into)  | 
|
851  | 
from 3 obtain n where n: "g n = a" by auto  | 
|
852  | 
  have 6: "bij_betw g (UNIV - {n}) (A' - {a})"
 | 
|
853  | 
by (rule bij_betw_subset) (use 3 4 n in \<open>auto simp: image_set_diff A'_def\<close>)  | 
|
854  | 
define v where "v m = (if m < n then m else Suc m)" for m  | 
|
| 55020 | 855  | 
  have 7: "bij_betw v UNIV (UNIV - {n})"
 | 
| 63612 | 856  | 
proof (unfold bij_betw_def inj_on_def, intro conjI, clarify)  | 
857  | 
fix m1 m2  | 
|
858  | 
assume "v m1 = v m2"  | 
|
859  | 
then show "m1 = m2"  | 
|
860  | 
apply (cases "m1 < n")  | 
|
861  | 
apply (cases "m2 < n")  | 
|
862  | 
apply (auto simp: inj_on_def v_def [abs_def])  | 
|
863  | 
apply (cases "m2 < n")  | 
|
864  | 
apply auto  | 
|
865  | 
done  | 
|
| 55020 | 866  | 
next  | 
867  | 
    show "v ` UNIV = UNIV - {n}"
 | 
|
| 63612 | 868  | 
proof (auto simp: v_def [abs_def])  | 
869  | 
fix m  | 
|
870  | 
assume "m \<noteq> n"  | 
|
871  | 
      assume *: "m \<notin> Suc ` {m'. \<not> m' < n}"
 | 
|
872  | 
have False if "n \<le> m"  | 
|
873  | 
proof -  | 
|
874  | 
from \<open>m \<noteq> n\<close> that have **: "Suc n \<le> m" by auto  | 
|
875  | 
from Suc_le_D [OF this] obtain m' where m': "m = Suc m'" ..  | 
|
876  | 
with ** have "n \<le> m'" by auto  | 
|
877  | 
with m' * show ?thesis by auto  | 
|
878  | 
qed  | 
|
879  | 
then show "m < n" by force  | 
|
| 55020 | 880  | 
qed  | 
881  | 
qed  | 
|
| 63612 | 882  | 
define h' where "h' = g \<circ> v \<circ> (inv g)"  | 
883  | 
  with 5 6 7 have 8: "bij_betw h' A' (A' - {a})"
 | 
|
884  | 
by (auto simp add: bij_betw_trans)  | 
|
885  | 
define h where "h b = (if b \<in> A' then h' b else b)" for b  | 
|
886  | 
then have "\<forall>b \<in> A'. h b = h' b" by simp  | 
|
887  | 
  with 8 have "bij_betw h  A' (A' - {a})"
 | 
|
888  | 
using bij_betw_cong[of A' h] by auto  | 
|
| 55020 | 889  | 
moreover  | 
| 63612 | 890  | 
have "\<forall>b \<in> A - A'. h b = b" by (auto simp: h_def)  | 
891  | 
then have "bij_betw h (A - A') (A - A')"  | 
|
892  | 
using bij_betw_cong[of "A - A'" h id] bij_betw_id[of "A - A'"] by auto  | 
|
| 55020 | 893  | 
moreover  | 
| 63612 | 894  | 
  from 4 have "(A' \<inter> (A - A') = {} \<and> A' \<union> (A - A') = A) \<and>
 | 
895  | 
    ((A' - {a}) \<inter> (A - A') = {} \<and> (A' - {a}) \<union> (A - A') = A - {a})"
 | 
|
896  | 
by blast  | 
|
| 55020 | 897  | 
  ultimately have "bij_betw h A (A - {a})"
 | 
| 63612 | 898  | 
    using bij_betw_combine[of h A' "A' - {a}" "A - A'" "A - A'"] by simp
 | 
899  | 
then show ?thesis by blast  | 
|
| 55020 | 900  | 
qed  | 
901  | 
||
902  | 
lemma infinite_imp_bij_betw2:  | 
|
| 63612 | 903  | 
assumes "\<not> finite A"  | 
904  | 
  shows "\<exists>h. bij_betw h A (A \<union> {a})"
 | 
|
905  | 
proof (cases "a \<in> A")  | 
|
906  | 
case True  | 
|
907  | 
  then have "A \<union> {a} = A" by blast
 | 
|
908  | 
then show ?thesis using bij_betw_id[of A] by auto  | 
|
| 55020 | 909  | 
next  | 
| 63612 | 910  | 
case False  | 
| 55020 | 911  | 
  let ?A' = "A \<union> {a}"
 | 
| 63612 | 912  | 
  from False have "A = ?A' - {a}" by blast
 | 
913  | 
moreover from assms have "\<not> finite ?A'" by auto  | 
|
| 55020 | 914  | 
ultimately obtain f where "bij_betw f ?A' A"  | 
| 63612 | 915  | 
using infinite_imp_bij_betw[of ?A' a] by auto  | 
916  | 
then have "bij_betw (inv_into ?A' f) A ?A'" by (rule bij_betw_inv_into)  | 
|
917  | 
then show ?thesis by auto  | 
|
| 55020 | 918  | 
qed  | 
919  | 
||
| 63612 | 920  | 
lemma bij_betw_inv_into_left: "bij_betw f A A' \<Longrightarrow> a \<in> A \<Longrightarrow> inv_into A f (f a) = a"  | 
921  | 
unfolding bij_betw_def by clarify (rule inv_into_f_f)  | 
|
| 55020 | 922  | 
|
| 63612 | 923  | 
lemma bij_betw_inv_into_right: "bij_betw f A A' \<Longrightarrow> a' \<in> A' \<Longrightarrow> f (inv_into A f a') = a'"  | 
924  | 
unfolding bij_betw_def using f_inv_into_f by force  | 
|
| 55020 | 925  | 
|
926  | 
lemma bij_betw_inv_into_subset:  | 
|
| 63612 | 927  | 
"bij_betw f A A' \<Longrightarrow> B \<subseteq> A \<Longrightarrow> f ` B = B' \<Longrightarrow> bij_betw (inv_into A f) B' B"  | 
928  | 
by (auto simp: bij_betw_def intro: inj_on_inv_into)  | 
|
| 55020 | 929  | 
|
930  | 
||
| 60758 | 931  | 
subsection \<open>Specification package -- Hilbertized version\<close>  | 
| 
17893
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
932  | 
|
| 63612 | 933  | 
lemma exE_some: "Ex P \<Longrightarrow> c \<equiv> Eps P \<Longrightarrow> P c"  | 
| 
17893
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
934  | 
by (simp only: someI_ex)  | 
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
935  | 
|
| 48891 | 936  | 
ML_file "Tools/choice_specification.ML"  | 
| 14115 | 937  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
938  | 
end  |