| author | wenzelm | 
| Thu, 23 Oct 2008 15:28:05 +0200 | |
| changeset 28675 | fb68c0767004 | 
| parent 28562 | 4e74209f113e | 
| child 29012 | 9140227dc8c5 | 
| permissions | -rw-r--r-- | 
| 11355 | 1 | (* Title: HOL/Library/Nat_Infinity.thy | 
| 2 | ID: $Id$ | |
| 27110 | 3 | Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 4 | *) | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 5 | |
| 14706 | 6 | header {* Natural numbers with infinity *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 7 | |
| 15131 | 8 | theory Nat_Infinity | 
| 27487 | 9 | imports Plain "~~/src/HOL/Presburger" | 
| 15131 | 10 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 11 | |
| 27110 | 12 | subsection {* Type definition *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 13 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 14 | text {*
 | 
| 11355 | 15 | We extend the standard natural numbers by a special value indicating | 
| 27110 | 16 | infinity. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 17 | *} | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 18 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 19 | datatype inat = Fin nat | Infty | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 20 | |
| 21210 | 21 | notation (xsymbols) | 
| 19736 | 22 |   Infty  ("\<infinity>")
 | 
| 23 | ||
| 21210 | 24 | notation (HTML output) | 
| 19736 | 25 |   Infty  ("\<infinity>")
 | 
| 26 | ||
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 27 | |
| 27110 | 28 | subsection {* Constructors and numbers *}
 | 
| 29 | ||
| 30 | instantiation inat :: "{zero, one, number}"
 | |
| 25594 | 31 | begin | 
| 32 | ||
| 33 | definition | |
| 27110 | 34 | "0 = Fin 0" | 
| 25594 | 35 | |
| 36 | definition | |
| 27110 | 37 | [code inline]: "1 = Fin 1" | 
| 25594 | 38 | |
| 39 | definition | |
| 28562 | 40 | [code inline, code del]: "number_of k = Fin (number_of k)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 41 | |
| 25594 | 42 | instance .. | 
| 43 | ||
| 44 | end | |
| 45 | ||
| 27110 | 46 | definition iSuc :: "inat \<Rightarrow> inat" where | 
| 47 | "iSuc i = (case i of Fin n \<Rightarrow> Fin (Suc n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 48 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 49 | lemma Fin_0: "Fin 0 = 0" | 
| 27110 | 50 | by (simp add: zero_inat_def) | 
| 51 | ||
| 52 | lemma Fin_1: "Fin 1 = 1" | |
| 53 | by (simp add: one_inat_def) | |
| 54 | ||
| 55 | lemma Fin_number: "Fin (number_of k) = number_of k" | |
| 56 | by (simp add: number_of_inat_def) | |
| 57 | ||
| 58 | lemma one_iSuc: "1 = iSuc 0" | |
| 59 | by (simp add: zero_inat_def one_inat_def iSuc_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 60 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 61 | lemma Infty_ne_i0 [simp]: "\<infinity> \<noteq> 0" | 
| 27110 | 62 | by (simp add: zero_inat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 63 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 64 | lemma i0_ne_Infty [simp]: "0 \<noteq> \<infinity>" | 
| 27110 | 65 | by (simp add: zero_inat_def) | 
| 66 | ||
| 67 | lemma zero_inat_eq [simp]: | |
| 68 | "number_of k = (0\<Colon>inat) \<longleftrightarrow> number_of k = (0\<Colon>nat)" | |
| 69 | "(0\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (0\<Colon>nat)" | |
| 70 | unfolding zero_inat_def number_of_inat_def by simp_all | |
| 71 | ||
| 72 | lemma one_inat_eq [simp]: | |
| 73 | "number_of k = (1\<Colon>inat) \<longleftrightarrow> number_of k = (1\<Colon>nat)" | |
| 74 | "(1\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (1\<Colon>nat)" | |
| 75 | unfolding one_inat_def number_of_inat_def by simp_all | |
| 76 | ||
| 77 | lemma zero_one_inat_neq [simp]: | |
| 78 | "\<not> 0 = (1\<Colon>inat)" | |
| 79 | "\<not> 1 = (0\<Colon>inat)" | |
| 80 | unfolding zero_inat_def one_inat_def by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 81 | |
| 27110 | 82 | lemma Infty_ne_i1 [simp]: "\<infinity> \<noteq> 1" | 
| 83 | by (simp add: one_inat_def) | |
| 84 | ||
| 85 | lemma i1_ne_Infty [simp]: "1 \<noteq> \<infinity>" | |
| 86 | by (simp add: one_inat_def) | |
| 87 | ||
| 88 | lemma Infty_ne_number [simp]: "\<infinity> \<noteq> number_of k" | |
| 89 | by (simp add: number_of_inat_def) | |
| 90 | ||
| 91 | lemma number_ne_Infty [simp]: "number_of k \<noteq> \<infinity>" | |
| 92 | by (simp add: number_of_inat_def) | |
| 93 | ||
| 94 | lemma iSuc_Fin: "iSuc (Fin n) = Fin (Suc n)" | |
| 95 | by (simp add: iSuc_def) | |
| 96 | ||
| 97 | lemma iSuc_number_of: "iSuc (number_of k) = Fin (Suc (number_of k))" | |
| 98 | by (simp add: iSuc_Fin number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 99 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 100 | lemma iSuc_Infty [simp]: "iSuc \<infinity> = \<infinity>" | 
| 27110 | 101 | by (simp add: iSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 102 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 103 | lemma iSuc_ne_0 [simp]: "iSuc n \<noteq> 0" | 
| 27110 | 104 | by (simp add: iSuc_def zero_inat_def split: inat.splits) | 
| 105 | ||
| 106 | lemma zero_ne_iSuc [simp]: "0 \<noteq> iSuc n" | |
| 107 | by (rule iSuc_ne_0 [symmetric]) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 108 | |
| 27110 | 109 | lemma iSuc_inject [simp]: "iSuc m = iSuc n \<longleftrightarrow> m = n" | 
| 110 | by (simp add: iSuc_def split: inat.splits) | |
| 111 | ||
| 112 | lemma number_of_inat_inject [simp]: | |
| 113 | "(number_of k \<Colon> inat) = number_of l \<longleftrightarrow> (number_of k \<Colon> nat) = number_of l" | |
| 114 | by (simp add: number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 115 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 116 | |
| 27110 | 117 | subsection {* Addition *}
 | 
| 118 | ||
| 119 | instantiation inat :: comm_monoid_add | |
| 120 | begin | |
| 121 | ||
| 122 | definition | |
| 123 | [code del]: "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 124 | |
| 27110 | 125 | lemma plus_inat_simps [simp, code]: | 
| 126 | "Fin m + Fin n = Fin (m + n)" | |
| 127 | "\<infinity> + q = \<infinity>" | |
| 128 | "q + \<infinity> = \<infinity>" | |
| 129 | by (simp_all add: plus_inat_def split: inat.splits) | |
| 130 | ||
| 131 | instance proof | |
| 132 | fix n m q :: inat | |
| 133 | show "n + m + q = n + (m + q)" | |
| 134 | by (cases n, auto, cases m, auto, cases q, auto) | |
| 135 | show "n + m = m + n" | |
| 136 | by (cases n, auto, cases m, auto) | |
| 137 | show "0 + n = n" | |
| 138 | by (cases n) (simp_all add: zero_inat_def) | |
| 26089 | 139 | qed | 
| 140 | ||
| 27110 | 141 | end | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 142 | |
| 27110 | 143 | lemma plus_inat_0 [simp]: | 
| 144 | "0 + (q\<Colon>inat) = q" | |
| 145 | "(q\<Colon>inat) + 0 = q" | |
| 146 | by (simp_all add: plus_inat_def zero_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 147 | |
| 27110 | 148 | lemma plus_inat_number [simp]: | 
| 149 | "(number_of k \<Colon> inat) + number_of l = (if neg (number_of k \<Colon> int) then number_of l | |
| 150 | else if neg (number_of l \<Colon> int) then number_of k else number_of (k + l))" | |
| 151 | unfolding number_of_inat_def plus_inat_simps nat_arith(1) if_distrib [symmetric, of _ Fin] .. | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 152 | |
| 27110 | 153 | lemma iSuc_number [simp]: | 
| 154 | "iSuc (number_of k) = (if neg (number_of k \<Colon> int) then 1 else number_of (Int.succ k))" | |
| 155 | unfolding iSuc_number_of | |
| 156 | unfolding one_inat_def number_of_inat_def Suc_nat_number_of if_distrib [symmetric] .. | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 157 | |
| 27110 | 158 | lemma iSuc_plus_1: | 
| 159 | "iSuc n = n + 1" | |
| 160 | by (cases n) (simp_all add: iSuc_Fin one_inat_def) | |
| 161 | ||
| 162 | lemma plus_1_iSuc: | |
| 163 | "1 + q = iSuc q" | |
| 164 | "q + 1 = iSuc q" | |
| 165 | unfolding iSuc_plus_1 by (simp_all add: add_ac) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 166 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 167 | |
| 27110 | 168 | subsection {* Ordering *}
 | 
| 169 | ||
| 170 | instantiation inat :: ordered_ab_semigroup_add | |
| 171 | begin | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 172 | |
| 27110 | 173 | definition | 
| 174 | [code del]: "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False) | |
| 175 | | \<infinity> \<Rightarrow> True)" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 176 | |
| 27110 | 177 | definition | 
| 178 | [code del]: "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True) | |
| 179 | | \<infinity> \<Rightarrow> False)" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 180 | |
| 27110 | 181 | lemma inat_ord_simps [simp]: | 
| 182 | "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" | |
| 183 | "Fin m < Fin n \<longleftrightarrow> m < n" | |
| 184 | "q \<le> \<infinity>" | |
| 185 | "q < \<infinity> \<longleftrightarrow> q \<noteq> \<infinity>" | |
| 186 | "\<infinity> \<le> q \<longleftrightarrow> q = \<infinity>" | |
| 187 | "\<infinity> < q \<longleftrightarrow> False" | |
| 188 | by (simp_all add: less_eq_inat_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 189 | |
| 27110 | 190 | lemma inat_ord_code [code]: | 
| 191 | "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" | |
| 192 | "Fin m < Fin n \<longleftrightarrow> m < n" | |
| 193 | "q \<le> \<infinity> \<longleftrightarrow> True" | |
| 194 | "Fin m < \<infinity> \<longleftrightarrow> True" | |
| 195 | "\<infinity> \<le> Fin n \<longleftrightarrow> False" | |
| 196 | "\<infinity> < q \<longleftrightarrow> False" | |
| 197 | by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 198 | |
| 27110 | 199 | instance by default | 
| 200 | (auto simp add: less_eq_inat_def less_inat_def plus_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 201 | |
| 27110 | 202 | end | 
| 203 | ||
| 204 | lemma inat_ord_number [simp]: | |
| 205 | "(number_of m \<Colon> inat) \<le> number_of n \<longleftrightarrow> (number_of m \<Colon> nat) \<le> number_of n" | |
| 206 | "(number_of m \<Colon> inat) < number_of n \<longleftrightarrow> (number_of m \<Colon> nat) < number_of n" | |
| 207 | by (simp_all add: number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 208 | |
| 27110 | 209 | lemma i0_lb [simp]: "(0\<Colon>inat) \<le> n" | 
| 210 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 211 | |
| 27110 | 212 | lemma i0_neq [simp]: "n \<le> (0\<Colon>inat) \<longleftrightarrow> n = 0" | 
| 213 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 214 | ||
| 215 | lemma Infty_ileE [elim!]: "\<infinity> \<le> Fin m \<Longrightarrow> R" | |
| 216 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 217 | |
| 27110 | 218 | lemma Infty_ilessE [elim!]: "\<infinity> < Fin m \<Longrightarrow> R" | 
| 219 | by simp | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 220 | |
| 27110 | 221 | lemma not_ilessi0 [simp]: "\<not> n < (0\<Colon>inat)" | 
| 222 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 223 | ||
| 224 | lemma i0_eq [simp]: "(0\<Colon>inat) < n \<longleftrightarrow> n \<noteq> 0" | |
| 225 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 226 | |
| 27110 | 227 | lemma iSuc_ile_mono [simp]: "iSuc n \<le> iSuc m \<longleftrightarrow> n \<le> m" | 
| 228 | by (simp add: iSuc_def less_eq_inat_def split: inat.splits) | |
| 229 | ||
| 230 | lemma iSuc_mono [simp]: "iSuc n < iSuc m \<longleftrightarrow> n < m" | |
| 231 | by (simp add: iSuc_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 232 | |
| 27110 | 233 | lemma ile_iSuc [simp]: "n \<le> iSuc n" | 
| 234 | by (simp add: iSuc_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 235 | |
| 11355 | 236 | lemma not_iSuc_ilei0 [simp]: "\<not> iSuc n \<le> 0" | 
| 27110 | 237 | by (simp add: zero_inat_def iSuc_def less_eq_inat_def split: inat.splits) | 
| 238 | ||
| 239 | lemma i0_iless_iSuc [simp]: "0 < iSuc n" | |
| 240 | by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.splits) | |
| 241 | ||
| 242 | lemma ileI1: "m < n \<Longrightarrow> iSuc m \<le> n" | |
| 243 | by (simp add: iSuc_def less_eq_inat_def less_inat_def split: inat.splits) | |
| 244 | ||
| 245 | lemma Suc_ile_eq: "Fin (Suc m) \<le> n \<longleftrightarrow> Fin m < n" | |
| 246 | by (cases n) auto | |
| 247 | ||
| 248 | lemma iless_Suc_eq [simp]: "Fin m < iSuc n \<longleftrightarrow> Fin m \<le> n" | |
| 249 | by (auto simp add: iSuc_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 250 | |
| 27110 | 251 | lemma min_inat_simps [simp]: | 
| 252 | "min (Fin m) (Fin n) = Fin (min m n)" | |
| 253 | "min q 0 = 0" | |
| 254 | "min 0 q = 0" | |
| 255 | "min q \<infinity> = q" | |
| 256 | "min \<infinity> q = q" | |
| 257 | by (auto simp add: min_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 258 | |
| 27110 | 259 | lemma max_inat_simps [simp]: | 
| 260 | "max (Fin m) (Fin n) = Fin (max m n)" | |
| 261 | "max q 0 = q" | |
| 262 | "max 0 q = q" | |
| 263 | "max q \<infinity> = \<infinity>" | |
| 264 | "max \<infinity> q = \<infinity>" | |
| 265 | by (simp_all add: max_def) | |
| 266 | ||
| 267 | lemma Fin_ile: "n \<le> Fin m \<Longrightarrow> \<exists>k. n = Fin k" | |
| 268 | by (cases n) simp_all | |
| 269 | ||
| 270 | lemma Fin_iless: "n < Fin m \<Longrightarrow> \<exists>k. n = Fin k" | |
| 271 | by (cases n) simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 272 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 273 | lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. Fin k < Y j" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 274 | apply (induct_tac k) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 275 | apply (simp (no_asm) only: Fin_0) | 
| 27110 | 276 | apply (fast intro: le_less_trans [OF i0_lb]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 277 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 278 | apply (drule spec) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 279 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 280 | apply (drule ileI1) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 281 | apply (rule iSuc_Fin [THEN subst]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 282 | apply (rule exI) | 
| 27110 | 283 | apply (erule (1) le_less_trans) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 284 | done | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 285 | |
| 26089 | 286 | |
| 27110 | 287 | subsection {* Well-ordering *}
 | 
| 26089 | 288 | |
| 289 | lemma less_FinE: | |
| 290 | "[| n < Fin m; !!k. n = Fin k ==> k < m ==> P |] ==> P" | |
| 291 | by (induct n) auto | |
| 292 | ||
| 293 | lemma less_InftyE: | |
| 294 | "[| n < Infty; !!k. n = Fin k ==> P |] ==> P" | |
| 295 | by (induct n) auto | |
| 296 | ||
| 297 | lemma inat_less_induct: | |
| 298 | assumes prem: "!!n. \<forall>m::inat. m < n --> P m ==> P n" shows "P n" | |
| 299 | proof - | |
| 300 | have P_Fin: "!!k. P (Fin k)" | |
| 301 | apply (rule nat_less_induct) | |
| 302 | apply (rule prem, clarify) | |
| 303 | apply (erule less_FinE, simp) | |
| 304 | done | |
| 305 | show ?thesis | |
| 306 | proof (induct n) | |
| 307 | fix nat | |
| 308 | show "P (Fin nat)" by (rule P_Fin) | |
| 309 | next | |
| 310 | show "P Infty" | |
| 311 | apply (rule prem, clarify) | |
| 312 | apply (erule less_InftyE) | |
| 313 | apply (simp add: P_Fin) | |
| 314 | done | |
| 315 | qed | |
| 316 | qed | |
| 317 | ||
| 318 | instance inat :: wellorder | |
| 319 | proof | |
| 27823 | 320 | fix P and n | 
| 321 | assume hyp: "(\<And>n\<Colon>inat. (\<And>m\<Colon>inat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)" | |
| 322 | show "P n" by (blast intro: inat_less_induct hyp) | |
| 26089 | 323 | qed | 
| 324 | ||
| 27110 | 325 | |
| 326 | subsection {* Traditional theorem names *}
 | |
| 327 | ||
| 328 | lemmas inat_defs = zero_inat_def one_inat_def number_of_inat_def iSuc_def | |
| 329 | plus_inat_def less_eq_inat_def less_inat_def | |
| 330 | ||
| 331 | lemmas inat_splits = inat.splits | |
| 332 | ||
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 333 | end |