| author | wenzelm | 
| Thu, 23 Oct 2008 15:28:05 +0200 | |
| changeset 28675 | fb68c0767004 | 
| parent 28402 | 09e4aa3ddc25 | 
| child 28967 | 3bdb1eae352c | 
| permissions | -rw-r--r-- | 
| 23465 | 1 | (* Title: HOL/Presburger.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Amine Chaieb, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 23472 | 6 | header {* Decision Procedure for Presburger Arithmetic *}
 | 
| 7 | ||
| 23465 | 8 | theory Presburger | 
| 28402 | 9 | imports Groebner_Basis SetInterval | 
| 23465 | 10 | uses | 
| 11 | "Tools/Qelim/cooper_data.ML" | |
| 12 | "Tools/Qelim/generated_cooper.ML" | |
| 13 |   ("Tools/Qelim/cooper.ML")
 | |
| 14 |   ("Tools/Qelim/presburger.ML")
 | |
| 15 | begin | |
| 16 | ||
| 17 | setup CooperData.setup | |
| 18 | ||
| 19 | subsection{* The @{text "-\<infinity>"} and @{text "+\<infinity>"} Properties *}
 | |
| 20 | ||
| 24404 | 21 | |
| 23465 | 22 | lemma minf: | 
| 23 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> | |
| 24 | \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)" | |
| 25 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> | |
| 26 | \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)" | |
| 27 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x = t) = False"
 | |
| 28 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<noteq> t) = True"
 | |
| 29 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x < t) = True"
 | |
| 30 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<le> t) = True"
 | |
| 31 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x > t) = False"
 | |
| 32 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<ge> t) = False"
 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 33 |   "\<exists>z.\<forall>(x::'a::{linorder,plus,Ring_and_Field.dvd})<z. (d dvd x + s) = (d dvd x + s)"
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 34 |   "\<exists>z.\<forall>(x::'a::{linorder,plus,Ring_and_Field.dvd})<z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
 | 
| 23465 | 35 | "\<exists>z.\<forall>x<z. F = F" | 
| 36 | by ((erule exE, erule exE,rule_tac x="min z za" in exI,simp)+, (rule_tac x="t" in exI,fastsimp)+) simp_all | |
| 37 | ||
| 38 | lemma pinf: | |
| 39 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> | |
| 40 | \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)" | |
| 41 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> | |
| 42 | \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)" | |
| 43 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x = t) = False"
 | |
| 44 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<noteq> t) = True"
 | |
| 45 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x < t) = False"
 | |
| 46 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<le> t) = False"
 | |
| 47 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x > t) = True"
 | |
| 48 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<ge> t) = True"
 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 49 |   "\<exists>z.\<forall>(x::'a::{linorder,plus,Ring_and_Field.dvd})>z. (d dvd x + s) = (d dvd x + s)"
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 50 |   "\<exists>z.\<forall>(x::'a::{linorder,plus,Ring_and_Field.dvd})>z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
 | 
| 23465 | 51 | "\<exists>z.\<forall>x>z. F = F" | 
| 52 | by ((erule exE, erule exE,rule_tac x="max z za" in exI,simp)+,(rule_tac x="t" in exI,fastsimp)+) simp_all | |
| 53 | ||
| 54 | lemma inf_period: | |
| 55 | "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> | |
| 56 | \<Longrightarrow> \<forall>x k. (P x \<and> Q x) = (P (x - k*D) \<and> Q (x - k*D))" | |
| 57 | "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> | |
| 58 | \<Longrightarrow> \<forall>x k. (P x \<or> Q x) = (P (x - k*D) \<or> Q (x - k*D))" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 59 |   "(d::'a::{comm_ring,Ring_and_Field.dvd}) dvd D \<Longrightarrow> \<forall>x k. (d dvd x + t) = (d dvd (x - k*D) + t)"
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 60 |   "(d::'a::{comm_ring,Ring_and_Field.dvd}) dvd D \<Longrightarrow> \<forall>x k. (\<not>d dvd x + t) = (\<not>d dvd (x - k*D) + t)"
 | 
| 23465 | 61 | "\<forall>x k. F = F" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 62 | apply (auto elim!: dvdE simp add: ring_simps) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 63 | unfolding mult_assoc [symmetric] left_distrib [symmetric] left_diff_distrib [symmetric] | 
| 27668 | 64 | unfolding dvd_def mult_commute [of d] | 
| 65 | by auto | |
| 23465 | 66 | |
| 23472 | 67 | subsection{* The A and B sets *}
 | 
| 23465 | 68 | lemma bset: | 
| 69 |   "\<lbrakk>\<forall>x.(\<forall>j \<in> {1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
 | |
| 70 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> 
 | |
| 71 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x - D) \<and> Q (x - D))"
 | |
| 72 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
 | |
| 73 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> 
 | |
| 74 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x - D) \<or> Q (x - D))"
 | |
| 75 |   "\<lbrakk>D>0; t - 1\<in> B\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))"
 | |
| 76 |   "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))"
 | |
| 77 |   "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))"
 | |
| 78 |   "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t))"
 | |
| 79 |   "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t))"
 | |
| 80 |   "\<lbrakk>D>0 ; t - 1 \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t))"
 | |
| 81 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t))"
 | |
| 82 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x - D) + t))"
 | |
| 83 |   "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> F \<longrightarrow> F"
 | |
| 84 | proof (blast, blast) | |
| 85 | assume dp: "D > 0" and tB: "t - 1\<in> B" | |
| 86 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))" 
 | |
| 27668 | 87 | apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"]) | 
| 88 | apply algebra using dp tB by simp_all | |
| 23465 | 89 | next | 
| 90 | assume dp: "D > 0" and tB: "t \<in> B" | |
| 91 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))" 
 | |
| 92 | apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) | |
| 27668 | 93 | apply algebra | 
| 23465 | 94 | using dp tB by simp_all | 
| 95 | next | |
| 96 |   assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" by arith
 | |
| 97 | next | |
| 98 |   assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t)" by arith
 | |
| 99 | next | |
| 100 | assume dp: "D > 0" and tB:"t \<in> B" | |
| 101 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x > t" and ng: "\<not> (x - D) > t"
 | |
| 102 | hence "x -t \<le> D" and "1 \<le> x - t" by simp+ | |
| 103 |       hence "\<exists>j \<in> {1 .. D}. x - t = j" by auto
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 104 |       hence "\<exists>j \<in> {1 .. D}. x = t + j" by (simp add: ring_simps)
 | 
| 23465 | 105 | with nob tB have "False" by simp} | 
| 106 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t)" by blast
 | |
| 107 | next | |
| 108 | assume dp: "D > 0" and tB:"t - 1\<in> B" | |
| 109 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x \<ge> t" and ng: "\<not> (x - D) \<ge> t"
 | |
| 110 | hence "x - (t - 1) \<le> D" and "1 \<le> x - (t - 1)" by simp+ | |
| 111 |       hence "\<exists>j \<in> {1 .. D}. x - (t - 1) = j" by auto
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 112 |       hence "\<exists>j \<in> {1 .. D}. x = (t - 1) + j" by (simp add: ring_simps)
 | 
| 23465 | 113 | with nob tB have "False" by simp} | 
| 114 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t)" by blast
 | |
| 115 | next | |
| 116 | assume d: "d dvd D" | |
| 27668 | 117 |   {fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t" by algebra}
 | 
| 23465 | 118 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t)" by simp
 | 
| 119 | next | |
| 120 | assume d: "d dvd D" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 121 |   {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not> d dvd (x - D) + t"
 | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 122 | by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: ring_simps)} | 
| 23465 | 123 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x - D) + t)" by auto
 | 
| 124 | qed blast | |
| 125 | ||
| 126 | lemma aset: | |
| 127 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
 | |
| 128 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> 
 | |
| 129 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x + D) \<and> Q (x + D))"
 | |
| 130 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
 | |
| 131 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> 
 | |
| 132 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x + D) \<or> Q (x + D))"
 | |
| 133 |   "\<lbrakk>D>0; t + 1\<in> A\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))"
 | |
| 134 |   "\<lbrakk>D>0 ; t \<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))"
 | |
| 135 |   "\<lbrakk>D>0; t\<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int). (\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t))"
 | |
| 136 |   "\<lbrakk>D>0; t + 1 \<in> A\<rbrakk> \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t))"
 | |
| 137 |   "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))"
 | |
| 138 |   "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t))"
 | |
| 139 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t))"
 | |
| 140 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x + D) + t))"
 | |
| 141 |   "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> F \<longrightarrow> F"
 | |
| 142 | proof (blast, blast) | |
| 143 | assume dp: "D > 0" and tA: "t + 1 \<in> A" | |
| 144 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))" 
 | |
| 145 | apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"]) | |
| 146 | using dp tA by simp_all | |
| 147 | next | |
| 148 | assume dp: "D > 0" and tA: "t \<in> A" | |
| 149 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))" 
 | |
| 150 | apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) | |
| 151 | using dp tA by simp_all | |
| 152 | next | |
| 153 |   assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" by arith
 | |
| 154 | next | |
| 155 |   assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t)" by arith
 | |
| 156 | next | |
| 157 | assume dp: "D > 0" and tA:"t \<in> A" | |
| 158 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x < t" and ng: "\<not> (x + D) < t"
 | |
| 159 | hence "t - x \<le> D" and "1 \<le> t - x" by simp+ | |
| 160 |       hence "\<exists>j \<in> {1 .. D}. t - x = j" by auto
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 161 |       hence "\<exists>j \<in> {1 .. D}. x = t - j" by (auto simp add: ring_simps) 
 | 
| 23465 | 162 | with nob tA have "False" by simp} | 
| 163 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t)" by blast
 | |
| 164 | next | |
| 165 | assume dp: "D > 0" and tA:"t + 1\<in> A" | |
| 166 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x \<le> t" and ng: "\<not> (x + D) \<le> t"
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 167 | hence "(t + 1) - x \<le> D" and "1 \<le> (t + 1) - x" by (simp_all add: ring_simps) | 
| 23465 | 168 |       hence "\<exists>j \<in> {1 .. D}. (t + 1) - x = j" by auto
 | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 169 |       hence "\<exists>j \<in> {1 .. D}. x = (t + 1) - j" by (auto simp add: ring_simps)
 | 
| 23465 | 170 | with nob tA have "False" by simp} | 
| 171 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t)" by blast
 | |
| 172 | next | |
| 173 | assume d: "d dvd D" | |
| 174 |   {fix x assume H: "d dvd x + t" with d have "d dvd (x + D) + t"
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 175 | by (clarsimp simp add: dvd_def,rule_tac x= "ka + k" in exI,simp add: ring_simps)} | 
| 23465 | 176 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t)" by simp
 | 
| 177 | next | |
| 178 | assume d: "d dvd D" | |
| 179 |   {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x + D) + t"
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 180 | by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: ring_simps)} | 
| 23465 | 181 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x + D) + t)" by auto
 | 
| 182 | qed blast | |
| 183 | ||
| 184 | subsection{* Cooper's Theorem @{text "-\<infinity>"} and @{text "+\<infinity>"} Version *}
 | |
| 185 | ||
| 186 | subsubsection{* First some trivial facts about periodic sets or predicates *}
 | |
| 187 | lemma periodic_finite_ex: | |
| 188 | assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)" | |
| 189 |   shows "(EX x. P x) = (EX j : {1..d}. P j)"
 | |
| 190 | (is "?LHS = ?RHS") | |
| 191 | proof | |
| 192 | assume ?LHS | |
| 193 | then obtain x where P: "P x" .. | |
| 194 | have "x mod d = x - (x div d)*d" by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq) | |
| 195 | hence Pmod: "P x = P(x mod d)" using modd by simp | |
| 196 | show ?RHS | |
| 197 | proof (cases) | |
| 198 | assume "x mod d = 0" | |
| 199 | hence "P 0" using P Pmod by simp | |
| 200 | moreover have "P 0 = P(0 - (-1)*d)" using modd by blast | |
| 201 | ultimately have "P d" by simp | |
| 202 |     moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
 | |
| 203 | ultimately show ?RHS .. | |
| 204 | next | |
| 205 | assume not0: "x mod d \<noteq> 0" | |
| 206 | have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound) | |
| 207 |     moreover have "x mod d : {1..d}"
 | |
| 208 | proof - | |
| 209 | from dpos have "0 \<le> x mod d" by(rule pos_mod_sign) | |
| 210 | moreover from dpos have "x mod d < d" by(rule pos_mod_bound) | |
| 211 | ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff) | |
| 212 | qed | |
| 213 | ultimately show ?RHS .. | |
| 214 | qed | |
| 215 | qed auto | |
| 216 | ||
| 217 | subsubsection{* The @{text "-\<infinity>"} Version*}
 | |
| 218 | ||
| 219 | lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (abs(x-z)+1) * d < z" | |
| 220 | by(induct rule: int_gr_induct,simp_all add:int_distrib) | |
| 221 | ||
| 222 | lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (abs(x-z)+1) * d" | |
| 223 | by(induct rule: int_gr_induct, simp_all add:int_distrib) | |
| 224 | ||
| 225 | theorem int_induct[case_names base step1 step2]: | |
| 226 | assumes | |
| 227 | base: "P(k::int)" and step1: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)" and | |
| 228 | step2: "\<And>i. \<lbrakk>k \<ge> i; P i\<rbrakk> \<Longrightarrow> P(i - 1)" | |
| 229 | shows "P i" | |
| 230 | proof - | |
| 231 | have "i \<le> k \<or> i\<ge> k" by arith | |
| 232 | thus ?thesis using prems int_ge_induct[where P="P" and k="k" and i="i"] int_le_induct[where P="P" and k="k" and i="i"] by blast | |
| 233 | qed | |
| 234 | ||
| 235 | lemma decr_mult_lemma: | |
| 236 | assumes dpos: "(0::int) < d" and minus: "\<forall>x. P x \<longrightarrow> P(x - d)" and knneg: "0 <= k" | |
| 237 | shows "ALL x. P x \<longrightarrow> P(x - k*d)" | |
| 238 | using knneg | |
| 239 | proof (induct rule:int_ge_induct) | |
| 240 | case base thus ?case by simp | |
| 241 | next | |
| 242 | case (step i) | |
| 243 |   {fix x
 | |
| 244 | have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast | |
| 245 | also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"] | |
| 246 | by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric]) | |
| 247 | ultimately have "P x \<longrightarrow> P(x - (i + 1) * d)" by blast} | |
| 248 | thus ?case .. | |
| 249 | qed | |
| 250 | ||
| 251 | lemma minusinfinity: | |
| 252 | assumes dpos: "0 < d" and | |
| 253 | P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)" | |
| 254 | shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)" | |
| 255 | proof | |
| 256 | assume eP1: "EX x. P1 x" | |
| 257 | then obtain x where P1: "P1 x" .. | |
| 258 | from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" .. | |
| 259 | let ?w = "x - (abs(x-z)+1) * d" | |
| 260 | from dpos have w: "?w < z" by(rule decr_lemma) | |
| 261 | have "P1 x = P1 ?w" using P1eqP1 by blast | |
| 262 | also have "\<dots> = P(?w)" using w P1eqP by blast | |
| 263 | finally have "P ?w" using P1 by blast | |
| 264 | thus "EX x. P x" .. | |
| 265 | qed | |
| 266 | ||
| 267 | lemma cpmi: | |
| 268 | assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x< z. P x = P' x" | |
| 269 |   and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> B. x \<noteq> b+j) --> P (x) --> P (x - D)"
 | |
| 270 | and pd: "\<forall> x k. P' x = P' (x-k*D)" | |
| 271 |   shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> B. P (b+j)))" 
 | |
| 272 | (is "?L = (?R1 \<or> ?R2)") | |
| 273 | proof- | |
| 274 |  {assume "?R2" hence "?L"  by blast}
 | |
| 275 | moreover | |
| 276 |  {assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
 | |
| 277 | moreover | |
| 278 |  { fix x
 | |
| 279 | assume P: "P x" and H: "\<not> ?R2" | |
| 280 |    {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>B. P (b + j))" and P: "P y"
 | |
| 281 |      hence "~(EX (j::int) : {1..D}. EX (b::int) : B. y = b+j)" by auto
 | |
| 282 | with nb P have "P (y - D)" by auto } | |
| 283 |    hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)" by blast
 | |
| 284 | with H P have th: " \<forall>x. P x \<longrightarrow> P (x - D)" by auto | |
| 285 | from p1 obtain z where z: "ALL x. x < z --> (P x = P' x)" by blast | |
| 286 | let ?y = "x - (\<bar>x - z\<bar> + 1)*D" | |
| 287 | have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith | |
| 288 | from dp have yz: "?y < z" using decr_lemma[OF dp] by simp | |
| 289 | from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto | |
| 290 | with periodic_finite_ex[OF dp pd] | |
| 291 | have "?R1" by blast} | |
| 292 | ultimately show ?thesis by blast | |
| 293 | qed | |
| 294 | ||
| 295 | subsubsection {* The @{text "+\<infinity>"} Version*}
 | |
| 296 | ||
| 297 | lemma plusinfinity: | |
| 298 | assumes dpos: "(0::int) < d" and | |
| 299 | P1eqP1: "\<forall>x k. P' x = P'(x - k*d)" and ePeqP1: "\<exists> z. \<forall> x>z. P x = P' x" | |
| 300 | shows "(\<exists> x. P' x) \<longrightarrow> (\<exists> x. P x)" | |
| 301 | proof | |
| 302 | assume eP1: "EX x. P' x" | |
| 303 | then obtain x where P1: "P' x" .. | |
| 304 | from ePeqP1 obtain z where P1eqP: "\<forall>x>z. P x = P' x" .. | |
| 305 | let ?w' = "x + (abs(x-z)+1) * d" | |
| 306 | let ?w = "x - (-(abs(x-z) + 1))*d" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 307 | have ww'[simp]: "?w = ?w'" by (simp add: ring_simps) | 
| 23465 | 308 | from dpos have w: "?w > z" by(simp only: ww' incr_lemma) | 
| 309 | hence "P' x = P' ?w" using P1eqP1 by blast | |
| 310 | also have "\<dots> = P(?w)" using w P1eqP by blast | |
| 311 | finally have "P ?w" using P1 by blast | |
| 312 | thus "EX x. P x" .. | |
| 313 | qed | |
| 314 | ||
| 315 | lemma incr_mult_lemma: | |
| 316 | assumes dpos: "(0::int) < d" and plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and knneg: "0 <= k" | |
| 317 | shows "ALL x. P x \<longrightarrow> P(x + k*d)" | |
| 318 | using knneg | |
| 319 | proof (induct rule:int_ge_induct) | |
| 320 | case base thus ?case by simp | |
| 321 | next | |
| 322 | case (step i) | |
| 323 |   {fix x
 | |
| 324 | have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast | |
| 325 | also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"] | |
| 326 | by (simp add:int_distrib zadd_ac) | |
| 327 | ultimately have "P x \<longrightarrow> P(x + (i + 1) * d)" by blast} | |
| 328 | thus ?case .. | |
| 329 | qed | |
| 330 | ||
| 331 | lemma cppi: | |
| 332 | assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x> z. P x = P' x" | |
| 333 |   and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> A. x \<noteq> b - j) --> P (x) --> P (x + D)"
 | |
| 334 | and pd: "\<forall> x k. P' x= P' (x-k*D)" | |
| 335 |   shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> A. P (b - j)))" (is "?L = (?R1 \<or> ?R2)")
 | |
| 336 | proof- | |
| 337 |  {assume "?R2" hence "?L"  by blast}
 | |
| 338 | moreover | |
| 339 |  {assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
 | |
| 340 | moreover | |
| 341 |  { fix x
 | |
| 342 | assume P: "P x" and H: "\<not> ?R2" | |
| 343 |    {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>A. P (b - j))" and P: "P y"
 | |
| 344 |      hence "~(EX (j::int) : {1..D}. EX (b::int) : A. y = b - j)" by auto
 | |
| 345 | with nb P have "P (y + D)" by auto } | |
| 346 |    hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : A. P(b-j)) --> P (x) --> P (x + D)" by blast
 | |
| 347 | with H P have th: " \<forall>x. P x \<longrightarrow> P (x + D)" by auto | |
| 348 | from p1 obtain z where z: "ALL x. x > z --> (P x = P' x)" by blast | |
| 349 | let ?y = "x + (\<bar>x - z\<bar> + 1)*D" | |
| 350 | have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith | |
| 351 | from dp have yz: "?y > z" using incr_lemma[OF dp] by simp | |
| 352 | from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto | |
| 353 | with periodic_finite_ex[OF dp pd] | |
| 354 | have "?R1" by blast} | |
| 355 | ultimately show ?thesis by blast | |
| 356 | qed | |
| 357 | ||
| 358 | lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
 | |
| 359 | apply(simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 360 | apply(fastsimp) | |
| 361 | done | |
| 362 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 363 | theorem unity_coeff_ex: "(\<exists>(x::'a::{semiring_0,Ring_and_Field.dvd}). P (l * x)) \<equiv> (\<exists>x. l dvd (x + 0) \<and> P x)"
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 364 | apply (rule eq_reflection [symmetric]) | 
| 23465 | 365 | apply (rule iffI) | 
| 366 | defer | |
| 367 | apply (erule exE) | |
| 368 | apply (rule_tac x = "l * x" in exI) | |
| 369 | apply (simp add: dvd_def) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 370 | apply (rule_tac x = x in exI, simp) | 
| 23465 | 371 | apply (erule exE) | 
| 372 | apply (erule conjE) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 373 | apply simp | 
| 23465 | 374 | apply (erule dvdE) | 
| 375 | apply (rule_tac x = k in exI) | |
| 376 | apply simp | |
| 377 | done | |
| 378 | ||
| 379 | lemma zdvd_mono: assumes not0: "(k::int) \<noteq> 0" | |
| 380 | shows "((m::int) dvd t) \<equiv> (k*m dvd k*t)" | |
| 381 | using not0 by (simp add: dvd_def) | |
| 382 | ||
| 383 | lemma uminus_dvd_conv: "(d dvd (t::int)) \<equiv> (-d dvd t)" "(d dvd (t::int)) \<equiv> (d dvd -t)" | |
| 384 | by simp_all | |
| 385 | text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}
 | |
| 386 | lemma all_nat: "(\<forall>x::nat. P x) = (\<forall>x::int. 0 <= x \<longrightarrow> P (nat x))" | |
| 387 | by (simp split add: split_nat) | |
| 388 | ||
| 389 | lemma ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))" | |
| 390 | apply (auto split add: split_nat) | |
| 391 | apply (rule_tac x="int x" in exI, simp) | |
| 392 | apply (rule_tac x = "nat x" in exI,erule_tac x = "nat x" in allE, simp) | |
| 393 | done | |
| 394 | ||
| 395 | lemma zdiff_int_split: "P (int (x - y)) = | |
| 396 | ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))" | |
| 397 | by (case_tac "y \<le> x", simp_all add: zdiff_int) | |
| 398 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26075diff
changeset | 399 | lemma number_of1: "(0::int) <= number_of n \<Longrightarrow> (0::int) <= number_of (Int.Bit0 n) \<and> (0::int) <= number_of (Int.Bit1 n)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26075diff
changeset | 400 | by simp | 
| 23465 | 401 | lemma number_of2: "(0::int) <= Numeral0" by simp | 
| 402 | lemma Suc_plus1: "Suc n = n + 1" by simp | |
| 403 | ||
| 404 | text {*
 | |
| 405 | \medskip Specific instances of congruence rules, to prevent | |
| 406 | simplifier from looping. *} | |
| 407 | ||
| 408 | theorem imp_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<longrightarrow> P) = (0 <= x \<longrightarrow> P')" by simp | |
| 409 | ||
| 410 | theorem conj_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<and> P) = (0 <= x \<and> P')" | |
| 411 | by (simp cong: conj_cong) | |
| 412 | lemma int_eq_number_of_eq: | |
| 413 | "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)" | |
| 414 | by simp | |
| 415 | ||
| 416 | lemma mod_eq0_dvd_iff[presburger]: "(m::nat) mod n = 0 \<longleftrightarrow> n dvd m" | |
| 417 | unfolding dvd_eq_mod_eq_0[symmetric] .. | |
| 418 | ||
| 419 | lemma zmod_eq0_zdvd_iff[presburger]: "(m::int) mod n = 0 \<longleftrightarrow> n dvd m" | |
| 420 | unfolding zdvd_iff_zmod_eq_0[symmetric] .. | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 421 | declare mod_1[presburger] | 
| 23465 | 422 | declare mod_0[presburger] | 
| 423 | declare zmod_1[presburger] | |
| 424 | declare zmod_zero[presburger] | |
| 425 | declare zmod_self[presburger] | |
| 426 | declare mod_self[presburger] | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 427 | declare mod_by_0[presburger] | 
| 23465 | 428 | declare nat_mod_div_trivial[presburger] | 
| 429 | declare div_mod_equality2[presburger] | |
| 430 | declare div_mod_equality[presburger] | |
| 431 | declare mod_div_equality2[presburger] | |
| 432 | declare mod_div_equality[presburger] | |
| 433 | declare mod_mult_self1[presburger] | |
| 434 | declare mod_mult_self2[presburger] | |
| 435 | declare zdiv_zmod_equality2[presburger] | |
| 436 | declare zdiv_zmod_equality[presburger] | |
| 437 | declare mod2_Suc_Suc[presburger] | |
| 438 | lemma [presburger]: "(a::int) div 0 = 0" and [presburger]: "a mod 0 = a" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 439 | by simp_all | 
| 23465 | 440 | |
| 441 | use "Tools/Qelim/cooper.ML" | |
| 28290 | 442 | oracle linzqe_oracle = Coopereif.cooper_oracle | 
| 23465 | 443 | |
| 444 | use "Tools/Qelim/presburger.ML" | |
| 445 | ||
| 24075 | 446 | declaration {* fn _ =>
 | 
| 447 | arith_tactic_add | |
| 24094 | 448 | (mk_arith_tactic "presburger" (fn ctxt => fn i => fn st => | 
| 23465 | 449 | (warning "Trying Presburger arithmetic ..."; | 
| 24094 | 450 | Presburger.cooper_tac true [] [] ctxt i st))) | 
| 23465 | 451 | *} | 
| 452 | ||
| 453 | method_setup presburger = {*
 | |
| 454 | let | |
| 455 | fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () | |
| 456 | fun simple_keyword k = Scan.lift (Args.$$$ k) >> K () | |
| 457 | val addN = "add" | |
| 458 | val delN = "del" | |
| 459 | val elimN = "elim" | |
| 460 | val any_keyword = keyword addN || keyword delN || simple_keyword elimN | |
| 461 | val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; | |
| 462 | in | |
| 463 | fn src => Method.syntax | |
| 464 | ((Scan.optional (simple_keyword elimN >> K false) true) -- | |
| 465 | (Scan.optional (keyword addN |-- thms) []) -- | |
| 466 | (Scan.optional (keyword delN |-- thms) [])) src | |
| 467 | #> (fn (((elim, add_ths), del_ths),ctxt) => | |
| 468 | Method.SIMPLE_METHOD' (Presburger.cooper_tac elim add_ths del_ths ctxt)) | |
| 469 | end | |
| 470 | *} "Cooper's algorithm for Presburger arithmetic" | |
| 471 | ||
| 27668 | 472 | lemma [presburger, algebra]: "m mod 2 = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger | 
| 473 | lemma [presburger, algebra]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 474 | lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 475 | lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 476 | lemma [presburger, algebra]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 23465 | 477 | |
| 478 | ||
| 23685 | 479 | lemma zdvd_period: | 
| 480 | fixes a d :: int | |
| 481 | assumes advdd: "a dvd d" | |
| 482 | shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)" | |
| 27668 | 483 | using advdd | 
| 484 | apply - | |
| 485 | apply (rule iffI) | |
| 486 | by algebra+ | |
| 23685 | 487 | |
| 23465 | 488 | end |