| author | wenzelm | 
| Tue, 07 Nov 2006 19:40:56 +0100 | |
| changeset 21234 | fb84ab52f23b | 
| parent 20217 | 25b068a99d2b | 
| permissions | -rw-r--r-- | 
| 16732 | 1 | (* Title: HOL/Binomial.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson | |
| 4 | Copyright 1997 University of Cambridge | |
| 5 | *) | |
| 6 | ||
| 7 | header{*Binomial Coefficients*}
 | |
| 8 | ||
| 9 | theory Binomial | |
| 17508 | 10 | imports GCD | 
| 16732 | 11 | begin | 
| 12 | ||
| 13 | text{*This development is based on the work of Andy Gordon and
 | |
| 14 | Florian Kammueller*} | |
| 15 | ||
| 16 | consts | |
| 17 | binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "choose" 65) | |
| 18 | ||
| 19 | primrec | |
| 20 | binomial_0: "(0 choose k) = (if k = 0 then 1 else 0)" | |
| 21 | ||
| 22 | binomial_Suc: "(Suc n choose k) = | |
| 23 | (if k = 0 then 1 else (n choose (k - 1)) + (n choose k))" | |
| 24 | ||
| 25 | lemma binomial_n_0 [simp]: "(n choose 0) = 1" | |
| 17508 | 26 | by (cases n) simp_all | 
| 16732 | 27 | |
| 28 | lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0" | |
| 29 | by simp | |
| 30 | ||
| 31 | lemma binomial_Suc_Suc [simp]: | |
| 32 | "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)" | |
| 33 | by simp | |
| 34 | ||
| 35 | lemma binomial_eq_0 [rule_format]: "\<forall>k. n < k --> (n choose k) = 0" | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19279diff
changeset | 36 | apply (induct "n") | 
| 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19279diff
changeset | 37 | apply auto | 
| 16732 | 38 | done | 
| 39 | ||
| 40 | declare binomial_0 [simp del] binomial_Suc [simp del] | |
| 41 | ||
| 42 | lemma binomial_n_n [simp]: "(n choose n) = 1" | |
| 43 | apply (induct "n") | |
| 44 | apply (simp_all add: binomial_eq_0) | |
| 45 | done | |
| 46 | ||
| 47 | lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n" | |
| 48 | by (induct "n", simp_all) | |
| 49 | ||
| 50 | lemma binomial_1 [simp]: "(n choose Suc 0) = n" | |
| 51 | by (induct "n", simp_all) | |
| 52 | ||
| 53 | lemma zero_less_binomial [rule_format]: "k \<le> n --> 0 < (n choose k)" | |
| 54 | by (rule_tac m = n and n = k in diff_induct, simp_all) | |
| 55 | ||
| 56 | lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)" | |
| 57 | apply (safe intro!: binomial_eq_0) | |
| 58 | apply (erule contrapos_pp) | |
| 59 | apply (simp add: zero_less_binomial) | |
| 60 | done | |
| 61 | ||
| 62 | lemma zero_less_binomial_iff: "(0 < n choose k) = (k\<le>n)" | |
| 63 | by (simp add: linorder_not_less [symmetric] binomial_eq_0_iff [symmetric]) | |
| 64 | ||
| 65 | (*Might be more useful if re-oriented*) | |
| 66 | lemma Suc_times_binomial_eq [rule_format]: | |
| 67 | "\<forall>k. k \<le> n --> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k" | |
| 68 | apply (induct "n") | |
| 69 | apply (simp add: binomial_0, clarify) | |
| 70 | apply (case_tac "k") | |
| 71 | apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq | |
| 72 | binomial_eq_0) | |
| 73 | done | |
| 74 | ||
| 75 | text{*This is the well-known version, but it's harder to use because of the
 | |
| 76 | need to reason about division.*} | |
| 77 | lemma binomial_Suc_Suc_eq_times: | |
| 78 | "k \<le> n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" | |
| 79 | by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc | |
| 80 | del: mult_Suc mult_Suc_right) | |
| 81 | ||
| 82 | text{*Another version, with -1 instead of Suc.*}
 | |
| 83 | lemma times_binomial_minus1_eq: | |
| 84 | "[|k \<le> n; 0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))" | |
| 85 | apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq) | |
| 86 | apply (simp split add: nat_diff_split, auto) | |
| 87 | done | |
| 88 | ||
| 89 | subsubsection {* Theorems about @{text "choose"} *}
 | |
| 90 | ||
| 91 | text {*
 | |
| 92 |   \medskip Basic theorem about @{text "choose"}.  By Florian
 | |
| 93 | Kamm\"uller, tidied by LCP. | |
| 94 | *} | |
| 95 | ||
| 96 | lemma card_s_0_eq_empty: | |
| 97 |     "finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
 | |
| 98 | apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) | |
| 99 | apply (simp cong add: rev_conj_cong) | |
| 100 | done | |
| 101 | ||
| 102 | lemma choose_deconstruct: "finite M ==> x \<notin> M | |
| 103 |   ==> {s. s <= insert x M & card(s) = Suc k}
 | |
| 104 |        = {s. s <= M & card(s) = Suc k} Un
 | |
| 105 |          {s. EX t. t <= M & card(t) = k & s = insert x t}"
 | |
| 106 | apply safe | |
| 107 | apply (auto intro: finite_subset [THEN card_insert_disjoint]) | |
| 108 |   apply (drule_tac x = "xa - {x}" in spec)
 | |
| 109 | apply (subgoal_tac "x \<notin> xa", auto) | |
| 110 | apply (erule rev_mp, subst card_Diff_singleton) | |
| 111 | apply (auto intro: finite_subset) | |
| 112 | done | |
| 113 | ||
| 114 | text{*There are as many subsets of @{term A} having cardinality @{term k}
 | |
| 115 | as there are sets obtained from the former by inserting a fixed element | |
| 116 |  @{term x} into each.*}
 | |
| 117 | lemma constr_bij: | |
| 118 | "[|finite A; x \<notin> A|] ==> | |
| 119 |     card {B. EX C. C <= A & card(C) = k & B = insert x C} =
 | |
| 120 |     card {B. B <= A & card(B) = k}"
 | |
| 121 |   apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
 | |
| 122 | apply (auto elim!: equalityE simp add: inj_on_def) | |
| 123 | apply (subst Diff_insert0, auto) | |
| 124 |    txt {* finiteness of the two sets *}
 | |
| 125 | apply (rule_tac [2] B = "Pow (A)" in finite_subset) | |
| 126 | apply (rule_tac B = "Pow (insert x A)" in finite_subset) | |
| 127 | apply fast+ | |
| 128 | done | |
| 129 | ||
| 130 | text {*
 | |
| 131 | Main theorem: combinatorial statement about number of subsets of a set. | |
| 132 | *} | |
| 133 | ||
| 134 | lemma n_sub_lemma: | |
| 135 |   "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
 | |
| 136 | apply (induct k) | |
| 137 | apply (simp add: card_s_0_eq_empty, atomize) | |
| 138 | apply (rotate_tac -1, erule finite_induct) | |
| 139 | apply (simp_all (no_asm_simp) cong add: conj_cong | |
| 140 | add: card_s_0_eq_empty choose_deconstruct) | |
| 141 | apply (subst card_Un_disjoint) | |
| 142 | prefer 4 apply (force simp add: constr_bij) | |
| 143 | prefer 3 apply force | |
| 144 | prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] | |
| 145 | finite_subset [of _ "Pow (insert x F)", standard]) | |
| 146 | apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) | |
| 147 | done | |
| 148 | ||
| 149 | theorem n_subsets: | |
| 150 |     "finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
 | |
| 151 | by (simp add: n_sub_lemma) | |
| 152 | ||
| 153 | ||
| 154 | text{* The binomial theorem (courtesy of Tobias Nipkow): *}
 | |
| 155 | ||
| 156 | theorem binomial: "(a+b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" | |
| 157 | proof (induct n) | |
| 158 | case 0 thus ?case by simp | |
| 159 | next | |
| 160 | case (Suc n) | |
| 161 |   have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}"
 | |
| 162 | by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 163 |   have decomp2: "{0..n} = {0} \<union> {1..n}"
 | |
| 164 | by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 165 | have "(a+b::nat)^(n+1) = (a+b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" | |
| 166 | using Suc by simp | |
| 167 | also have "\<dots> = a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) + | |
| 168 | b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" | |
| 169 | by(rule nat_distrib) | |
| 170 | also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) + | |
| 171 | (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))" | |
| 19279 | 172 | by(simp add: setsum_right_distrib mult_ac) | 
| 16732 | 173 | also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) + | 
| 174 | (\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))" | |
| 175 | by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le | |
| 176 | del:setsum_cl_ivl_Suc) | |
| 177 | also have "\<dots> = a^(n+1) + b^(n+1) + | |
| 178 | (\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) + | |
| 179 | (\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))" | |
| 180 | by(simp add: decomp2) | |
| 181 | also have | |
| 182 | "\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))" | |
| 183 | by(simp add: nat_distrib setsum_addf binomial.simps) | |
| 184 | also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))" | |
| 185 | using decomp by simp | |
| 186 | finally show ?case by simp | |
| 187 | qed | |
| 188 | ||
| 189 | end |