| author | wenzelm | 
| Tue, 07 Nov 2006 19:40:56 +0100 | |
| changeset 21234 | fb84ab52f23b | 
| parent 21210 | c17fd2df4e9e | 
| child 21327 | 2b3c41d02e87 | 
| permissions | -rw-r--r-- | 
| 1475 | 1 | (* Title: HOL/Fun.thy | 
| 923 | 2 | ID: $Id$ | 
| 1475 | 3 | Author: Tobias Nipkow, Cambridge University Computer Laboratory | 
| 923 | 4 | Copyright 1994 University of Cambridge | 
| 18154 | 5 | *) | 
| 923 | 6 | |
| 18154 | 7 | header {* Notions about functions *}
 | 
| 923 | 8 | |
| 15510 | 9 | theory Fun | 
| 15140 | 10 | imports Typedef | 
| 15131 | 11 | begin | 
| 2912 | 12 | |
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12258diff
changeset | 13 | instance set :: (type) order | 
| 13585 | 14 | by (intro_classes, | 
| 15 | (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+) | |
| 16 | ||
| 17 | constdefs | |
| 18 |   fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
 | |
| 19 | "fun_upd f a b == % x. if x=a then b else f x" | |
| 6171 | 20 | |
| 9141 | 21 | nonterminals | 
| 22 | updbinds updbind | |
| 5305 | 23 | syntax | 
| 13585 | 24 |   "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
 | 
| 25 |   ""         :: "updbind => updbinds"             ("_")
 | |
| 26 |   "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
 | |
| 27 |   "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
 | |
| 5305 | 28 | |
| 29 | translations | |
| 30 | "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" | |
| 31 | "f(x:=y)" == "fun_upd f x y" | |
| 2912 | 32 | |
| 9340 | 33 | (* Hint: to define the sum of two functions (or maps), use sum_case. | 
| 34 | A nice infix syntax could be defined (in Datatype.thy or below) by | |
| 35 | consts | |
| 36 |   fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
 | |
| 37 | translations | |
| 13585 | 38 | "fun_sum" == sum_case | 
| 9340 | 39 | *) | 
| 12258 | 40 | |
| 6171 | 41 | constdefs | 
| 19536 | 42 |   override_on :: "('a => 'b) => ('a => 'b) => 'a set => ('a => 'b)"
 | 
| 43 | "override_on f g A == %a. if a : A then g a else f a" | |
| 6171 | 44 | |
| 19536 | 45 | id :: "'a => 'a" | 
| 46 | "id == %x. x" | |
| 13910 | 47 | |
| 19536 | 48 | comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "o" 55) | 
| 49 | "f o g == %x. f(g(x))" | |
| 11123 | 50 | |
| 21210 | 51 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 52 | comp (infixl "\<circ>" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 53 | |
| 21210 | 54 | notation (HTML output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 55 | comp (infixl "\<circ>" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 56 | |
| 13585 | 57 | text{*compatibility*}
 | 
| 58 | lemmas o_def = comp_def | |
| 2912 | 59 | |
| 13585 | 60 | constdefs | 
| 61 | inj_on :: "['a => 'b, 'a set] => bool" (*injective*) | |
| 19363 | 62 | "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y" | 
| 6171 | 63 | |
| 13585 | 64 | text{*A common special case: functions injective over the entire domain type.*}
 | 
| 19323 | 65 | |
| 19363 | 66 | abbreviation | 
| 67 | "inj f == inj_on f UNIV" | |
| 5852 | 68 | |
| 7374 | 69 | constdefs | 
| 13585 | 70 |   surj :: "('a => 'b) => bool"                   (*surjective*)
 | 
| 19363 | 71 | "surj f == ! y. ? x. y=f(x)" | 
| 12258 | 72 | |
| 13585 | 73 |   bij :: "('a => 'b) => bool"                    (*bijective*)
 | 
| 19363 | 74 | "bij f == inj f & surj f" | 
| 12258 | 75 | |
| 7374 | 76 | |
| 13585 | 77 | |
| 78 | text{*As a simplification rule, it replaces all function equalities by
 | |
| 79 | first-order equalities.*} | |
| 80 | lemma expand_fun_eq: "(f = g) = (! x. f(x)=g(x))" | |
| 81 | apply (rule iffI) | |
| 82 | apply (simp (no_asm_simp)) | |
| 83 | apply (rule ext, simp (no_asm_simp)) | |
| 84 | done | |
| 85 | ||
| 86 | lemma apply_inverse: | |
| 87 | "[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)" | |
| 88 | by auto | |
| 89 | ||
| 90 | ||
| 91 | text{*The Identity Function: @{term id}*}
 | |
| 92 | lemma id_apply [simp]: "id x = x" | |
| 93 | by (simp add: id_def) | |
| 94 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
15691diff
changeset | 95 | lemma inj_on_id[simp]: "inj_on id A" | 
| 15510 | 96 | by (simp add: inj_on_def) | 
| 97 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
15691diff
changeset | 98 | lemma inj_on_id2[simp]: "inj_on (%x. x) A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
15691diff
changeset | 99 | by (simp add: inj_on_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
15691diff
changeset | 100 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
15691diff
changeset | 101 | lemma surj_id[simp]: "surj id" | 
| 15510 | 102 | by (simp add: surj_def) | 
| 103 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
15691diff
changeset | 104 | lemma bij_id[simp]: "bij id" | 
| 15510 | 105 | by (simp add: bij_def inj_on_id surj_id) | 
| 106 | ||
| 107 | ||
| 13585 | 108 | |
| 109 | subsection{*The Composition Operator: @{term "f \<circ> g"}*}
 | |
| 110 | ||
| 111 | lemma o_apply [simp]: "(f o g) x = f (g x)" | |
| 112 | by (simp add: comp_def) | |
| 113 | ||
| 114 | lemma o_assoc: "f o (g o h) = f o g o h" | |
| 115 | by (simp add: comp_def) | |
| 116 | ||
| 117 | lemma id_o [simp]: "id o g = g" | |
| 118 | by (simp add: comp_def) | |
| 119 | ||
| 120 | lemma o_id [simp]: "f o id = f" | |
| 121 | by (simp add: comp_def) | |
| 122 | ||
| 123 | lemma image_compose: "(f o g) ` r = f`(g`r)" | |
| 124 | by (simp add: comp_def, blast) | |
| 125 | ||
| 126 | lemma image_eq_UN: "f`A = (UN x:A. {f x})"
 | |
| 127 | by blast | |
| 128 | ||
| 129 | lemma UN_o: "UNION A (g o f) = UNION (f`A) g" | |
| 130 | by (unfold comp_def, blast) | |
| 131 | ||
| 132 | ||
| 133 | subsection{*The Injectivity Predicate, @{term inj}*}
 | |
| 134 | ||
| 135 | text{*NB: @{term inj} now just translates to @{term inj_on}*}
 | |
| 136 | ||
| 137 | ||
| 138 | text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
 | |
| 139 | lemma datatype_injI: | |
| 140 | "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)" | |
| 141 | by (simp add: inj_on_def) | |
| 142 | ||
| 13637 | 143 | theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)" | 
| 144 | by (unfold inj_on_def, blast) | |
| 145 | ||
| 13585 | 146 | lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y" | 
| 147 | by (simp add: inj_on_def) | |
| 148 | ||
| 149 | (*Useful with the simplifier*) | |
| 150 | lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)" | |
| 151 | by (force simp add: inj_on_def) | |
| 152 | ||
| 153 | ||
| 154 | subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*}
 | |
| 155 | ||
| 156 | lemma inj_onI: | |
| 157 | "(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" | |
| 158 | by (simp add: inj_on_def) | |
| 159 | ||
| 160 | lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A" | |
| 161 | by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) | |
| 162 | ||
| 163 | lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y" | |
| 164 | by (unfold inj_on_def, blast) | |
| 165 | ||
| 166 | lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)" | |
| 167 | by (blast dest!: inj_onD) | |
| 168 | ||
| 169 | lemma comp_inj_on: | |
| 170 | "[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A" | |
| 171 | by (simp add: comp_def inj_on_def) | |
| 172 | ||
| 15303 | 173 | lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)" | 
| 174 | apply(simp add:inj_on_def image_def) | |
| 175 | apply blast | |
| 176 | done | |
| 177 | ||
| 15439 | 178 | lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y); | 
| 179 | inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A" | |
| 180 | apply(unfold inj_on_def) | |
| 181 | apply blast | |
| 182 | done | |
| 183 | ||
| 13585 | 184 | lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)" | 
| 185 | by (unfold inj_on_def, blast) | |
| 12258 | 186 | |
| 13585 | 187 | lemma inj_singleton: "inj (%s. {s})"
 | 
| 188 | by (simp add: inj_on_def) | |
| 189 | ||
| 15111 | 190 | lemma inj_on_empty[iff]: "inj_on f {}"
 | 
| 191 | by(simp add: inj_on_def) | |
| 192 | ||
| 15303 | 193 | lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A" | 
| 13585 | 194 | by (unfold inj_on_def, blast) | 
| 195 | ||
| 15111 | 196 | lemma inj_on_Un: | 
| 197 | "inj_on f (A Un B) = | |
| 198 |   (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
 | |
| 199 | apply(unfold inj_on_def) | |
| 200 | apply (blast intro:sym) | |
| 201 | done | |
| 202 | ||
| 203 | lemma inj_on_insert[iff]: | |
| 204 |   "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
 | |
| 205 | apply(unfold inj_on_def) | |
| 206 | apply (blast intro:sym) | |
| 207 | done | |
| 208 | ||
| 209 | lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)" | |
| 210 | apply(unfold inj_on_def) | |
| 211 | apply (blast) | |
| 212 | done | |
| 213 | ||
| 13585 | 214 | |
| 215 | subsection{*The Predicate @{term surj}: Surjectivity*}
 | |
| 216 | ||
| 217 | lemma surjI: "(!! x. g(f x) = x) ==> surj g" | |
| 218 | apply (simp add: surj_def) | |
| 219 | apply (blast intro: sym) | |
| 220 | done | |
| 221 | ||
| 222 | lemma surj_range: "surj f ==> range f = UNIV" | |
| 223 | by (auto simp add: surj_def) | |
| 224 | ||
| 225 | lemma surjD: "surj f ==> EX x. y = f x" | |
| 226 | by (simp add: surj_def) | |
| 227 | ||
| 228 | lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C" | |
| 229 | by (simp add: surj_def, blast) | |
| 230 | ||
| 231 | lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)" | |
| 232 | apply (simp add: comp_def surj_def, clarify) | |
| 233 | apply (drule_tac x = y in spec, clarify) | |
| 234 | apply (drule_tac x = x in spec, blast) | |
| 235 | done | |
| 236 | ||
| 237 | ||
| 238 | ||
| 239 | subsection{*The Predicate @{term bij}: Bijectivity*}
 | |
| 240 | ||
| 241 | lemma bijI: "[| inj f; surj f |] ==> bij f" | |
| 242 | by (simp add: bij_def) | |
| 243 | ||
| 244 | lemma bij_is_inj: "bij f ==> inj f" | |
| 245 | by (simp add: bij_def) | |
| 246 | ||
| 247 | lemma bij_is_surj: "bij f ==> surj f" | |
| 248 | by (simp add: bij_def) | |
| 249 | ||
| 250 | ||
| 251 | subsection{*Facts About the Identity Function*}
 | |
| 5852 | 252 | |
| 13585 | 253 | text{*We seem to need both the @{term id} forms and the @{term "\<lambda>x. x"}
 | 
| 254 | forms. The latter can arise by rewriting, while @{term id} may be used
 | |
| 255 | explicitly.*} | |
| 256 | ||
| 257 | lemma image_ident [simp]: "(%x. x) ` Y = Y" | |
| 258 | by blast | |
| 259 | ||
| 260 | lemma image_id [simp]: "id ` Y = Y" | |
| 261 | by (simp add: id_def) | |
| 262 | ||
| 263 | lemma vimage_ident [simp]: "(%x. x) -` Y = Y" | |
| 264 | by blast | |
| 265 | ||
| 266 | lemma vimage_id [simp]: "id -` A = A" | |
| 267 | by (simp add: id_def) | |
| 268 | ||
| 269 | lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
 | |
| 270 | by (blast intro: sym) | |
| 271 | ||
| 272 | lemma image_vimage_subset: "f ` (f -` A) <= A" | |
| 273 | by blast | |
| 274 | ||
| 275 | lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" | |
| 276 | by blast | |
| 277 | ||
| 278 | lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" | |
| 279 | by (simp add: surj_range) | |
| 280 | ||
| 281 | lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A" | |
| 282 | by (simp add: inj_on_def, blast) | |
| 283 | ||
| 284 | lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A" | |
| 285 | apply (unfold surj_def) | |
| 286 | apply (blast intro: sym) | |
| 287 | done | |
| 288 | ||
| 289 | lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A" | |
| 290 | by (unfold inj_on_def, blast) | |
| 291 | ||
| 292 | lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)" | |
| 293 | apply (unfold bij_def) | |
| 294 | apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) | |
| 295 | done | |
| 296 | ||
| 297 | lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B" | |
| 298 | by blast | |
| 299 | ||
| 300 | lemma image_diff_subset: "f`A - f`B <= f`(A - B)" | |
| 301 | by blast | |
| 5852 | 302 | |
| 13585 | 303 | lemma inj_on_image_Int: | 
| 304 | "[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" | |
| 305 | apply (simp add: inj_on_def, blast) | |
| 306 | done | |
| 307 | ||
| 308 | lemma inj_on_image_set_diff: | |
| 309 | "[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B" | |
| 310 | apply (simp add: inj_on_def, blast) | |
| 311 | done | |
| 312 | ||
| 313 | lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B" | |
| 314 | by (simp add: inj_on_def, blast) | |
| 315 | ||
| 316 | lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B" | |
| 317 | by (simp add: inj_on_def, blast) | |
| 318 | ||
| 319 | lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)" | |
| 320 | by (blast dest: injD) | |
| 321 | ||
| 322 | lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)" | |
| 323 | by (simp add: inj_on_def, blast) | |
| 324 | ||
| 325 | lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" | |
| 326 | by (blast dest: injD) | |
| 327 | ||
| 328 | lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))" | |
| 329 | by blast | |
| 330 | ||
| 331 | (*injectivity's required. Left-to-right inclusion holds even if A is empty*) | |
| 332 | lemma image_INT: | |
| 333 | "[| inj_on f C; ALL x:A. B x <= C; j:A |] | |
| 334 | ==> f ` (INTER A B) = (INT x:A. f ` B x)" | |
| 335 | apply (simp add: inj_on_def, blast) | |
| 336 | done | |
| 337 | ||
| 338 | (*Compare with image_INT: no use of inj_on, and if f is surjective then | |
| 339 | it doesn't matter whether A is empty*) | |
| 340 | lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" | |
| 341 | apply (simp add: bij_def) | |
| 342 | apply (simp add: inj_on_def surj_def, blast) | |
| 343 | done | |
| 344 | ||
| 345 | lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)" | |
| 346 | by (auto simp add: surj_def) | |
| 347 | ||
| 348 | lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)" | |
| 349 | by (auto simp add: inj_on_def) | |
| 5852 | 350 | |
| 13585 | 351 | lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)" | 
| 352 | apply (simp add: bij_def) | |
| 353 | apply (rule equalityI) | |
| 354 | apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset) | |
| 355 | done | |
| 356 | ||
| 357 | ||
| 358 | subsection{*Function Updating*}
 | |
| 359 | ||
| 360 | lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" | |
| 361 | apply (simp add: fun_upd_def, safe) | |
| 362 | apply (erule subst) | |
| 363 | apply (rule_tac [2] ext, auto) | |
| 364 | done | |
| 365 | ||
| 366 | (* f x = y ==> f(x:=y) = f *) | |
| 367 | lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard] | |
| 368 | ||
| 369 | (* f(x := f x) = f *) | |
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 370 | lemmas fun_upd_triv = refl [THEN fun_upd_idem] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 371 | declare fun_upd_triv [iff] | 
| 13585 | 372 | |
| 373 | lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" | |
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 374 | by (simp add: fun_upd_def) | 
| 13585 | 375 | |
| 376 | (* fun_upd_apply supersedes these two, but they are useful | |
| 377 | if fun_upd_apply is intentionally removed from the simpset *) | |
| 378 | lemma fun_upd_same: "(f(x:=y)) x = y" | |
| 379 | by simp | |
| 380 | ||
| 381 | lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z" | |
| 382 | by simp | |
| 383 | ||
| 384 | lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)" | |
| 385 | by (simp add: expand_fun_eq) | |
| 386 | ||
| 387 | lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" | |
| 388 | by (rule ext, auto) | |
| 389 | ||
| 15303 | 390 | lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A" | 
| 391 | by(fastsimp simp:inj_on_def image_def) | |
| 392 | ||
| 15510 | 393 | lemma fun_upd_image: | 
| 394 |      "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
 | |
| 395 | by auto | |
| 396 | ||
| 15691 | 397 | subsection{* @{text override_on} *}
 | 
| 13910 | 398 | |
| 15691 | 399 | lemma override_on_emptyset[simp]: "override_on f g {} = f"
 | 
| 400 | by(simp add:override_on_def) | |
| 13910 | 401 | |
| 15691 | 402 | lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a" | 
| 403 | by(simp add:override_on_def) | |
| 13910 | 404 | |
| 15691 | 405 | lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a" | 
| 406 | by(simp add:override_on_def) | |
| 13910 | 407 | |
| 15510 | 408 | subsection{* swap *}
 | 
| 409 | ||
| 410 | constdefs | |
| 411 |   swap :: "['a, 'a, 'a => 'b] => ('a => 'b)"
 | |
| 412 | "swap a b f == f(a := f b, b:= f a)" | |
| 413 | ||
| 414 | lemma swap_self: "swap a a f = f" | |
| 15691 | 415 | by (simp add: swap_def) | 
| 15510 | 416 | |
| 417 | lemma swap_commute: "swap a b f = swap b a f" | |
| 418 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 419 | ||
| 420 | lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" | |
| 421 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 422 | ||
| 423 | lemma inj_on_imp_inj_on_swap: | |
| 424 | "[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A" | |
| 425 | by (simp add: inj_on_def swap_def, blast) | |
| 426 | ||
| 427 | lemma inj_on_swap_iff [simp]: | |
| 428 | assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A" | |
| 429 | proof | |
| 430 | assume "inj_on (swap a b f) A" | |
| 431 | with A have "inj_on (swap a b (swap a b f)) A" | |
| 17589 | 432 | by (iprover intro: inj_on_imp_inj_on_swap) | 
| 15510 | 433 | thus "inj_on f A" by simp | 
| 434 | next | |
| 435 | assume "inj_on f A" | |
| 17589 | 436 | with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) | 
| 15510 | 437 | qed | 
| 438 | ||
| 439 | lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)" | |
| 440 | apply (simp add: surj_def swap_def, clarify) | |
| 441 | apply (rule_tac P = "y = f b" in case_split_thm, blast) | |
| 442 | apply (rule_tac P = "y = f a" in case_split_thm, auto) | |
| 443 |   --{*We don't yet have @{text case_tac}*}
 | |
| 444 | done | |
| 445 | ||
| 446 | lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f" | |
| 447 | proof | |
| 448 | assume "surj (swap a b f)" | |
| 449 | hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) | |
| 450 | thus "surj f" by simp | |
| 451 | next | |
| 452 | assume "surj f" | |
| 453 | thus "surj (swap a b f)" by (rule surj_imp_surj_swap) | |
| 454 | qed | |
| 455 | ||
| 456 | lemma bij_swap_iff: "bij (swap a b f) = bij f" | |
| 457 | by (simp add: bij_def) | |
| 458 | ||
| 459 | ||
| 13585 | 460 | text{*The ML section includes some compatibility bindings and a simproc
 | 
| 461 | for function updates, in addition to the usual ML-bindings of theorems.*} | |
| 462 | ML | |
| 463 | {*
 | |
| 464 | val id_def = thm "id_def"; | |
| 465 | val inj_on_def = thm "inj_on_def"; | |
| 466 | val surj_def = thm "surj_def"; | |
| 467 | val bij_def = thm "bij_def"; | |
| 468 | val fun_upd_def = thm "fun_upd_def"; | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11123diff
changeset | 469 | |
| 13585 | 470 | val o_def = thm "comp_def"; | 
| 471 | val injI = thm "inj_onI"; | |
| 472 | val inj_inverseI = thm "inj_on_inverseI"; | |
| 473 | val set_cs = claset() delrules [equalityI]; | |
| 474 | ||
| 475 | val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];
 | |
| 476 | ||
| 477 | (* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *) | |
| 478 | local | |
| 15531 | 479 | fun gen_fun_upd NONE T _ _ = NONE | 
| 480 |     | gen_fun_upd (SOME f) T x y = SOME (Const ("Fun.fun_upd",T) $ f $ x $ y)
 | |
| 13585 | 481 | fun dest_fun_T1 (Type (_, T :: Ts)) = T | 
| 482 |   fun find_double (t as Const ("Fun.fun_upd",T) $ f $ x $ y) =
 | |
| 483 | let | |
| 484 |       fun find (Const ("Fun.fun_upd",T) $ g $ v $ w) =
 | |
| 15531 | 485 | if v aconv x then SOME g else gen_fun_upd (find g) T v w | 
| 486 | | find t = NONE | |
| 13585 | 487 | in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end | 
| 488 | ||
| 16973 | 489 | val current_ss = simpset () | 
| 490 | fun fun_upd_prover ss = | |
| 491 | rtac eq_reflection 1 THEN rtac ext 1 THEN | |
| 17877 
67d5ab1cb0d8
Simplifier.inherit_context instead of Simplifier.inherit_bounds;
 wenzelm parents: 
17589diff
changeset | 492 | simp_tac (Simplifier.inherit_context ss current_ss) 1 | 
| 13585 | 493 | in | 
| 494 | val fun_upd2_simproc = | |
| 495 | Simplifier.simproc (Theory.sign_of (the_context ())) | |
| 496 | "fun_upd2" ["f(v := w, x := y)"] | |
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19656diff
changeset | 497 | (fn _ => fn ss => fn t => | 
| 15531 | 498 | case find_double t of (T, NONE) => NONE | 
| 16973 | 499 | | (T, SOME rhs) => | 
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19656diff
changeset | 500 | SOME (Goal.prove (Simplifier.the_context ss) [] [] | 
| 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19656diff
changeset | 501 | (Term.equals T $ t $ rhs) (K (fun_upd_prover ss)))) | 
| 13585 | 502 | end; | 
| 503 | Addsimprocs[fun_upd2_simproc]; | |
| 5852 | 504 | |
| 13585 | 505 | val expand_fun_eq = thm "expand_fun_eq"; | 
| 506 | val apply_inverse = thm "apply_inverse"; | |
| 507 | val id_apply = thm "id_apply"; | |
| 508 | val o_apply = thm "o_apply"; | |
| 509 | val o_assoc = thm "o_assoc"; | |
| 510 | val id_o = thm "id_o"; | |
| 511 | val o_id = thm "o_id"; | |
| 512 | val image_compose = thm "image_compose"; | |
| 513 | val image_eq_UN = thm "image_eq_UN"; | |
| 514 | val UN_o = thm "UN_o"; | |
| 515 | val datatype_injI = thm "datatype_injI"; | |
| 516 | val injD = thm "injD"; | |
| 517 | val inj_eq = thm "inj_eq"; | |
| 518 | val inj_onI = thm "inj_onI"; | |
| 519 | val inj_on_inverseI = thm "inj_on_inverseI"; | |
| 520 | val inj_onD = thm "inj_onD"; | |
| 521 | val inj_on_iff = thm "inj_on_iff"; | |
| 522 | val comp_inj_on = thm "comp_inj_on"; | |
| 523 | val inj_on_contraD = thm "inj_on_contraD"; | |
| 524 | val inj_singleton = thm "inj_singleton"; | |
| 525 | val subset_inj_on = thm "subset_inj_on"; | |
| 526 | val surjI = thm "surjI"; | |
| 527 | val surj_range = thm "surj_range"; | |
| 528 | val surjD = thm "surjD"; | |
| 529 | val surjE = thm "surjE"; | |
| 530 | val comp_surj = thm "comp_surj"; | |
| 531 | val bijI = thm "bijI"; | |
| 532 | val bij_is_inj = thm "bij_is_inj"; | |
| 533 | val bij_is_surj = thm "bij_is_surj"; | |
| 534 | val image_ident = thm "image_ident"; | |
| 535 | val image_id = thm "image_id"; | |
| 536 | val vimage_ident = thm "vimage_ident"; | |
| 537 | val vimage_id = thm "vimage_id"; | |
| 538 | val vimage_image_eq = thm "vimage_image_eq"; | |
| 539 | val image_vimage_subset = thm "image_vimage_subset"; | |
| 540 | val image_vimage_eq = thm "image_vimage_eq"; | |
| 541 | val surj_image_vimage_eq = thm "surj_image_vimage_eq"; | |
| 542 | val inj_vimage_image_eq = thm "inj_vimage_image_eq"; | |
| 543 | val vimage_subsetD = thm "vimage_subsetD"; | |
| 544 | val vimage_subsetI = thm "vimage_subsetI"; | |
| 545 | val vimage_subset_eq = thm "vimage_subset_eq"; | |
| 546 | val image_Int_subset = thm "image_Int_subset"; | |
| 547 | val image_diff_subset = thm "image_diff_subset"; | |
| 548 | val inj_on_image_Int = thm "inj_on_image_Int"; | |
| 549 | val inj_on_image_set_diff = thm "inj_on_image_set_diff"; | |
| 550 | val image_Int = thm "image_Int"; | |
| 551 | val image_set_diff = thm "image_set_diff"; | |
| 552 | val inj_image_mem_iff = thm "inj_image_mem_iff"; | |
| 553 | val inj_image_subset_iff = thm "inj_image_subset_iff"; | |
| 554 | val inj_image_eq_iff = thm "inj_image_eq_iff"; | |
| 555 | val image_UN = thm "image_UN"; | |
| 556 | val image_INT = thm "image_INT"; | |
| 557 | val bij_image_INT = thm "bij_image_INT"; | |
| 558 | val surj_Compl_image_subset = thm "surj_Compl_image_subset"; | |
| 559 | val inj_image_Compl_subset = thm "inj_image_Compl_subset"; | |
| 560 | val bij_image_Compl_eq = thm "bij_image_Compl_eq"; | |
| 561 | val fun_upd_idem_iff = thm "fun_upd_idem_iff"; | |
| 562 | val fun_upd_idem = thm "fun_upd_idem"; | |
| 563 | val fun_upd_apply = thm "fun_upd_apply"; | |
| 564 | val fun_upd_same = thm "fun_upd_same"; | |
| 565 | val fun_upd_other = thm "fun_upd_other"; | |
| 566 | val fun_upd_upd = thm "fun_upd_upd"; | |
| 567 | val fun_upd_twist = thm "fun_upd_twist"; | |
| 13637 | 568 | val range_ex1_eq = thm "range_ex1_eq"; | 
| 13585 | 569 | *} | 
| 5852 | 570 | |
| 2912 | 571 | end |