| author | wenzelm | 
| Tue, 07 Nov 2006 19:40:56 +0100 | |
| changeset 21234 | fb84ab52f23b | 
| parent 21210 | c17fd2df4e9e | 
| child 21404 | eb85850d3eb7 | 
| permissions | -rw-r--r-- | 
| 10213 | 1 | (* Title: HOL/Transitive_Closure.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1992 University of Cambridge | |
| 5 | *) | |
| 6 | ||
| 12691 | 7 | header {* Reflexive and Transitive closure of a relation *}
 | 
| 8 | ||
| 15131 | 9 | theory Transitive_Closure | 
| 15140 | 10 | imports Inductive | 
| 16417 | 11 | uses ("../Provers/trancl.ML")
 | 
| 15131 | 12 | begin | 
| 12691 | 13 | |
| 14 | text {*
 | |
| 15 |   @{text rtrancl} is reflexive/transitive closure,
 | |
| 16 |   @{text trancl} is transitive closure,
 | |
| 17 |   @{text reflcl} is reflexive closure.
 | |
| 18 | ||
| 19 |   These postfix operators have \emph{maximum priority}, forcing their
 | |
| 20 | operands to be atomic. | |
| 21 | *} | |
| 10213 | 22 | |
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 23 | consts | 
| 12691 | 24 |   rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
 | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 25 | |
| 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 26 | inductive "r^*" | 
| 12691 | 27 | intros | 
| 15801 | 28 | rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*" | 
| 29 | rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*" | |
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 30 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 31 | consts | 
| 12691 | 32 |   trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
 | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 33 | |
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 34 | inductive "r^+" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 35 | intros | 
| 15801 | 36 | r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+" | 
| 37 | trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+" | |
| 10213 | 38 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 39 | abbreviation | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 40 |   reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^=)" [1000] 999)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 41 | "r^= == r \<union> Id" | 
| 10213 | 42 | |
| 21210 | 43 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 44 |   rtrancl  ("(_\<^sup>*)" [1000] 999)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 45 |   trancl  ("(_\<^sup>+)" [1000] 999)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 46 |   reflcl  ("(_\<^sup>=)" [1000] 999)
 | 
| 12691 | 47 | |
| 21210 | 48 | notation (HTML output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 49 |   rtrancl  ("(_\<^sup>*)" [1000] 999)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 50 |   trancl  ("(_\<^sup>+)" [1000] 999)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 51 |   reflcl  ("(_\<^sup>=)" [1000] 999)
 | 
| 14565 | 52 | |
| 12691 | 53 | |
| 54 | subsection {* Reflexive-transitive closure *}
 | |
| 55 | ||
| 56 | lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*" | |
| 57 |   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
 | |
| 58 | apply (simp only: split_tupled_all) | |
| 59 | apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl]) | |
| 60 | done | |
| 61 | ||
| 62 | lemma rtrancl_mono: "r \<subseteq> s ==> r^* \<subseteq> s^*" | |
| 63 |   -- {* monotonicity of @{text rtrancl} *}
 | |
| 64 | apply (rule subsetI) | |
| 65 | apply (simp only: split_tupled_all) | |
| 66 | apply (erule rtrancl.induct) | |
| 14208 | 67 | apply (rule_tac [2] rtrancl_into_rtrancl, blast+) | 
| 12691 | 68 | done | 
| 69 | ||
| 12823 | 70 | theorem rtrancl_induct [consumes 1, induct set: rtrancl]: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 71 | assumes a: "(a, b) : r^*" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 72 | and cases: "P a" "!!y z. [| (a, y) : r^*; (y, z) : r; P y |] ==> P z" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 73 | shows "P b" | 
| 12691 | 74 | proof - | 
| 75 | from a have "a = a --> P b" | |
| 17589 | 76 | by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+ | 
| 77 | thus ?thesis by iprover | |
| 12691 | 78 | qed | 
| 79 | ||
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 80 | lemmas rtrancl_induct2 = | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 81 | rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 82 | consumes 1, case_names refl step] | 
| 18372 | 83 | |
| 19228 | 84 | lemma reflexive_rtrancl: "reflexive (r^*)" | 
| 85 | by (unfold refl_def) fast | |
| 86 | ||
| 12691 | 87 | lemma trans_rtrancl: "trans(r^*)" | 
| 88 |   -- {* transitivity of transitive closure!! -- by induction *}
 | |
| 12823 | 89 | proof (rule transI) | 
| 90 | fix x y z | |
| 91 | assume "(x, y) \<in> r\<^sup>*" | |
| 92 | assume "(y, z) \<in> r\<^sup>*" | |
| 17589 | 93 | thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+ | 
| 12823 | 94 | qed | 
| 12691 | 95 | |
| 96 | lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard] | |
| 97 | ||
| 98 | lemma rtranclE: | |
| 18372 | 99 | assumes major: "(a::'a,b) : r^*" | 
| 100 | and cases: "(a = b) ==> P" | |
| 101 | "!!y. [| (a,y) : r^*; (y,b) : r |] ==> P" | |
| 102 | shows P | |
| 12691 | 103 |   -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
 | 
| 18372 | 104 | apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)") | 
| 105 | apply (rule_tac [2] major [THEN rtrancl_induct]) | |
| 106 | prefer 2 apply blast | |
| 107 | prefer 2 apply blast | |
| 108 | apply (erule asm_rl exE disjE conjE cases)+ | |
| 109 | done | |
| 12691 | 110 | |
| 12823 | 111 | lemma converse_rtrancl_into_rtrancl: | 
| 112 | "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>*" | |
| 17589 | 113 | by (rule rtrancl_trans) iprover+ | 
| 12691 | 114 | |
| 115 | text {*
 | |
| 116 |   \medskip More @{term "r^*"} equations and inclusions.
 | |
| 117 | *} | |
| 118 | ||
| 119 | lemma rtrancl_idemp [simp]: "(r^*)^* = r^*" | |
| 120 | apply auto | |
| 121 | apply (erule rtrancl_induct) | |
| 122 | apply (rule rtrancl_refl) | |
| 123 | apply (blast intro: rtrancl_trans) | |
| 124 | done | |
| 125 | ||
| 126 | lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*" | |
| 127 | apply (rule set_ext) | |
| 128 | apply (simp only: split_tupled_all) | |
| 129 | apply (blast intro: rtrancl_trans) | |
| 130 | done | |
| 131 | ||
| 132 | lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*" | |
| 14208 | 133 | by (drule rtrancl_mono, simp) | 
| 12691 | 134 | |
| 135 | lemma rtrancl_subset: "R \<subseteq> S ==> S \<subseteq> R^* ==> S^* = R^*" | |
| 136 | apply (drule rtrancl_mono) | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
14361diff
changeset | 137 | apply (drule rtrancl_mono, simp) | 
| 12691 | 138 | done | 
| 139 | ||
| 140 | lemma rtrancl_Un_rtrancl: "(R^* \<union> S^*)^* = (R \<union> S)^*" | |
| 141 | by (blast intro!: rtrancl_subset intro: r_into_rtrancl rtrancl_mono [THEN subsetD]) | |
| 142 | ||
| 143 | lemma rtrancl_reflcl [simp]: "(R^=)^* = R^*" | |
| 144 | by (blast intro!: rtrancl_subset intro: r_into_rtrancl) | |
| 145 | ||
| 146 | lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*" | |
| 147 | apply (rule sym) | |
| 14208 | 148 | apply (rule rtrancl_subset, blast, clarify) | 
| 12691 | 149 | apply (rename_tac a b) | 
| 14208 | 150 | apply (case_tac "a = b", blast) | 
| 12691 | 151 | apply (blast intro!: r_into_rtrancl) | 
| 152 | done | |
| 153 | ||
| 12823 | 154 | theorem rtrancl_converseD: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 155 | assumes r: "(x, y) \<in> (r^-1)^*" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 156 | shows "(y, x) \<in> r^*" | 
| 12823 | 157 | proof - | 
| 158 | from r show ?thesis | |
| 17589 | 159 | by induct (iprover intro: rtrancl_trans dest!: converseD)+ | 
| 12823 | 160 | qed | 
| 12691 | 161 | |
| 12823 | 162 | theorem rtrancl_converseI: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 163 | assumes r: "(y, x) \<in> r^*" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 164 | shows "(x, y) \<in> (r^-1)^*" | 
| 12823 | 165 | proof - | 
| 166 | from r show ?thesis | |
| 17589 | 167 | by induct (iprover intro: rtrancl_trans converseI)+ | 
| 12823 | 168 | qed | 
| 12691 | 169 | |
| 170 | lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1" | |
| 171 | by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI) | |
| 172 | ||
| 19228 | 173 | lemma sym_rtrancl: "sym r ==> sym (r^*)" | 
| 174 | by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric]) | |
| 175 | ||
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 176 | theorem converse_rtrancl_induct[consumes 1]: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 177 | assumes major: "(a, b) : r^*" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 178 | and cases: "P b" "!!y z. [| (y, z) : r; (z, b) : r^*; P z |] ==> P y" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 179 | shows "P a" | 
| 12691 | 180 | proof - | 
| 12823 | 181 | from rtrancl_converseI [OF major] | 
| 12691 | 182 | show ?thesis | 
| 17589 | 183 | by induct (iprover intro: cases dest!: converseD rtrancl_converseD)+ | 
| 12691 | 184 | qed | 
| 185 | ||
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 186 | lemmas converse_rtrancl_induct2 = | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 187 | converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 188 | consumes 1, case_names refl step] | 
| 12691 | 189 | |
| 190 | lemma converse_rtranclE: | |
| 18372 | 191 | assumes major: "(x,z):r^*" | 
| 192 | and cases: "x=z ==> P" | |
| 193 | "!!y. [| (x,y):r; (y,z):r^* |] ==> P" | |
| 194 | shows P | |
| 195 | apply (subgoal_tac "x = z | (EX y. (x,y) : r & (y,z) : r^*)") | |
| 196 | apply (rule_tac [2] major [THEN converse_rtrancl_induct]) | |
| 197 | prefer 2 apply iprover | |
| 198 | prefer 2 apply iprover | |
| 199 | apply (erule asm_rl exE disjE conjE cases)+ | |
| 200 | done | |
| 12691 | 201 | |
| 202 | ML_setup {*
 | |
| 203 |   bind_thm ("converse_rtranclE2", split_rule
 | |
| 204 |     (read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] (thm "converse_rtranclE")));
 | |
| 205 | *} | |
| 206 | ||
| 207 | lemma r_comp_rtrancl_eq: "r O r^* = r^* O r" | |
| 208 | by (blast elim: rtranclE converse_rtranclE | |
| 209 | intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl) | |
| 210 | ||
| 20716 
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
 krauss parents: 
19656diff
changeset | 211 | lemma rtrancl_unfold: "r^* = Id Un r O r^*" | 
| 15551 | 212 | by (auto intro: rtrancl_into_rtrancl elim: rtranclE) | 
| 213 | ||
| 12691 | 214 | |
| 215 | subsection {* Transitive closure *}
 | |
| 10331 | 216 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 217 | lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 218 | apply (simp only: split_tupled_all) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 219 | apply (erule trancl.induct) | 
| 17589 | 220 | apply (iprover dest: subsetD)+ | 
| 12691 | 221 | done | 
| 222 | ||
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 223 | lemma r_into_trancl': "!!p. p : r ==> p : r^+" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 224 | by (simp only: split_tupled_all) (erule r_into_trancl) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 225 | |
| 12691 | 226 | text {*
 | 
| 227 |   \medskip Conversions between @{text trancl} and @{text rtrancl}.
 | |
| 228 | *} | |
| 229 | ||
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 230 | lemma trancl_into_rtrancl: "(a, b) \<in> r^+ ==> (a, b) \<in> r^*" | 
| 17589 | 231 | by (erule trancl.induct) iprover+ | 
| 12691 | 232 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 233 | lemma rtrancl_into_trancl1: assumes r: "(a, b) \<in> r^*" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 234 | shows "!!c. (b, c) \<in> r ==> (a, c) \<in> r^+" using r | 
| 17589 | 235 | by induct iprover+ | 
| 12691 | 236 | |
| 237 | lemma rtrancl_into_trancl2: "[| (a,b) : r; (b,c) : r^* |] ==> (a,c) : r^+" | |
| 238 |   -- {* intro rule from @{text r} and @{text rtrancl} *}
 | |
| 17589 | 239 | apply (erule rtranclE, iprover) | 
| 12691 | 240 | apply (rule rtrancl_trans [THEN rtrancl_into_trancl1]) | 
| 241 | apply (assumption | rule r_into_rtrancl)+ | |
| 242 | done | |
| 243 | ||
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 244 | lemma trancl_induct [consumes 1, induct set: trancl]: | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 245 | assumes a: "(a,b) : r^+" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 246 | and cases: "!!y. (a, y) : r ==> P y" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 247 | "!!y z. (a,y) : r^+ ==> (y, z) : r ==> P y ==> P z" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 248 | shows "P b" | 
| 12691 | 249 |   -- {* Nice induction rule for @{text trancl} *}
 | 
| 250 | proof - | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 251 | from a have "a = a --> P b" | 
| 17589 | 252 | by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+ | 
| 253 | thus ?thesis by iprover | |
| 12691 | 254 | qed | 
| 255 | ||
| 256 | lemma trancl_trans_induct: | |
| 18372 | 257 | assumes major: "(x,y) : r^+" | 
| 258 | and cases: "!!x y. (x,y) : r ==> P x y" | |
| 259 | "!!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z" | |
| 260 | shows "P x y" | |
| 12691 | 261 |   -- {* Another induction rule for trancl, incorporating transitivity *}
 | 
| 18372 | 262 | by (iprover intro: r_into_trancl major [THEN trancl_induct] cases) | 
| 12691 | 263 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 264 | inductive_cases tranclE: "(a, b) : r^+" | 
| 10980 | 265 | |
| 20716 
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
 krauss parents: 
19656diff
changeset | 266 | lemma trancl_unfold: "r^+ = r Un r O r^+" | 
| 15551 | 267 | by (auto intro: trancl_into_trancl elim: tranclE) | 
| 268 | ||
| 19623 | 269 | lemma trans_trancl[simp]: "trans(r^+)" | 
| 12691 | 270 |   -- {* Transitivity of @{term "r^+"} *}
 | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 271 | proof (rule transI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 272 | fix x y z | 
| 18372 | 273 | assume xy: "(x, y) \<in> r^+" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 274 | assume "(y, z) \<in> r^+" | 
| 18372 | 275 | thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+ | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 276 | qed | 
| 12691 | 277 | |
| 278 | lemmas trancl_trans = trans_trancl [THEN transD, standard] | |
| 279 | ||
| 19623 | 280 | lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r" | 
| 281 | apply(auto) | |
| 282 | apply(erule trancl_induct) | |
| 283 | apply assumption | |
| 284 | apply(unfold trans_def) | |
| 285 | apply(blast) | |
| 286 | done | |
| 287 | ||
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 288 | lemma rtrancl_trancl_trancl: assumes r: "(x, y) \<in> r^*" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 289 | shows "!!z. (y, z) \<in> r^+ ==> (x, z) \<in> r^+" using r | 
| 17589 | 290 | by induct (iprover intro: trancl_trans)+ | 
| 12691 | 291 | |
| 292 | lemma trancl_into_trancl2: "(a, b) \<in> r ==> (b, c) \<in> r^+ ==> (a, c) \<in> r^+" | |
| 293 | by (erule transD [OF trans_trancl r_into_trancl]) | |
| 294 | ||
| 295 | lemma trancl_insert: | |
| 296 |   "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
 | |
| 297 |   -- {* primitive recursion for @{text trancl} over finite relations *}
 | |
| 298 | apply (rule equalityI) | |
| 299 | apply (rule subsetI) | |
| 300 | apply (simp only: split_tupled_all) | |
| 14208 | 301 | apply (erule trancl_induct, blast) | 
| 12691 | 302 | apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans) | 
| 303 | apply (rule subsetI) | |
| 304 | apply (blast intro: trancl_mono rtrancl_mono | |
| 305 | [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2) | |
| 306 | done | |
| 307 | ||
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 308 | lemma trancl_converseI: "(x, y) \<in> (r^+)^-1 ==> (x, y) \<in> (r^-1)^+" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 309 | apply (drule converseD) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 310 | apply (erule trancl.induct) | 
| 17589 | 311 | apply (iprover intro: converseI trancl_trans)+ | 
| 12691 | 312 | done | 
| 313 | ||
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 314 | lemma trancl_converseD: "(x, y) \<in> (r^-1)^+ ==> (x, y) \<in> (r^+)^-1" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 315 | apply (rule converseI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 316 | apply (erule trancl.induct) | 
| 17589 | 317 | apply (iprover dest: converseD intro: trancl_trans)+ | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 318 | done | 
| 12691 | 319 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 320 | lemma trancl_converse: "(r^-1)^+ = (r^+)^-1" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 321 | by (fastsimp simp add: split_tupled_all | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 322 | intro!: trancl_converseI trancl_converseD) | 
| 12691 | 323 | |
| 19228 | 324 | lemma sym_trancl: "sym r ==> sym (r^+)" | 
| 325 | by (simp only: sym_conv_converse_eq trancl_converse [symmetric]) | |
| 326 | ||
| 12691 | 327 | lemma converse_trancl_induct: | 
| 18372 | 328 | assumes major: "(a,b) : r^+" | 
| 329 | and cases: "!!y. (y,b) : r ==> P(y)" | |
| 330 | "!!y z.[| (y,z) : r; (z,b) : r^+; P(z) |] ==> P(y)" | |
| 331 | shows "P a" | |
| 332 | apply (rule major [THEN converseI, THEN trancl_converseI [THEN trancl_induct]]) | |
| 333 | apply (rule cases) | |
| 334 | apply (erule converseD) | |
| 335 | apply (blast intro: prems dest!: trancl_converseD) | |
| 336 | done | |
| 12691 | 337 | |
| 338 | lemma tranclD: "(x, y) \<in> R^+ ==> EX z. (x, z) \<in> R \<and> (z, y) \<in> R^*" | |
| 14208 | 339 | apply (erule converse_trancl_induct, auto) | 
| 12691 | 340 | apply (blast intro: rtrancl_trans) | 
| 341 | done | |
| 342 | ||
| 13867 | 343 | lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
 | 
| 18372 | 344 | by (blast elim: tranclE dest: trancl_into_rtrancl) | 
| 12691 | 345 | |
| 346 | lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y" | |
| 347 | by (blast dest: r_into_trancl) | |
| 348 | ||
| 349 | lemma trancl_subset_Sigma_aux: | |
| 350 | "(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A" | |
| 18372 | 351 | by (induct rule: rtrancl_induct) auto | 
| 12691 | 352 | |
| 353 | lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A" | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 354 | apply (rule subsetI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 355 | apply (simp only: split_tupled_all) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 356 | apply (erule tranclE) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 357 | apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+ | 
| 12691 | 358 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 359 | |
| 11090 | 360 | lemma reflcl_trancl [simp]: "(r^+)^= = r^*" | 
| 11084 | 361 | apply safe | 
| 12691 | 362 | apply (erule trancl_into_rtrancl) | 
| 11084 | 363 | apply (blast elim: rtranclE dest: rtrancl_into_trancl1) | 
| 364 | done | |
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 365 | |
| 11090 | 366 | lemma trancl_reflcl [simp]: "(r^=)^+ = r^*" | 
| 11084 | 367 | apply safe | 
| 14208 | 368 | apply (drule trancl_into_rtrancl, simp) | 
| 369 | apply (erule rtranclE, safe) | |
| 370 | apply (rule r_into_trancl, simp) | |
| 11084 | 371 | apply (rule rtrancl_into_trancl1) | 
| 14208 | 372 | apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast) | 
| 11084 | 373 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 374 | |
| 11090 | 375 | lemma trancl_empty [simp]: "{}^+ = {}"
 | 
| 11084 | 376 | by (auto elim: trancl_induct) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 377 | |
| 11090 | 378 | lemma rtrancl_empty [simp]: "{}^* = Id"
 | 
| 11084 | 379 | by (rule subst [OF reflcl_trancl]) simp | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 380 | |
| 11090 | 381 | lemma rtranclD: "(a, b) \<in> R^* ==> a = b \<or> a \<noteq> b \<and> (a, b) \<in> R^+" | 
| 11084 | 382 | by (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl) | 
| 383 | ||
| 16514 | 384 | lemma rtrancl_eq_or_trancl: | 
| 385 | "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)" | |
| 386 | by (fast elim: trancl_into_rtrancl dest: rtranclD) | |
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 387 | |
| 12691 | 388 | text {* @{text Domain} and @{text Range} *}
 | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 389 | |
| 11090 | 390 | lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV" | 
| 11084 | 391 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 392 | |
| 11090 | 393 | lemma Range_rtrancl [simp]: "Range (R^*) = UNIV" | 
| 11084 | 394 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 395 | |
| 11090 | 396 | lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*" | 
| 11084 | 397 | by (rule rtrancl_Un_rtrancl [THEN subst]) fast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 398 | |
| 11090 | 399 | lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*" | 
| 11084 | 400 | by (blast intro: subsetD [OF rtrancl_Un_subset]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 401 | |
| 11090 | 402 | lemma trancl_domain [simp]: "Domain (r^+) = Domain r" | 
| 11084 | 403 | by (unfold Domain_def) (blast dest: tranclD) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 404 | |
| 11090 | 405 | lemma trancl_range [simp]: "Range (r^+) = Range r" | 
| 11084 | 406 | by (simp add: Range_def trancl_converse [symmetric]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 407 | |
| 11115 | 408 | lemma Not_Domain_rtrancl: | 
| 12691 | 409 | "x ~: Domain R ==> ((x, y) : R^*) = (x = y)" | 
| 410 | apply auto | |
| 411 | by (erule rev_mp, erule rtrancl_induct, auto) | |
| 412 | ||
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 413 | |
| 12691 | 414 | text {* More about converse @{text rtrancl} and @{text trancl}, should
 | 
| 415 | be merged with main body. *} | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 416 | |
| 14337 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 417 | lemma single_valued_confluent: | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 418 | "\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk> | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 419 | \<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*" | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 420 | apply(erule rtrancl_induct) | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 421 | apply simp | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 422 | apply(erule disjE) | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 423 | apply(blast elim:converse_rtranclE dest:single_valuedD) | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 424 | apply(blast intro:rtrancl_trans) | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 425 | done | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 426 | |
| 12691 | 427 | lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+" | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 428 | by (fast intro: trancl_trans) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 429 | |
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 430 | lemma trancl_into_trancl [rule_format]: | 
| 12691 | 431 | "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+" | 
| 432 | apply (erule trancl_induct) | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 433 | apply (fast intro: r_r_into_trancl) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 434 | apply (fast intro: r_r_into_trancl trancl_trans) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 435 | done | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 436 | |
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 437 | lemma trancl_rtrancl_trancl: | 
| 12691 | 438 | "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r\<^sup>* ==> (a, c) \<in> r\<^sup>+" | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 439 | apply (drule tranclD) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 440 | apply (erule exE, erule conjE) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 441 | apply (drule rtrancl_trans, assumption) | 
| 14208 | 442 | apply (drule rtrancl_into_trancl2, assumption, assumption) | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 443 | done | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 444 | |
| 12691 | 445 | lemmas transitive_closure_trans [trans] = | 
| 446 | r_r_into_trancl trancl_trans rtrancl_trans | |
| 447 | trancl_into_trancl trancl_into_trancl2 | |
| 448 | rtrancl_into_rtrancl converse_rtrancl_into_rtrancl | |
| 449 | rtrancl_trancl_trancl trancl_rtrancl_trancl | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 450 | |
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 451 | declare trancl_into_rtrancl [elim] | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 452 | |
| 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 453 | declare rtranclE [cases set: rtrancl] | 
| 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 454 | declare tranclE [cases set: trancl] | 
| 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 455 | |
| 15551 | 456 | |
| 457 | ||
| 458 | ||
| 459 | ||
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 460 | subsection {* Setup of transitivity reasoner *}
 | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 461 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 462 | use "../Provers/trancl.ML"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 463 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 464 | ML_setup {*
 | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 465 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 466 | structure Trancl_Tac = Trancl_Tac_Fun ( | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 467 | struct | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 468 | val r_into_trancl = thm "r_into_trancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 469 | val trancl_trans = thm "trancl_trans"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 470 | val rtrancl_refl = thm "rtrancl_refl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 471 | val r_into_rtrancl = thm "r_into_rtrancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 472 | val trancl_into_rtrancl = thm "trancl_into_rtrancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 473 | val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 474 | val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 475 | val rtrancl_trans = thm "rtrancl_trans"; | 
| 15096 | 476 | |
| 18372 | 477 | fun decomp (Trueprop $ t) = | 
| 478 |     let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
 | |
| 479 |         let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
 | |
| 480 |               | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
 | |
| 481 | | decr r = (r,"r"); | |
| 482 | val (rel,r) = decr rel; | |
| 483 | in SOME (a,b,rel,r) end | |
| 484 | | dec _ = NONE | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 485 | in dec t end; | 
| 18372 | 486 | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 487 | end); (* struct *) | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 488 | |
| 17876 | 489 | change_simpset (fn ss => ss | 
| 490 | addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac)) | |
| 491 | addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac))); | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 492 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 493 | *} | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 494 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 495 | (* Optional methods | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 496 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 497 | method_setup trancl = | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 498 |   {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (trancl_tac)) *}
 | 
| 18372 | 499 |   {* simple transitivity reasoner *}
 | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 500 | method_setup rtrancl = | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 501 |   {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (rtrancl_tac)) *}
 | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 502 |   {* simple transitivity reasoner *}
 | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 503 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 504 | *) | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 505 | |
| 10213 | 506 | end |