| author | wenzelm | 
| Mon, 06 Mar 2023 10:16:40 +0100 | |
| changeset 77534 | fc57886e37dd | 
| parent 76836 | 30182f9e1818 | 
| child 78516 | 56a408fa2440 | 
| permissions | -rw-r--r-- | 
| 71243 | 1 | section "Affine Sets" | 
| 2 | ||
| 71242 | 3 | theory Affine | 
| 4 | imports Linear_Algebra | |
| 5 | begin | |
| 6 | ||
| 7 | lemma if_smult: "(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" | |
| 8 | by (fact if_distrib) | |
| 9 | ||
| 10 | lemma sum_delta_notmem: | |
| 11 | assumes "x \<notin> s" | |
| 12 | shows "sum (\<lambda>y. if (y = x) then P x else Q y) s = sum Q s" | |
| 13 | and "sum (\<lambda>y. if (x = y) then P x else Q y) s = sum Q s" | |
| 14 | and "sum (\<lambda>y. if (y = x) then P y else Q y) s = sum Q s" | |
| 15 | and "sum (\<lambda>y. if (x = y) then P y else Q y) s = sum Q s" | |
| 16 | apply (rule_tac [!] sum.cong) | |
| 17 | using assms | |
| 18 | apply auto | |
| 19 | done | |
| 20 | ||
| 21 | lemmas independent_finite = independent_imp_finite | |
| 22 | ||
| 23 | lemma span_substd_basis: | |
| 24 | assumes d: "d \<subseteq> Basis" | |
| 25 |   shows "span d = {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0}"
 | |
| 26 | (is "_ = ?B") | |
| 27 | proof - | |
| 28 | have "d \<subseteq> ?B" | |
| 29 | using d by (auto simp: inner_Basis) | |
| 30 | moreover have s: "subspace ?B" | |
| 31 | using subspace_substandard[of "\<lambda>i. i \<notin> d"] . | |
| 32 | ultimately have "span d \<subseteq> ?B" | |
| 33 | using span_mono[of d "?B"] span_eq_iff[of "?B"] by blast | |
| 34 | moreover have *: "card d \<le> dim (span d)" | |
| 35 | using independent_card_le_dim[of d "span d"] independent_substdbasis[OF assms] | |
| 36 | span_superset[of d] | |
| 37 | by auto | |
| 38 | moreover from * have "dim ?B \<le> dim (span d)" | |
| 39 | using dim_substandard[OF assms] by auto | |
| 40 | ultimately show ?thesis | |
| 41 | using s subspace_dim_equal[of "span d" "?B"] subspace_span[of d] by auto | |
| 42 | qed | |
| 43 | ||
| 44 | lemma basis_to_substdbasis_subspace_isomorphism: | |
| 45 | fixes B :: "'a::euclidean_space set" | |
| 46 | assumes "independent B" | |
| 47 | shows "\<exists>f d::'a set. card d = card B \<and> linear f \<and> f ` B = d \<and> | |
| 48 |     f ` span B = {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0} \<and> inj_on f (span B) \<and> d \<subseteq> Basis"
 | |
| 49 | proof - | |
| 50 | have B: "card B = dim B" | |
| 51 | using dim_unique[of B B "card B"] assms span_superset[of B] by auto | |
| 52 | have "dim B \<le> card (Basis :: 'a set)" | |
| 53 | using dim_subset_UNIV[of B] by simp | |
| 76836 
30182f9e1818
Big simplifications of old proofs
 paulson <lp15@cam.ac.uk> parents: 
74224diff
changeset | 54 | from obtain_subset_with_card_n[OF this] obtain d :: "'a set" where d: "d \<subseteq> Basis" and t: "card d = dim B" | 
| 71242 | 55 | by auto | 
| 56 |   let ?t = "{x::'a::euclidean_space. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0}"
 | |
| 57 | have "\<exists>f. linear f \<and> f ` B = d \<and> f ` span B = ?t \<and> inj_on f (span B)" | |
| 58 | proof (intro basis_to_basis_subspace_isomorphism subspace_span subspace_substandard span_superset) | |
| 59 |     show "d \<subseteq> {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0}"
 | |
| 60 | using d inner_not_same_Basis by blast | |
| 61 | qed (auto simp: span_substd_basis independent_substdbasis dim_substandard d t B assms) | |
| 62 | with t \<open>card B = dim B\<close> d show ?thesis by auto | |
| 63 | qed | |
| 64 | ||
| 65 | subsection \<open>Affine set and affine hull\<close> | |
| 66 | ||
| 67 | definition\<^marker>\<open>tag important\<close> affine :: "'a::real_vector set \<Rightarrow> bool" | |
| 68 | where "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 69 | ||
| 70 | lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)" | |
| 71 | unfolding affine_def by (metis eq_diff_eq') | |
| 72 | ||
| 73 | lemma affine_empty [iff]: "affine {}"
 | |
| 74 | unfolding affine_def by auto | |
| 75 | ||
| 76 | lemma affine_sing [iff]: "affine {x}"
 | |
| 77 | unfolding affine_alt by (auto simp: scaleR_left_distrib [symmetric]) | |
| 78 | ||
| 79 | lemma affine_UNIV [iff]: "affine UNIV" | |
| 80 | unfolding affine_def by auto | |
| 81 | ||
| 82 | lemma affine_Inter [intro]: "(\<And>s. s\<in>f \<Longrightarrow> affine s) \<Longrightarrow> affine (\<Inter>f)" | |
| 83 | unfolding affine_def by auto | |
| 84 | ||
| 85 | lemma affine_Int[intro]: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)" | |
| 86 | unfolding affine_def by auto | |
| 87 | ||
| 88 | lemma affine_scaling: "affine s \<Longrightarrow> affine (image (\<lambda>x. c *\<^sub>R x) s)" | |
| 89 | apply (clarsimp simp add: affine_def) | |
| 90 | apply (rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in image_eqI) | |
| 91 | apply (auto simp: algebra_simps) | |
| 92 | done | |
| 93 | ||
| 94 | lemma affine_affine_hull [simp]: "affine(affine hull s)" | |
| 95 | unfolding hull_def | |
| 96 |   using affine_Inter[of "{t. affine t \<and> s \<subseteq> t}"] by auto
 | |
| 97 | ||
| 98 | lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s" | |
| 99 | by (metis affine_affine_hull hull_same) | |
| 100 | ||
| 101 | lemma affine_hyperplane: "affine {x. a \<bullet> x = b}"
 | |
| 102 | by (simp add: affine_def algebra_simps) (metis distrib_right mult.left_neutral) | |
| 103 | ||
| 104 | ||
| 105 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Some explicit formulations\<close> | |
| 106 | ||
| 107 | text "Formalized by Lars Schewe." | |
| 108 | ||
| 109 | lemma affine: | |
| 110 | fixes V::"'a::real_vector set" | |
| 111 | shows "affine V \<longleftrightarrow> | |
| 112 |          (\<forall>S u. finite S \<and> S \<noteq> {} \<and> S \<subseteq> V \<and> sum u S = 1 \<longrightarrow> (\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V)"
 | |
| 113 | proof - | |
| 114 | have "u *\<^sub>R x + v *\<^sub>R y \<in> V" if "x \<in> V" "y \<in> V" "u + v = (1::real)" | |
| 115 |     and *: "\<And>S u. \<lbrakk>finite S; S \<noteq> {}; S \<subseteq> V; sum u S = 1\<rbrakk> \<Longrightarrow> (\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V" for x y u v
 | |
| 116 | proof (cases "x = y") | |
| 117 | case True | |
| 118 | then show ?thesis | |
| 119 | using that by (metis scaleR_add_left scaleR_one) | |
| 120 | next | |
| 121 | case False | |
| 122 | then show ?thesis | |
| 123 |       using that *[of "{x,y}" "\<lambda>w. if w = x then u else v"] by auto
 | |
| 124 | qed | |
| 125 | moreover have "(\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V" | |
| 126 | if *: "\<And>x y u v. \<lbrakk>x\<in>V; y\<in>V; u + v = 1\<rbrakk> \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V" | |
| 127 |                   and "finite S" "S \<noteq> {}" "S \<subseteq> V" "sum u S = 1" for S u
 | |
| 128 | proof - | |
| 129 | define n where "n = card S" | |
| 130 | consider "card S = 0" | "card S = 1" | "card S = 2" | "card S > 2" by linarith | |
| 131 | then show "(\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V" | |
| 132 | proof cases | |
| 133 | assume "card S = 1" | |
| 134 |       then obtain a where "S={a}"
 | |
| 135 | by (auto simp: card_Suc_eq) | |
| 136 | then show ?thesis | |
| 137 | using that by simp | |
| 138 | next | |
| 139 | assume "card S = 2" | |
| 140 |       then obtain a b where "S = {a, b}"
 | |
| 141 | by (metis Suc_1 card_1_singletonE card_Suc_eq) | |
| 142 | then show ?thesis | |
| 143 | using *[of a b] that | |
| 144 | by (auto simp: sum_clauses(2)) | |
| 145 | next | |
| 146 | assume "card S > 2" | |
| 147 | then show ?thesis using that n_def | |
| 148 | proof (induct n arbitrary: u S) | |
| 149 | case 0 | |
| 150 | then show ?case by auto | |
| 151 | next | |
| 152 | case (Suc n u S) | |
| 153 | have "sum u S = card S" if "\<not> (\<exists>x\<in>S. u x \<noteq> 1)" | |
| 154 | using that unfolding card_eq_sum by auto | |
| 155 | with Suc.prems obtain x where "x \<in> S" and x: "u x \<noteq> 1" by force | |
| 156 |         have c: "card (S - {x}) = card S - 1"
 | |
| 157 | by (simp add: Suc.prems(3) \<open>x \<in> S\<close>) | |
| 158 |         have "sum u (S - {x}) = 1 - u x"
 | |
| 159 | by (simp add: Suc.prems sum_diff1 \<open>x \<in> S\<close>) | |
| 160 |         with x have eq1: "inverse (1 - u x) * sum u (S - {x}) = 1"
 | |
| 161 | by auto | |
| 162 |         have inV: "(\<Sum>y\<in>S - {x}. (inverse (1 - u x) * u y) *\<^sub>R y) \<in> V"
 | |
| 163 |         proof (cases "card (S - {x}) > 2")
 | |
| 164 | case True | |
| 165 |           then have S: "S - {x} \<noteq> {}" "card (S - {x}) = n"
 | |
| 166 | using Suc.prems c by force+ | |
| 167 | show ?thesis | |
| 168 | proof (rule Suc.hyps) | |
| 169 |             show "(\<Sum>a\<in>S - {x}. inverse (1 - u x) * u a) = 1"
 | |
| 170 | by (auto simp: eq1 sum_distrib_left[symmetric]) | |
| 171 | qed (use S Suc.prems True in auto) | |
| 172 | next | |
| 173 | case False | |
| 174 |           then have "card (S - {x}) = Suc (Suc 0)"
 | |
| 175 | using Suc.prems c by auto | |
| 176 |           then obtain a b where ab: "(S - {x}) = {a, b}" "a\<noteq>b"
 | |
| 177 | unfolding card_Suc_eq by auto | |
| 178 | then show ?thesis | |
| 179 | using eq1 \<open>S \<subseteq> V\<close> | |
| 180 | by (auto simp: sum_distrib_left distrib_left intro!: Suc.prems(2)[of a b]) | |
| 181 | qed | |
| 182 | have "u x + (1 - u x) = 1 \<Longrightarrow> | |
| 183 |           u x *\<^sub>R x + (1 - u x) *\<^sub>R ((\<Sum>y\<in>S - {x}. u y *\<^sub>R y) /\<^sub>R (1 - u x)) \<in> V"
 | |
| 184 | by (rule Suc.prems) (use \<open>x \<in> S\<close> Suc.prems inV in \<open>auto simp: scaleR_right.sum\<close>) | |
| 185 |         moreover have "(\<Sum>a\<in>S. u a *\<^sub>R a) = u x *\<^sub>R x + (\<Sum>a\<in>S - {x}. u a *\<^sub>R a)"
 | |
| 186 | by (meson Suc.prems(3) sum.remove \<open>x \<in> S\<close>) | |
| 187 | ultimately show "(\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V" | |
| 188 | by (simp add: x) | |
| 189 | qed | |
| 190 |     qed (use \<open>S\<noteq>{}\<close> \<open>finite S\<close> in auto)
 | |
| 191 | qed | |
| 192 | ultimately show ?thesis | |
| 193 | unfolding affine_def by meson | |
| 194 | qed | |
| 195 | ||
| 196 | ||
| 197 | lemma affine_hull_explicit: | |
| 198 |   "affine hull p = {y. \<exists>S u. finite S \<and> S \<noteq> {} \<and> S \<subseteq> p \<and> sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}"
 | |
| 199 | (is "_ = ?rhs") | |
| 200 | proof (rule hull_unique) | |
| 201 | show "p \<subseteq> ?rhs" | |
| 202 | proof (intro subsetI CollectI exI conjI) | |
| 203 |     show "\<And>x. sum (\<lambda>z. 1) {x} = 1"
 | |
| 204 | by auto | |
| 205 | qed auto | |
| 206 | show "?rhs \<subseteq> T" if "p \<subseteq> T" "affine T" for T | |
| 207 | using that unfolding affine by blast | |
| 208 | show "affine ?rhs" | |
| 209 | unfolding affine_def | |
| 210 | proof clarify | |
| 211 | fix u v :: real and sx ux sy uy | |
| 212 | assume uv: "u + v = 1" | |
| 213 |       and x: "finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "sum ux sx = (1::real)"
 | |
| 214 |       and y: "finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "sum uy sy = (1::real)" 
 | |
| 215 | have **: "(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" | |
| 216 | by auto | |
| 217 |     show "\<exists>S w. finite S \<and> S \<noteq> {} \<and> S \<subseteq> p \<and>
 | |
| 218 | sum w S = 1 \<and> (\<Sum>v\<in>S. w v *\<^sub>R v) = u *\<^sub>R (\<Sum>v\<in>sx. ux v *\<^sub>R v) + v *\<^sub>R (\<Sum>v\<in>sy. uy v *\<^sub>R v)" | |
| 219 | proof (intro exI conjI) | |
| 220 | show "finite (sx \<union> sy)" | |
| 221 | using x y by auto | |
| 222 | show "sum (\<lambda>i. (if i\<in>sx then u * ux i else 0) + (if i\<in>sy then v * uy i else 0)) (sx \<union> sy) = 1" | |
| 223 | using x y uv | |
| 224 | by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] sum_distrib_left [symmetric] **) | |
| 225 | have "(\<Sum>i\<in>sx \<union> sy. ((if i \<in> sx then u * ux i else 0) + (if i \<in> sy then v * uy i else 0)) *\<^sub>R i) | |
| 226 | = (\<Sum>i\<in>sx. (u * ux i) *\<^sub>R i) + (\<Sum>i\<in>sy. (v * uy i) *\<^sub>R i)" | |
| 227 | using x y | |
| 228 | unfolding scaleR_left_distrib scaleR_zero_left if_smult | |
| 229 | by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] **) | |
| 230 | also have "\<dots> = u *\<^sub>R (\<Sum>v\<in>sx. ux v *\<^sub>R v) + v *\<^sub>R (\<Sum>v\<in>sy. uy v *\<^sub>R v)" | |
| 231 | unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] by blast | |
| 232 | finally show "(\<Sum>i\<in>sx \<union> sy. ((if i \<in> sx then u * ux i else 0) + (if i \<in> sy then v * uy i else 0)) *\<^sub>R i) | |
| 233 | = u *\<^sub>R (\<Sum>v\<in>sx. ux v *\<^sub>R v) + v *\<^sub>R (\<Sum>v\<in>sy. uy v *\<^sub>R v)" . | |
| 234 | qed (use x y in auto) | |
| 235 | qed | |
| 236 | qed | |
| 237 | ||
| 238 | lemma affine_hull_finite: | |
| 239 | assumes "finite S" | |
| 240 |   shows "affine hull S = {y. \<exists>u. sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}"
 | |
| 241 | proof - | |
| 242 | have *: "\<exists>h. sum h S = 1 \<and> (\<Sum>v\<in>S. h v *\<^sub>R v) = x" | |
| 243 |     if "F \<subseteq> S" "finite F" "F \<noteq> {}" and sum: "sum u F = 1" and x: "(\<Sum>v\<in>F. u v *\<^sub>R v) = x" for x F u
 | |
| 244 | proof - | |
| 245 | have "S \<inter> F = F" | |
| 246 | using that by auto | |
| 247 | show ?thesis | |
| 248 | proof (intro exI conjI) | |
| 249 | show "(\<Sum>x\<in>S. if x \<in> F then u x else 0) = 1" | |
| 250 | by (metis (mono_tags, lifting) \<open>S \<inter> F = F\<close> assms sum.inter_restrict sum) | |
| 251 | show "(\<Sum>v\<in>S. (if v \<in> F then u v else 0) *\<^sub>R v) = x" | |
| 252 | by (simp add: if_smult cong: if_cong) (metis (no_types) \<open>S \<inter> F = F\<close> assms sum.inter_restrict x) | |
| 253 | qed | |
| 254 | qed | |
| 255 | show ?thesis | |
| 256 | unfolding affine_hull_explicit using assms | |
| 257 | by (fastforce dest: *) | |
| 258 | qed | |
| 259 | ||
| 260 | ||
| 261 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Stepping theorems and hence small special cases\<close> | |
| 262 | ||
| 263 | lemma affine_hull_empty[simp]: "affine hull {} = {}"
 | |
| 264 | by simp | |
| 265 | ||
| 266 | lemma affine_hull_finite_step: | |
| 267 | fixes y :: "'a::real_vector" | |
| 268 | shows "finite S \<Longrightarrow> | |
| 269 | (\<exists>u. sum u (insert a S) = w \<and> sum (\<lambda>x. u x *\<^sub>R x) (insert a S) = y) \<longleftrightarrow> | |
| 270 | (\<exists>v u. sum u S = w - v \<and> sum (\<lambda>x. u x *\<^sub>R x) S = y - v *\<^sub>R a)" (is "_ \<Longrightarrow> ?lhs = ?rhs") | |
| 271 | proof - | |
| 272 | assume fin: "finite S" | |
| 273 | show "?lhs = ?rhs" | |
| 274 | proof | |
| 275 | assume ?lhs | |
| 276 | then obtain u where u: "sum u (insert a S) = w \<and> (\<Sum>x\<in>insert a S. u x *\<^sub>R x) = y" | |
| 277 | by auto | |
| 278 | show ?rhs | |
| 279 | proof (cases "a \<in> S") | |
| 280 | case True | |
| 281 | then show ?thesis | |
| 282 | using u by (simp add: insert_absorb) (metis diff_zero real_vector.scale_zero_left) | |
| 283 | next | |
| 284 | case False | |
| 285 | show ?thesis | |
| 286 | by (rule exI [where x="u a"]) (use u fin False in auto) | |
| 287 | qed | |
| 288 | next | |
| 289 | assume ?rhs | |
| 290 | then obtain v u where vu: "sum u S = w - v" "(\<Sum>x\<in>S. u x *\<^sub>R x) = y - v *\<^sub>R a" | |
| 291 | by auto | |
| 292 | have *: "\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" | |
| 293 | by auto | |
| 294 | show ?lhs | |
| 295 | proof (cases "a \<in> S") | |
| 296 | case True | |
| 297 | show ?thesis | |
| 298 | by (rule exI [where x="\<lambda>x. (if x=a then v else 0) + u x"]) | |
| 299 | (simp add: True scaleR_left_distrib sum.distrib sum_clauses fin vu * cong: if_cong) | |
| 300 | next | |
| 301 | case False | |
| 302 | then show ?thesis | |
| 303 | apply (rule_tac x="\<lambda>x. if x=a then v else u x" in exI) | |
| 304 | apply (simp add: vu sum_clauses(2)[OF fin] *) | |
| 305 | by (simp add: sum_delta_notmem(3) vu) | |
| 306 | qed | |
| 307 | qed | |
| 308 | qed | |
| 309 | ||
| 310 | lemma affine_hull_2: | |
| 311 | fixes a b :: "'a::real_vector" | |
| 312 |   shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}"
 | |
| 313 | (is "?lhs = ?rhs") | |
| 314 | proof - | |
| 315 | have *: | |
| 316 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" | |
| 317 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto | |
| 318 |   have "?lhs = {y. \<exists>u. sum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}"
 | |
| 319 |     using affine_hull_finite[of "{a,b}"] by auto
 | |
| 320 |   also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}"
 | |
| 321 |     by (simp add: affine_hull_finite_step[of "{b}" a])
 | |
| 322 | also have "\<dots> = ?rhs" unfolding * by auto | |
| 323 | finally show ?thesis by auto | |
| 324 | qed | |
| 325 | ||
| 326 | lemma affine_hull_3: | |
| 327 | fixes a b c :: "'a::real_vector" | |
| 328 |   shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}"
 | |
| 329 | proof - | |
| 330 | have *: | |
| 331 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" | |
| 332 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto | |
| 333 | show ?thesis | |
| 334 | apply (simp add: affine_hull_finite affine_hull_finite_step) | |
| 335 | unfolding * | |
| 336 | apply safe | |
| 337 | apply (metis add.assoc) | |
| 338 | apply (rule_tac x=u in exI, force) | |
| 339 | done | |
| 340 | qed | |
| 341 | ||
| 342 | lemma mem_affine: | |
| 343 | assumes "affine S" "x \<in> S" "y \<in> S" "u + v = 1" | |
| 344 | shows "u *\<^sub>R x + v *\<^sub>R y \<in> S" | |
| 345 | using assms affine_def[of S] by auto | |
| 346 | ||
| 347 | lemma mem_affine_3: | |
| 348 | assumes "affine S" "x \<in> S" "y \<in> S" "z \<in> S" "u + v + w = 1" | |
| 349 | shows "u *\<^sub>R x + v *\<^sub>R y + w *\<^sub>R z \<in> S" | |
| 350 | proof - | |
| 351 |   have "u *\<^sub>R x + v *\<^sub>R y + w *\<^sub>R z \<in> affine hull {x, y, z}"
 | |
| 352 | using affine_hull_3[of x y z] assms by auto | |
| 353 | moreover | |
| 354 |   have "affine hull {x, y, z} \<subseteq> affine hull S"
 | |
| 355 |     using hull_mono[of "{x, y, z}" "S"] assms by auto
 | |
| 356 | moreover | |
| 357 | have "affine hull S = S" | |
| 358 | using assms affine_hull_eq[of S] by auto | |
| 359 | ultimately show ?thesis by auto | |
| 360 | qed | |
| 361 | ||
| 362 | lemma mem_affine_3_minus: | |
| 363 | assumes "affine S" "x \<in> S" "y \<in> S" "z \<in> S" | |
| 364 | shows "x + v *\<^sub>R (y-z) \<in> S" | |
| 365 | using mem_affine_3[of S x y z 1 v "-v"] assms | |
| 366 | by (simp add: algebra_simps) | |
| 367 | ||
| 368 | corollary%unimportant mem_affine_3_minus2: | |
| 369 | "\<lbrakk>affine S; x \<in> S; y \<in> S; z \<in> S\<rbrakk> \<Longrightarrow> x - v *\<^sub>R (y-z) \<in> S" | |
| 370 | by (metis add_uminus_conv_diff mem_affine_3_minus real_vector.scale_minus_left) | |
| 371 | ||
| 372 | ||
| 373 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Some relations between affine hull and subspaces\<close> | |
| 374 | ||
| 375 | lemma affine_hull_insert_subset_span: | |
| 376 |   "affine hull (insert a S) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> S}}"
 | |
| 377 | proof - | |
| 378 |   have "\<exists>v T u. x = a + v \<and> (finite T \<and> T \<subseteq> {x - a |x. x \<in> S} \<and> (\<Sum>v\<in>T. u v *\<^sub>R v) = v)"
 | |
| 379 |     if "finite F" "F \<noteq> {}" "F \<subseteq> insert a S" "sum u F = 1" "(\<Sum>v\<in>F. u v *\<^sub>R v) = x"
 | |
| 380 | for x F u | |
| 381 | proof - | |
| 382 |     have *: "(\<lambda>x. x - a) ` (F - {a}) \<subseteq> {x - a |x. x \<in> S}"
 | |
| 383 | using that by auto | |
| 384 | show ?thesis | |
| 385 | proof (intro exI conjI) | |
| 386 |       show "finite ((\<lambda>x. x - a) ` (F - {a}))"
 | |
| 387 | by (simp add: that(1)) | |
| 388 |       show "(\<Sum>v\<in>(\<lambda>x. x - a) ` (F - {a}). u(v+a) *\<^sub>R v) = x-a"
 | |
| 389 | by (simp add: sum.reindex[unfolded inj_on_def] algebra_simps | |
| 390 | sum_subtractf scaleR_left.sum[symmetric] sum_diff1 that) | |
| 391 | qed (use \<open>F \<subseteq> insert a S\<close> in auto) | |
| 392 | qed | |
| 393 | then show ?thesis | |
| 71840 
8ed78bb0b915
Tuned some proofs in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71243diff
changeset | 394 | unfolding affine_hull_explicit span_explicit by fast | 
| 71242 | 395 | qed | 
| 396 | ||
| 397 | lemma affine_hull_insert_span: | |
| 398 | assumes "a \<notin> S" | |
| 399 |   shows "affine hull (insert a S) = {a + v | v . v \<in> span {x - a | x.  x \<in> S}}"
 | |
| 400 | proof - | |
| 401 |   have *: "\<exists>G u. finite G \<and> G \<noteq> {} \<and> G \<subseteq> insert a S \<and> sum u G = 1 \<and> (\<Sum>v\<in>G. u v *\<^sub>R v) = y"
 | |
| 402 |     if "v \<in> span {x - a |x. x \<in> S}" "y = a + v" for y v
 | |
| 403 | proof - | |
| 404 | from that | |
| 405 |     obtain T u where u: "finite T" "T \<subseteq> {x - a |x. x \<in> S}" "a + (\<Sum>v\<in>T. u v *\<^sub>R v) = y"
 | |
| 406 | unfolding span_explicit by auto | |
| 407 | define F where "F = (\<lambda>x. x + a) ` T" | |
| 408 | have F: "finite F" "F \<subseteq> S" "(\<Sum>v\<in>F. u (v - a) *\<^sub>R (v - a)) = y - a" | |
| 409 | unfolding F_def using u by (auto simp: sum.reindex[unfolded inj_on_def]) | |
| 410 |     have *: "F \<inter> {a} = {}" "F \<inter> - {a} = F"
 | |
| 411 | using F assms by auto | |
| 412 |     show "\<exists>G u. finite G \<and> G \<noteq> {} \<and> G \<subseteq> insert a S \<and> sum u G = 1 \<and> (\<Sum>v\<in>G. u v *\<^sub>R v) = y"
 | |
| 413 | apply (rule_tac x = "insert a F" in exI) | |
| 414 | apply (rule_tac x = "\<lambda>x. if x=a then 1 - sum (\<lambda>x. u (x - a)) F else u (x - a)" in exI) | |
| 415 | using assms F | |
| 416 | apply (auto simp: sum_clauses sum.If_cases if_smult sum_subtractf scaleR_left.sum algebra_simps *) | |
| 417 | done | |
| 418 | qed | |
| 419 | show ?thesis | |
| 420 | by (intro subset_antisym affine_hull_insert_subset_span) (auto simp: affine_hull_explicit dest!: *) | |
| 421 | qed | |
| 422 | ||
| 423 | lemma affine_hull_span: | |
| 424 | assumes "a \<in> S" | |
| 425 |   shows "affine hull S = {a + v | v. v \<in> span {x - a | x. x \<in> S - {a}}}"
 | |
| 426 |   using affine_hull_insert_span[of a "S - {a}", unfolded insert_Diff[OF assms]] by auto
 | |
| 427 | ||
| 428 | ||
| 429 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Parallel affine sets\<close> | |
| 430 | ||
| 431 | definition affine_parallel :: "'a::real_vector set \<Rightarrow> 'a::real_vector set \<Rightarrow> bool" | |
| 432 | where "affine_parallel S T \<longleftrightarrow> (\<exists>a. T = (\<lambda>x. a + x) ` S)" | |
| 433 | ||
| 434 | lemma affine_parallel_expl_aux: | |
| 435 | fixes S T :: "'a::real_vector set" | |
| 436 | assumes "\<And>x. x \<in> S \<longleftrightarrow> a + x \<in> T" | |
| 437 | shows "T = (\<lambda>x. a + x) ` S" | |
| 438 | proof - | |
| 439 | have "x \<in> ((\<lambda>x. a + x) ` S)" if "x \<in> T" for x | |
| 440 | using that | |
| 441 | by (simp add: image_iff) (metis add.commute diff_add_cancel assms) | |
| 442 | moreover have "T \<ge> (\<lambda>x. a + x) ` S" | |
| 443 | using assms by auto | |
| 444 | ultimately show ?thesis by auto | |
| 445 | qed | |
| 446 | ||
| 447 | lemma affine_parallel_expl: "affine_parallel S T \<longleftrightarrow> (\<exists>a. \<forall>x. x \<in> S \<longleftrightarrow> a + x \<in> T)" | |
| 448 | by (auto simp add: affine_parallel_def) | |
| 449 | (use affine_parallel_expl_aux [of S _ T] in blast) | |
| 450 | ||
| 451 | lemma affine_parallel_reflex: "affine_parallel S S" | |
| 452 | unfolding affine_parallel_def | |
| 453 | using image_add_0 by blast | |
| 454 | ||
| 455 | lemma affine_parallel_commut: | |
| 456 | assumes "affine_parallel A B" | |
| 457 | shows "affine_parallel B A" | |
| 458 | proof - | |
| 459 | from assms obtain a where B: "B = (\<lambda>x. a + x) ` A" | |
| 460 | unfolding affine_parallel_def by auto | |
| 461 | have [simp]: "(\<lambda>x. x - a) = plus (- a)" by (simp add: fun_eq_iff) | |
| 462 | from B show ?thesis | |
| 463 | using translation_galois [of B a A] | |
| 464 | unfolding affine_parallel_def by blast | |
| 465 | qed | |
| 466 | ||
| 467 | lemma affine_parallel_assoc: | |
| 468 | assumes "affine_parallel A B" | |
| 469 | and "affine_parallel B C" | |
| 470 | shows "affine_parallel A C" | |
| 471 | proof - | |
| 472 | from assms obtain ab where "B = (\<lambda>x. ab + x) ` A" | |
| 473 | unfolding affine_parallel_def by auto | |
| 474 | moreover | |
| 475 | from assms obtain bc where "C = (\<lambda>x. bc + x) ` B" | |
| 476 | unfolding affine_parallel_def by auto | |
| 477 | ultimately show ?thesis | |
| 478 | using translation_assoc[of bc ab A] unfolding affine_parallel_def by auto | |
| 479 | qed | |
| 480 | ||
| 481 | lemma affine_translation_aux: | |
| 482 | fixes a :: "'a::real_vector" | |
| 483 | assumes "affine ((\<lambda>x. a + x) ` S)" | |
| 484 | shows "affine S" | |
| 485 | proof - | |
| 486 |   {
 | |
| 487 | fix x y u v | |
| 488 | assume xy: "x \<in> S" "y \<in> S" "(u :: real) + v = 1" | |
| 489 | then have "(a + x) \<in> ((\<lambda>x. a + x) ` S)" "(a + y) \<in> ((\<lambda>x. a + x) ` S)" | |
| 490 | by auto | |
| 491 | then have h1: "u *\<^sub>R (a + x) + v *\<^sub>R (a + y) \<in> (\<lambda>x. a + x) ` S" | |
| 492 | using xy assms unfolding affine_def by auto | |
| 493 | have "u *\<^sub>R (a + x) + v *\<^sub>R (a + y) = (u + v) *\<^sub>R a + (u *\<^sub>R x + v *\<^sub>R y)" | |
| 494 | by (simp add: algebra_simps) | |
| 495 | also have "\<dots> = a + (u *\<^sub>R x + v *\<^sub>R y)" | |
| 496 | using \<open>u + v = 1\<close> by auto | |
| 497 | ultimately have "a + (u *\<^sub>R x + v *\<^sub>R y) \<in> (\<lambda>x. a + x) ` S" | |
| 498 | using h1 by auto | |
| 499 | then have "u *\<^sub>R x + v *\<^sub>R y \<in> S" by auto | |
| 500 | } | |
| 501 | then show ?thesis unfolding affine_def by auto | |
| 502 | qed | |
| 503 | ||
| 504 | lemma affine_translation: | |
| 505 | "affine S \<longleftrightarrow> affine ((+) a ` S)" for a :: "'a::real_vector" | |
| 506 | proof | |
| 507 | show "affine ((+) a ` S)" if "affine S" | |
| 508 | using that translation_assoc [of "- a" a S] | |
| 509 | by (auto intro: affine_translation_aux [of "- a" "((+) a ` S)"]) | |
| 510 | show "affine S" if "affine ((+) a ` S)" | |
| 511 | using that by (rule affine_translation_aux) | |
| 512 | qed | |
| 513 | ||
| 514 | lemma parallel_is_affine: | |
| 515 | fixes S T :: "'a::real_vector set" | |
| 516 | assumes "affine S" "affine_parallel S T" | |
| 517 | shows "affine T" | |
| 518 | proof - | |
| 519 | from assms obtain a where "T = (\<lambda>x. a + x) ` S" | |
| 520 | unfolding affine_parallel_def by auto | |
| 521 | then show ?thesis | |
| 522 | using affine_translation assms by auto | |
| 523 | qed | |
| 524 | ||
| 525 | lemma subspace_imp_affine: "subspace s \<Longrightarrow> affine s" | |
| 526 | unfolding subspace_def affine_def by auto | |
| 527 | ||
| 528 | lemma affine_hull_subset_span: "(affine hull s) \<subseteq> (span s)" | |
| 529 | by (metis hull_minimal span_superset subspace_imp_affine subspace_span) | |
| 530 | ||
| 531 | ||
| 532 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Subspace parallel to an affine set\<close> | |
| 533 | ||
| 534 | lemma subspace_affine: "subspace S \<longleftrightarrow> affine S \<and> 0 \<in> S" | |
| 535 | proof - | |
| 536 | have h0: "subspace S \<Longrightarrow> affine S \<and> 0 \<in> S" | |
| 537 | using subspace_imp_affine[of S] subspace_0 by auto | |
| 538 |   {
 | |
| 539 | assume assm: "affine S \<and> 0 \<in> S" | |
| 540 |     {
 | |
| 541 | fix c :: real | |
| 542 | fix x | |
| 543 | assume x: "x \<in> S" | |
| 544 | have "c *\<^sub>R x = (1-c) *\<^sub>R 0 + c *\<^sub>R x" by auto | |
| 545 | moreover | |
| 546 | have "(1 - c) *\<^sub>R 0 + c *\<^sub>R x \<in> S" | |
| 547 | using affine_alt[of S] assm x by auto | |
| 548 | ultimately have "c *\<^sub>R x \<in> S" by auto | |
| 549 | } | |
| 550 | then have h1: "\<forall>c. \<forall>x \<in> S. c *\<^sub>R x \<in> S" by auto | |
| 551 | ||
| 552 |     {
 | |
| 553 | fix x y | |
| 554 | assume xy: "x \<in> S" "y \<in> S" | |
| 555 | define u where "u = (1 :: real)/2" | |
| 556 | have "(1/2) *\<^sub>R (x+y) = (1/2) *\<^sub>R (x+y)" | |
| 557 | by auto | |
| 558 | moreover | |
| 559 | have "(1/2) *\<^sub>R (x+y)=(1/2) *\<^sub>R x + (1-(1/2)) *\<^sub>R y" | |
| 560 | by (simp add: algebra_simps) | |
| 561 | moreover | |
| 562 | have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> S" | |
| 563 | using affine_alt[of S] assm xy by auto | |
| 564 | ultimately | |
| 565 | have "(1/2) *\<^sub>R (x+y) \<in> S" | |
| 566 | using u_def by auto | |
| 567 | moreover | |
| 568 | have "x + y = 2 *\<^sub>R ((1/2) *\<^sub>R (x+y))" | |
| 569 | by auto | |
| 570 | ultimately | |
| 571 | have "x + y \<in> S" | |
| 572 | using h1[rule_format, of "(1/2) *\<^sub>R (x+y)" "2"] by auto | |
| 573 | } | |
| 574 | then have "\<forall>x \<in> S. \<forall>y \<in> S. x + y \<in> S" | |
| 575 | by auto | |
| 576 | then have "subspace S" | |
| 577 | using h1 assm unfolding subspace_def by auto | |
| 578 | } | |
| 579 | then show ?thesis using h0 by metis | |
| 580 | qed | |
| 581 | ||
| 582 | lemma affine_diffs_subspace: | |
| 583 | assumes "affine S" "a \<in> S" | |
| 584 | shows "subspace ((\<lambda>x. (-a)+x) ` S)" | |
| 585 | proof - | |
| 586 | have [simp]: "(\<lambda>x. x - a) = plus (- a)" by (simp add: fun_eq_iff) | |
| 587 | have "affine ((\<lambda>x. (-a)+x) ` S)" | |
| 588 | using affine_translation assms by blast | |
| 589 | moreover have "0 \<in> ((\<lambda>x. (-a)+x) ` S)" | |
| 590 | using assms exI[of "(\<lambda>x. x\<in>S \<and> -a+x = 0)" a] by auto | |
| 591 | ultimately show ?thesis using subspace_affine by auto | |
| 592 | qed | |
| 593 | ||
| 594 | lemma affine_diffs_subspace_subtract: | |
| 595 | "subspace ((\<lambda>x. x - a) ` S)" if "affine S" "a \<in> S" | |
| 596 | using that affine_diffs_subspace [of _ a] by simp | |
| 597 | ||
| 598 | lemma parallel_subspace_explicit: | |
| 599 | assumes "affine S" | |
| 600 | and "a \<in> S" | |
| 601 |   assumes "L \<equiv> {y. \<exists>x \<in> S. (-a) + x = y}"
 | |
| 602 | shows "subspace L \<and> affine_parallel S L" | |
| 603 | proof - | |
| 604 | from assms have "L = plus (- a) ` S" by auto | |
| 605 | then have par: "affine_parallel S L" | |
| 606 | unfolding affine_parallel_def .. | |
| 607 | then have "affine L" using assms parallel_is_affine by auto | |
| 608 | moreover have "0 \<in> L" | |
| 609 | using assms by auto | |
| 610 | ultimately show ?thesis | |
| 611 | using subspace_affine par by auto | |
| 612 | qed | |
| 613 | ||
| 614 | lemma parallel_subspace_aux: | |
| 615 | assumes "subspace A" | |
| 616 | and "subspace B" | |
| 617 | and "affine_parallel A B" | |
| 618 | shows "A \<supseteq> B" | |
| 619 | proof - | |
| 620 | from assms obtain a where a: "\<forall>x. x \<in> A \<longleftrightarrow> a + x \<in> B" | |
| 621 | using affine_parallel_expl[of A B] by auto | |
| 622 | then have "-a \<in> A" | |
| 623 | using assms subspace_0[of B] by auto | |
| 624 | then have "a \<in> A" | |
| 625 | using assms subspace_neg[of A "-a"] by auto | |
| 626 | then show ?thesis | |
| 627 | using assms a unfolding subspace_def by auto | |
| 628 | qed | |
| 629 | ||
| 630 | lemma parallel_subspace: | |
| 631 | assumes "subspace A" | |
| 632 | and "subspace B" | |
| 633 | and "affine_parallel A B" | |
| 634 | shows "A = B" | |
| 635 | proof | |
| 636 | show "A \<supseteq> B" | |
| 637 | using assms parallel_subspace_aux by auto | |
| 638 | show "A \<subseteq> B" | |
| 639 | using assms parallel_subspace_aux[of B A] affine_parallel_commut by auto | |
| 640 | qed | |
| 641 | ||
| 642 | lemma affine_parallel_subspace: | |
| 643 |   assumes "affine S" "S \<noteq> {}"
 | |
| 644 | shows "\<exists>!L. subspace L \<and> affine_parallel S L" | |
| 645 | proof - | |
| 646 | have ex: "\<exists>L. subspace L \<and> affine_parallel S L" | |
| 647 | using assms parallel_subspace_explicit by auto | |
| 648 |   {
 | |
| 649 | fix L1 L2 | |
| 650 | assume ass: "subspace L1 \<and> affine_parallel S L1" "subspace L2 \<and> affine_parallel S L2" | |
| 651 | then have "affine_parallel L1 L2" | |
| 652 | using affine_parallel_commut[of S L1] affine_parallel_assoc[of L1 S L2] by auto | |
| 653 | then have "L1 = L2" | |
| 654 | using ass parallel_subspace by auto | |
| 655 | } | |
| 656 | then show ?thesis using ex by auto | |
| 657 | qed | |
| 658 | ||
| 659 | ||
| 660 | subsection \<open>Affine Dependence\<close> | |
| 661 | ||
| 662 | text "Formalized by Lars Schewe." | |
| 663 | ||
| 664 | definition\<^marker>\<open>tag important\<close> affine_dependent :: "'a::real_vector set \<Rightarrow> bool" | |
| 665 |   where "affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> affine hull (s - {x}))"
 | |
| 666 | ||
| 667 | lemma affine_dependent_imp_dependent: "affine_dependent s \<Longrightarrow> dependent s" | |
| 668 | unfolding affine_dependent_def dependent_def | |
| 669 | using affine_hull_subset_span by auto | |
| 670 | ||
| 671 | lemma affine_dependent_subset: | |
| 672 | "\<lbrakk>affine_dependent s; s \<subseteq> t\<rbrakk> \<Longrightarrow> affine_dependent t" | |
| 673 | apply (simp add: affine_dependent_def Bex_def) | |
| 674 | apply (blast dest: hull_mono [OF Diff_mono [OF _ subset_refl]]) | |
| 675 | done | |
| 676 | ||
| 677 | lemma affine_independent_subset: | |
| 678 | shows "\<lbrakk>\<not> affine_dependent t; s \<subseteq> t\<rbrakk> \<Longrightarrow> \<not> affine_dependent s" | |
| 679 | by (metis affine_dependent_subset) | |
| 680 | ||
| 681 | lemma affine_independent_Diff: | |
| 682 | "\<not> affine_dependent s \<Longrightarrow> \<not> affine_dependent(s - t)" | |
| 683 | by (meson Diff_subset affine_dependent_subset) | |
| 684 | ||
| 685 | proposition affine_dependent_explicit: | |
| 686 | "affine_dependent p \<longleftrightarrow> | |
| 687 | (\<exists>S u. finite S \<and> S \<subseteq> p \<and> sum u S = 0 \<and> (\<exists>v\<in>S. u v \<noteq> 0) \<and> sum (\<lambda>v. u v *\<^sub>R v) S = 0)" | |
| 688 | proof - | |
| 689 | have "\<exists>S u. finite S \<and> S \<subseteq> p \<and> sum u S = 0 \<and> (\<exists>v\<in>S. u v \<noteq> 0) \<and> (\<Sum>w\<in>S. u w *\<^sub>R w) = 0" | |
| 690 |     if "(\<Sum>w\<in>S. u w *\<^sub>R w) = x" "x \<in> p" "finite S" "S \<noteq> {}" "S \<subseteq> p - {x}" "sum u S = 1" for x S u
 | |
| 691 | proof (intro exI conjI) | |
| 692 | have "x \<notin> S" | |
| 693 | using that by auto | |
| 694 | then show "(\<Sum>v \<in> insert x S. if v = x then - 1 else u v) = 0" | |
| 695 | using that by (simp add: sum_delta_notmem) | |
| 696 | show "(\<Sum>w \<in> insert x S. (if w = x then - 1 else u w) *\<^sub>R w) = 0" | |
| 697 | using that \<open>x \<notin> S\<close> by (simp add: if_smult sum_delta_notmem cong: if_cong) | |
| 698 | qed (use that in auto) | |
| 699 |   moreover have "\<exists>x\<in>p. \<exists>S u. finite S \<and> S \<noteq> {} \<and> S \<subseteq> p - {x} \<and> sum u S = 1 \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = x"
 | |
| 700 | if "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" "finite S" "S \<subseteq> p" "sum u S = 0" "v \<in> S" "u v \<noteq> 0" for S u v | |
| 701 | proof (intro bexI exI conjI) | |
| 702 |     have "S \<noteq> {v}"
 | |
| 703 | using that by auto | |
| 704 |     then show "S - {v} \<noteq> {}"
 | |
| 705 | using that by auto | |
| 706 |     show "(\<Sum>x \<in> S - {v}. - (1 / u v) * u x) = 1"
 | |
| 707 | unfolding sum_distrib_left[symmetric] sum_diff1[OF \<open>finite S\<close>] by (simp add: that) | |
| 708 |     show "(\<Sum>x\<in>S - {v}. (- (1 / u v) * u x) *\<^sub>R x) = v"
 | |
| 709 | unfolding sum_distrib_left [symmetric] scaleR_scaleR[symmetric] | |
| 710 | scaleR_right.sum [symmetric] sum_diff1[OF \<open>finite S\<close>] | |
| 711 | using that by auto | |
| 712 |     show "S - {v} \<subseteq> p - {v}"
 | |
| 713 | using that by auto | |
| 714 | qed (use that in auto) | |
| 715 | ultimately show ?thesis | |
| 716 | unfolding affine_dependent_def affine_hull_explicit by auto | |
| 717 | qed | |
| 718 | ||
| 719 | lemma affine_dependent_explicit_finite: | |
| 720 | fixes S :: "'a::real_vector set" | |
| 721 | assumes "finite S" | |
| 722 | shows "affine_dependent S \<longleftrightarrow> | |
| 723 | (\<exists>u. sum u S = 0 \<and> (\<exists>v\<in>S. u v \<noteq> 0) \<and> sum (\<lambda>v. u v *\<^sub>R v) S = 0)" | |
| 724 | (is "?lhs = ?rhs") | |
| 725 | proof | |
| 726 | have *: "\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else 0::'a)" | |
| 727 | by auto | |
| 728 | assume ?lhs | |
| 729 | then obtain t u v where | |
| 730 | "finite t" "t \<subseteq> S" "sum u t = 0" "v\<in>t" "u v \<noteq> 0" "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0" | |
| 731 | unfolding affine_dependent_explicit by auto | |
| 732 | then show ?rhs | |
| 733 | apply (rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) | |
| 734 | apply (auto simp: * sum.inter_restrict[OF assms, symmetric] Int_absorb1[OF \<open>t\<subseteq>S\<close>]) | |
| 735 | done | |
| 736 | next | |
| 737 | assume ?rhs | |
| 738 | then obtain u v where "sum u S = 0" "v\<in>S" "u v \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" | |
| 739 | by auto | |
| 740 | then show ?lhs unfolding affine_dependent_explicit | |
| 741 | using assms by auto | |
| 742 | qed | |
| 743 | ||
| 744 | lemma dependent_imp_affine_dependent: | |
| 745 |   assumes "dependent {x - a| x . x \<in> s}"
 | |
| 746 | and "a \<notin> s" | |
| 747 | shows "affine_dependent (insert a s)" | |
| 748 | proof - | |
| 749 | from assms(1)[unfolded dependent_explicit] obtain S u v | |
| 750 |     where obt: "finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0"
 | |
| 751 | by auto | |
| 752 | define t where "t = (\<lambda>x. x + a) ` S" | |
| 753 | ||
| 754 | have inj: "inj_on (\<lambda>x. x + a) S" | |
| 755 | unfolding inj_on_def by auto | |
| 756 | have "0 \<notin> S" | |
| 757 | using obt(2) assms(2) unfolding subset_eq by auto | |
| 758 | have fin: "finite t" and "t \<subseteq> s" | |
| 759 | unfolding t_def using obt(1,2) by auto | |
| 760 | then have "finite (insert a t)" and "insert a t \<subseteq> insert a s" | |
| 761 | by auto | |
| 762 | moreover have *: "\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)" | |
| 763 | apply (rule sum.cong) | |
| 764 | using \<open>a\<notin>s\<close> \<open>t\<subseteq>s\<close> | |
| 765 | apply auto | |
| 766 | done | |
| 767 | have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0" | |
| 768 | unfolding sum_clauses(2)[OF fin] * using \<open>a\<notin>s\<close> \<open>t\<subseteq>s\<close> by auto | |
| 769 | moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0" | |
| 770 | using obt(3,4) \<open>0\<notin>S\<close> | |
| 771 | by (rule_tac x="v + a" in bexI) (auto simp: t_def) | |
| 772 | moreover have *: "\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)" | |
| 773 | using \<open>a\<notin>s\<close> \<open>t\<subseteq>s\<close> by (auto intro!: sum.cong) | |
| 774 | have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)" | |
| 775 | unfolding scaleR_left.sum | |
| 776 | unfolding t_def and sum.reindex[OF inj] and o_def | |
| 777 | using obt(5) | |
| 778 | by (auto simp: sum.distrib scaleR_right_distrib) | |
| 779 | then have "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0" | |
| 780 | unfolding sum_clauses(2)[OF fin] | |
| 781 | using \<open>a\<notin>s\<close> \<open>t\<subseteq>s\<close> | |
| 782 | by (auto simp: *) | |
| 783 | ultimately show ?thesis | |
| 784 | unfolding affine_dependent_explicit | |
| 785 | apply (rule_tac x="insert a t" in exI, auto) | |
| 786 | done | |
| 787 | qed | |
| 788 | ||
| 789 | lemma affine_dependent_biggerset: | |
| 790 | fixes s :: "'a::euclidean_space set" | |
| 791 |   assumes "finite s" "card s \<ge> DIM('a) + 2"
 | |
| 792 | shows "affine_dependent s" | |
| 793 | proof - | |
| 794 |   have "s \<noteq> {}" using assms by auto
 | |
| 795 | then obtain a where "a\<in>s" by auto | |
| 796 |   have *: "{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})"
 | |
| 797 | by auto | |
| 798 |   have "card {x - a |x. x \<in> s - {a}} = card (s - {a})"
 | |
| 799 | unfolding * by (simp add: card_image inj_on_def) | |
| 800 |   also have "\<dots> > DIM('a)" using assms(2)
 | |
| 74224 
e04ec2b9ed97
some fixes connected with card_Diff_singleton
 paulson <lp15@cam.ac.uk> parents: 
73372diff
changeset | 801 | unfolding card_Diff_singleton[OF \<open>a\<in>s\<close>] by auto | 
| 71242 | 802 | finally show ?thesis | 
| 803 | apply (subst insert_Diff[OF \<open>a\<in>s\<close>, symmetric]) | |
| 804 | apply (rule dependent_imp_affine_dependent) | |
| 805 | apply (rule dependent_biggerset, auto) | |
| 806 | done | |
| 807 | qed | |
| 808 | ||
| 809 | lemma affine_dependent_biggerset_general: | |
| 810 | assumes "finite (S :: 'a::euclidean_space set)" | |
| 811 | and "card S \<ge> dim S + 2" | |
| 812 | shows "affine_dependent S" | |
| 813 | proof - | |
| 814 |   from assms(2) have "S \<noteq> {}" by auto
 | |
| 815 | then obtain a where "a\<in>S" by auto | |
| 816 |   have *: "{x - a |x. x \<in> S - {a}} = (\<lambda>x. x - a) ` (S - {a})"
 | |
| 817 | by auto | |
| 818 |   have **: "card {x - a |x. x \<in> S - {a}} = card (S - {a})"
 | |
| 819 | by (metis (no_types, lifting) "*" card_image diff_add_cancel inj_on_def) | |
| 820 |   have "dim {x - a |x. x \<in> S - {a}} \<le> dim S"
 | |
| 821 | using \<open>a\<in>S\<close> by (auto simp: span_base span_diff intro: subset_le_dim) | |
| 822 | also have "\<dots> < dim S + 1" by auto | |
| 823 |   also have "\<dots> \<le> card (S - {a})"
 | |
| 74224 
e04ec2b9ed97
some fixes connected with card_Diff_singleton
 paulson <lp15@cam.ac.uk> parents: 
73372diff
changeset | 824 | using assms card_Diff_singleton[OF \<open>a\<in>S\<close>] by auto | 
| 71242 | 825 | finally show ?thesis | 
| 826 | apply (subst insert_Diff[OF \<open>a\<in>S\<close>, symmetric]) | |
| 827 | apply (rule dependent_imp_affine_dependent) | |
| 828 | apply (rule dependent_biggerset_general) | |
| 829 | unfolding ** | |
| 830 | apply auto | |
| 831 | done | |
| 832 | qed | |
| 833 | ||
| 834 | ||
| 835 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Some Properties of Affine Dependent Sets\<close> | |
| 836 | ||
| 837 | lemma affine_independent_0 [simp]: "\<not> affine_dependent {}"
 | |
| 838 | by (simp add: affine_dependent_def) | |
| 839 | ||
| 840 | lemma affine_independent_1 [simp]: "\<not> affine_dependent {a}"
 | |
| 841 | by (simp add: affine_dependent_def) | |
| 842 | ||
| 843 | lemma affine_independent_2 [simp]: "\<not> affine_dependent {a,b}"
 | |
| 844 | by (simp add: affine_dependent_def insert_Diff_if hull_same) | |
| 845 | ||
| 846 | lemma affine_hull_translation: "affine hull ((\<lambda>x. a + x) ` S) = (\<lambda>x. a + x) ` (affine hull S)" | |
| 847 | proof - | |
| 848 | have "affine ((\<lambda>x. a + x) ` (affine hull S))" | |
| 849 | using affine_translation affine_affine_hull by blast | |
| 850 | moreover have "(\<lambda>x. a + x) ` S \<subseteq> (\<lambda>x. a + x) ` (affine hull S)" | |
| 851 | using hull_subset[of S] by auto | |
| 852 | ultimately have h1: "affine hull ((\<lambda>x. a + x) ` S) \<subseteq> (\<lambda>x. a + x) ` (affine hull S)" | |
| 853 | by (metis hull_minimal) | |
| 854 | have "affine((\<lambda>x. -a + x) ` (affine hull ((\<lambda>x. a + x) ` S)))" | |
| 855 | using affine_translation affine_affine_hull by blast | |
| 856 | moreover have "(\<lambda>x. -a + x) ` (\<lambda>x. a + x) ` S \<subseteq> (\<lambda>x. -a + x) ` (affine hull ((\<lambda>x. a + x) ` S))" | |
| 857 | using hull_subset[of "(\<lambda>x. a + x) ` S"] by auto | |
| 858 | moreover have "S = (\<lambda>x. -a + x) ` (\<lambda>x. a + x) ` S" | |
| 859 | using translation_assoc[of "-a" a] by auto | |
| 860 | ultimately have "(\<lambda>x. -a + x) ` (affine hull ((\<lambda>x. a + x) ` S)) >= (affine hull S)" | |
| 861 | by (metis hull_minimal) | |
| 862 | then have "affine hull ((\<lambda>x. a + x) ` S) >= (\<lambda>x. a + x) ` (affine hull S)" | |
| 863 | by auto | |
| 864 | then show ?thesis using h1 by auto | |
| 865 | qed | |
| 866 | ||
| 867 | lemma affine_dependent_translation: | |
| 868 | assumes "affine_dependent S" | |
| 869 | shows "affine_dependent ((\<lambda>x. a + x) ` S)" | |
| 870 | proof - | |
| 871 |   obtain x where x: "x \<in> S \<and> x \<in> affine hull (S - {x})"
 | |
| 872 | using assms affine_dependent_def by auto | |
| 873 |   have "(+) a ` (S - {x}) = (+) a ` S - {a + x}"
 | |
| 874 | by auto | |
| 875 |   then have "a + x \<in> affine hull ((\<lambda>x. a + x) ` S - {a + x})"
 | |
| 876 |     using affine_hull_translation[of a "S - {x}"] x by auto
 | |
| 877 | moreover have "a + x \<in> (\<lambda>x. a + x) ` S" | |
| 878 | using x by auto | |
| 879 | ultimately show ?thesis | |
| 880 | unfolding affine_dependent_def by auto | |
| 881 | qed | |
| 882 | ||
| 883 | lemma affine_dependent_translation_eq: | |
| 884 | "affine_dependent S \<longleftrightarrow> affine_dependent ((\<lambda>x. a + x) ` S)" | |
| 885 | proof - | |
| 886 |   {
 | |
| 887 | assume "affine_dependent ((\<lambda>x. a + x) ` S)" | |
| 888 | then have "affine_dependent S" | |
| 889 | using affine_dependent_translation[of "((\<lambda>x. a + x) ` S)" "-a"] translation_assoc[of "-a" a] | |
| 890 | by auto | |
| 891 | } | |
| 892 | then show ?thesis | |
| 893 | using affine_dependent_translation by auto | |
| 894 | qed | |
| 895 | ||
| 896 | lemma affine_hull_0_dependent: | |
| 897 | assumes "0 \<in> affine hull S" | |
| 898 | shows "dependent S" | |
| 899 | proof - | |
| 900 |   obtain s u where s_u: "finite s \<and> s \<noteq> {} \<and> s \<subseteq> S \<and> sum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0"
 | |
| 901 | using assms affine_hull_explicit[of S] by auto | |
| 902 | then have "\<exists>v\<in>s. u v \<noteq> 0" by auto | |
| 903 | then have "finite s \<and> s \<subseteq> S \<and> (\<exists>v\<in>s. u v \<noteq> 0 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0)" | |
| 904 | using s_u by auto | |
| 905 | then show ?thesis | |
| 906 | unfolding dependent_explicit[of S] by auto | |
| 907 | qed | |
| 908 | ||
| 909 | lemma affine_dependent_imp_dependent2: | |
| 910 | assumes "affine_dependent (insert 0 S)" | |
| 911 | shows "dependent S" | |
| 912 | proof - | |
| 913 |   obtain x where x: "x \<in> insert 0 S \<and> x \<in> affine hull (insert 0 S - {x})"
 | |
| 914 | using affine_dependent_def[of "(insert 0 S)"] assms by blast | |
| 915 |   then have "x \<in> span (insert 0 S - {x})"
 | |
| 916 | using affine_hull_subset_span by auto | |
| 917 |   moreover have "span (insert 0 S - {x}) = span (S - {x})"
 | |
| 918 |     using insert_Diff_if[of "0" S "{x}"] span_insert_0[of "S-{x}"] by auto
 | |
| 919 |   ultimately have "x \<in> span (S - {x})" by auto
 | |
| 920 | then have "x \<noteq> 0 \<Longrightarrow> dependent S" | |
| 921 | using x dependent_def by auto | |
| 922 | moreover | |
| 923 |   {
 | |
| 924 | assume "x = 0" | |
| 925 | then have "0 \<in> affine hull S" | |
| 926 |       using x hull_mono[of "S - {0}" S] by auto
 | |
| 927 | then have "dependent S" | |
| 928 | using affine_hull_0_dependent by auto | |
| 929 | } | |
| 930 | ultimately show ?thesis by auto | |
| 931 | qed | |
| 932 | ||
| 933 | lemma affine_dependent_iff_dependent: | |
| 934 | assumes "a \<notin> S" | |
| 935 | shows "affine_dependent (insert a S) \<longleftrightarrow> dependent ((\<lambda>x. -a + x) ` S)" | |
| 936 | proof - | |
| 937 |   have "((+) (- a) ` S) = {x - a| x . x \<in> S}" by auto
 | |
| 938 | then show ?thesis | |
| 939 | using affine_dependent_translation_eq[of "(insert a S)" "-a"] | |
| 940 | affine_dependent_imp_dependent2 assms | |
| 941 | dependent_imp_affine_dependent[of a S] | |
| 942 | by (auto simp del: uminus_add_conv_diff) | |
| 943 | qed | |
| 944 | ||
| 945 | lemma affine_dependent_iff_dependent2: | |
| 946 | assumes "a \<in> S" | |
| 947 |   shows "affine_dependent S \<longleftrightarrow> dependent ((\<lambda>x. -a + x) ` (S-{a}))"
 | |
| 948 | proof - | |
| 949 |   have "insert a (S - {a}) = S"
 | |
| 950 | using assms by auto | |
| 951 | then show ?thesis | |
| 952 |     using assms affine_dependent_iff_dependent[of a "S-{a}"] by auto
 | |
| 953 | qed | |
| 954 | ||
| 955 | lemma affine_hull_insert_span_gen: | |
| 956 | "affine hull (insert a s) = (\<lambda>x. a + x) ` span ((\<lambda>x. - a + x) ` s)" | |
| 957 | proof - | |
| 958 |   have h1: "{x - a |x. x \<in> s} = ((\<lambda>x. -a+x) ` s)"
 | |
| 959 | by auto | |
| 960 |   {
 | |
| 961 | assume "a \<notin> s" | |
| 962 | then have ?thesis | |
| 963 | using affine_hull_insert_span[of a s] h1 by auto | |
| 964 | } | |
| 965 | moreover | |
| 966 |   {
 | |
| 967 | assume a1: "a \<in> s" | |
| 968 | have "\<exists>x. x \<in> s \<and> -a+x=0" | |
| 969 | apply (rule exI[of _ a]) | |
| 970 | using a1 | |
| 971 | apply auto | |
| 972 | done | |
| 973 |     then have "insert 0 ((\<lambda>x. -a+x) ` (s - {a})) = (\<lambda>x. -a+x) ` s"
 | |
| 974 | by auto | |
| 975 |     then have "span ((\<lambda>x. -a+x) ` (s - {a}))=span ((\<lambda>x. -a+x) ` s)"
 | |
| 976 |       using span_insert_0[of "(+) (- a) ` (s - {a})"] by (auto simp del: uminus_add_conv_diff)
 | |
| 977 |     moreover have "{x - a |x. x \<in> (s - {a})} = ((\<lambda>x. -a+x) ` (s - {a}))"
 | |
| 978 | by auto | |
| 979 |     moreover have "insert a (s - {a}) = insert a s"
 | |
| 980 | by auto | |
| 981 | ultimately have ?thesis | |
| 982 |       using affine_hull_insert_span[of "a" "s-{a}"] by auto
 | |
| 983 | } | |
| 984 | ultimately show ?thesis by auto | |
| 985 | qed | |
| 986 | ||
| 987 | lemma affine_hull_span2: | |
| 988 | assumes "a \<in> s" | |
| 989 |   shows "affine hull s = (\<lambda>x. a+x) ` span ((\<lambda>x. -a+x) ` (s-{a}))"
 | |
| 990 |   using affine_hull_insert_span_gen[of a "s - {a}", unfolded insert_Diff[OF assms]]
 | |
| 991 | by auto | |
| 992 | ||
| 993 | lemma affine_hull_span_gen: | |
| 994 | assumes "a \<in> affine hull s" | |
| 995 | shows "affine hull s = (\<lambda>x. a+x) ` span ((\<lambda>x. -a+x) ` s)" | |
| 996 | proof - | |
| 997 | have "affine hull (insert a s) = affine hull s" | |
| 998 | using hull_redundant[of a affine s] assms by auto | |
| 999 | then show ?thesis | |
| 1000 | using affine_hull_insert_span_gen[of a "s"] by auto | |
| 1001 | qed | |
| 1002 | ||
| 1003 | lemma affine_hull_span_0: | |
| 1004 | assumes "0 \<in> affine hull S" | |
| 1005 | shows "affine hull S = span S" | |
| 1006 | using affine_hull_span_gen[of "0" S] assms by auto | |
| 1007 | ||
| 1008 | lemma extend_to_affine_basis_nonempty: | |
| 72492 | 1009 | fixes S V :: "'n::real_vector set" | 
| 71242 | 1010 |   assumes "\<not> affine_dependent S" "S \<subseteq> V" "S \<noteq> {}"
 | 
| 1011 | shows "\<exists>T. \<not> affine_dependent T \<and> S \<subseteq> T \<and> T \<subseteq> V \<and> affine hull T = affine hull V" | |
| 1012 | proof - | |
| 1013 | obtain a where a: "a \<in> S" | |
| 1014 | using assms by auto | |
| 1015 |   then have h0: "independent  ((\<lambda>x. -a + x) ` (S-{a}))"
 | |
| 1016 | using affine_dependent_iff_dependent2 assms by auto | |
| 1017 | obtain B where B: | |
| 1018 |     "(\<lambda>x. -a+x) ` (S - {a}) \<subseteq> B \<and> B \<subseteq> (\<lambda>x. -a+x) ` V \<and> independent B \<and> (\<lambda>x. -a+x) ` V \<subseteq> span B"
 | |
| 1019 | using assms | |
| 1020 | by (blast intro: maximal_independent_subset_extend[OF _ h0, of "(\<lambda>x. -a + x) ` V"]) | |
| 1021 | define T where "T = (\<lambda>x. a+x) ` insert 0 B" | |
| 1022 | then have "T = insert a ((\<lambda>x. a+x) ` B)" | |
| 1023 | by auto | |
| 1024 | then have "affine hull T = (\<lambda>x. a+x) ` span B" | |
| 1025 | using affine_hull_insert_span_gen[of a "((\<lambda>x. a+x) ` B)"] translation_assoc[of "-a" a B] | |
| 1026 | by auto | |
| 1027 | then have "V \<subseteq> affine hull T" | |
| 1028 | using B assms translation_inverse_subset[of a V "span B"] | |
| 1029 | by auto | |
| 1030 | moreover have "T \<subseteq> V" | |
| 1031 | using T_def B a assms by auto | |
| 1032 | ultimately have "affine hull T = affine hull V" | |
| 1033 | by (metis Int_absorb1 Int_absorb2 hull_hull hull_mono) | |
| 1034 | moreover have "S \<subseteq> T" | |
| 1035 |     using T_def B translation_inverse_subset[of a "S-{a}" B]
 | |
| 1036 | by auto | |
| 1037 | moreover have "\<not> affine_dependent T" | |
| 1038 | using T_def affine_dependent_translation_eq[of "insert 0 B"] | |
| 1039 | affine_dependent_imp_dependent2 B | |
| 1040 | by auto | |
| 1041 | ultimately show ?thesis using \<open>T \<subseteq> V\<close> by auto | |
| 1042 | qed | |
| 1043 | ||
| 1044 | lemma affine_basis_exists: | |
| 72492 | 1045 | fixes V :: "'n::real_vector set" | 
| 71242 | 1046 | shows "\<exists>B. B \<subseteq> V \<and> \<not> affine_dependent B \<and> affine hull V = affine hull B" | 
| 1047 | proof (cases "V = {}")
 | |
| 1048 | case True | |
| 1049 | then show ?thesis | |
| 1050 | using affine_independent_0 by auto | |
| 1051 | next | |
| 1052 | case False | |
| 1053 | then obtain x where "x \<in> V" by auto | |
| 1054 | then show ?thesis | |
| 1055 |     using affine_dependent_def[of "{x}"] extend_to_affine_basis_nonempty[of "{x}" V]
 | |
| 1056 | by auto | |
| 1057 | qed | |
| 1058 | ||
| 1059 | proposition extend_to_affine_basis: | |
| 72492 | 1060 | fixes S V :: "'n::real_vector set" | 
| 71242 | 1061 | assumes "\<not> affine_dependent S" "S \<subseteq> V" | 
| 1062 | obtains T where "\<not> affine_dependent T" "S \<subseteq> T" "T \<subseteq> V" "affine hull T = affine hull V" | |
| 1063 | proof (cases "S = {}")
 | |
| 1064 | case True then show ?thesis | |
| 1065 | using affine_basis_exists by (metis empty_subsetI that) | |
| 1066 | next | |
| 1067 | case False | |
| 1068 | then show ?thesis by (metis assms extend_to_affine_basis_nonempty that) | |
| 1069 | qed | |
| 1070 | ||
| 1071 | ||
| 1072 | subsection \<open>Affine Dimension of a Set\<close> | |
| 1073 | ||
| 1074 | definition\<^marker>\<open>tag important\<close> aff_dim :: "('a::euclidean_space) set \<Rightarrow> int"
 | |
| 1075 | where "aff_dim V = | |
| 1076 | (SOME d :: int. | |
| 1077 | \<exists>B. affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> of_nat (card B) = d + 1)" | |
| 1078 | ||
| 1079 | lemma aff_dim_basis_exists: | |
| 1080 |   fixes V :: "('n::euclidean_space) set"
 | |
| 1081 | shows "\<exists>B. affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> of_nat (card B) = aff_dim V + 1" | |
| 1082 | proof - | |
| 1083 | obtain B where "\<not> affine_dependent B \<and> affine hull B = affine hull V" | |
| 1084 | using affine_basis_exists[of V] by auto | |
| 1085 | then show ?thesis | |
| 1086 | unfolding aff_dim_def | |
| 1087 | some_eq_ex[of "\<lambda>d. \<exists>B. affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> of_nat (card B) = d + 1"] | |
| 1088 | apply auto | |
| 1089 | apply (rule exI[of _ "int (card B) - (1 :: int)"]) | |
| 1090 | apply (rule exI[of _ "B"], auto) | |
| 1091 | done | |
| 1092 | qed | |
| 1093 | ||
| 1094 | lemma affine_hull_eq_empty [simp]: "affine hull S = {} \<longleftrightarrow> S = {}"
 | |
| 1095 | by (metis affine_empty subset_empty subset_hull) | |
| 1096 | ||
| 1097 | lemma empty_eq_affine_hull[simp]: "{} = affine hull S \<longleftrightarrow> S = {}"
 | |
| 1098 | by (metis affine_hull_eq_empty) | |
| 1099 | ||
| 1100 | lemma aff_dim_parallel_subspace_aux: | |
| 1101 | fixes B :: "'n::euclidean_space set" | |
| 1102 | assumes "\<not> affine_dependent B" "a \<in> B" | |
| 1103 |   shows "finite B \<and> ((card B) - 1 = dim (span ((\<lambda>x. -a+x) ` (B-{a}))))"
 | |
| 1104 | proof - | |
| 1105 |   have "independent ((\<lambda>x. -a + x) ` (B-{a}))"
 | |
| 1106 | using affine_dependent_iff_dependent2 assms by auto | |
| 1107 |   then have fin: "dim (span ((\<lambda>x. -a+x) ` (B-{a}))) = card ((\<lambda>x. -a + x) ` (B-{a}))"
 | |
| 1108 |     "finite ((\<lambda>x. -a + x) ` (B - {a}))"
 | |
| 1109 |     using indep_card_eq_dim_span[of "(\<lambda>x. -a+x) ` (B-{a})"] by auto
 | |
| 1110 | show ?thesis | |
| 1111 |   proof (cases "(\<lambda>x. -a + x) ` (B - {a}) = {}")
 | |
| 1112 | case True | |
| 1113 |     have "B = insert a ((\<lambda>x. a + x) ` (\<lambda>x. -a + x) ` (B - {a}))"
 | |
| 1114 |       using translation_assoc[of "a" "-a" "(B - {a})"] assms by auto
 | |
| 1115 |     then have "B = {a}" using True by auto
 | |
| 1116 | then show ?thesis using assms fin by auto | |
| 1117 | next | |
| 1118 | case False | |
| 1119 |     then have "card ((\<lambda>x. -a + x) ` (B - {a})) > 0"
 | |
| 1120 | using fin by auto | |
| 1121 |     moreover have h1: "card ((\<lambda>x. -a + x) ` (B-{a})) = card (B-{a})"
 | |
| 1122 | by (rule card_image) (use translate_inj_on in blast) | |
| 1123 |     ultimately have "card (B-{a}) > 0" by auto
 | |
| 1124 |     then have *: "finite (B - {a})"
 | |
| 1125 |       using card_gt_0_iff[of "(B - {a})"] by auto
 | |
| 1126 |     then have "card (B - {a}) = card B - 1"
 | |
| 1127 | using card_Diff_singleton assms by auto | |
| 1128 | with * show ?thesis using fin h1 by auto | |
| 1129 | qed | |
| 1130 | qed | |
| 1131 | ||
| 1132 | lemma aff_dim_parallel_subspace: | |
| 1133 | fixes V L :: "'n::euclidean_space set" | |
| 1134 |   assumes "V \<noteq> {}"
 | |
| 1135 | and "subspace L" | |
| 1136 | and "affine_parallel (affine hull V) L" | |
| 1137 | shows "aff_dim V = int (dim L)" | |
| 1138 | proof - | |
| 1139 | obtain B where | |
| 1140 | B: "affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> int (card B) = aff_dim V + 1" | |
| 1141 | using aff_dim_basis_exists by auto | |
| 1142 |   then have "B \<noteq> {}"
 | |
| 1143 | using assms B | |
| 1144 | by auto | |
| 1145 | then obtain a where a: "a \<in> B" by auto | |
| 1146 |   define Lb where "Lb = span ((\<lambda>x. -a+x) ` (B-{a}))"
 | |
| 1147 | moreover have "affine_parallel (affine hull B) Lb" | |
| 1148 | using Lb_def B assms affine_hull_span2[of a B] a | |
| 1149 | affine_parallel_commut[of "Lb" "(affine hull B)"] | |
| 1150 | unfolding affine_parallel_def | |
| 1151 | by auto | |
| 1152 | moreover have "subspace Lb" | |
| 1153 | using Lb_def subspace_span by auto | |
| 1154 |   moreover have "affine hull B \<noteq> {}"
 | |
| 1155 | using assms B by auto | |
| 1156 | ultimately have "L = Lb" | |
| 1157 | using assms affine_parallel_subspace[of "affine hull B"] affine_affine_hull[of B] B | |
| 1158 | by auto | |
| 1159 | then have "dim L = dim Lb" | |
| 1160 | by auto | |
| 1161 | moreover have "card B - 1 = dim Lb" and "finite B" | |
| 1162 | using Lb_def aff_dim_parallel_subspace_aux a B by auto | |
| 1163 | ultimately show ?thesis | |
| 1164 |     using B \<open>B \<noteq> {}\<close> card_gt_0_iff[of B] by auto
 | |
| 1165 | qed | |
| 1166 | ||
| 1167 | lemma aff_independent_finite: | |
| 1168 | fixes B :: "'n::euclidean_space set" | |
| 1169 | assumes "\<not> affine_dependent B" | |
| 1170 | shows "finite B" | |
| 1171 | proof - | |
| 1172 |   {
 | |
| 1173 |     assume "B \<noteq> {}"
 | |
| 1174 | then obtain a where "a \<in> B" by auto | |
| 1175 | then have ?thesis | |
| 1176 | using aff_dim_parallel_subspace_aux assms by auto | |
| 1177 | } | |
| 1178 | then show ?thesis by auto | |
| 1179 | qed | |
| 1180 | ||
| 1181 | ||
| 1182 | lemma aff_dim_empty: | |
| 1183 | fixes S :: "'n::euclidean_space set" | |
| 1184 |   shows "S = {} \<longleftrightarrow> aff_dim S = -1"
 | |
| 1185 | proof - | |
| 1186 | obtain B where *: "affine hull B = affine hull S" | |
| 1187 | and "\<not> affine_dependent B" | |
| 1188 | and "int (card B) = aff_dim S + 1" | |
| 1189 | using aff_dim_basis_exists by auto | |
| 1190 | moreover | |
| 1191 |   from * have "S = {} \<longleftrightarrow> B = {}"
 | |
| 1192 | by auto | |
| 1193 | ultimately show ?thesis | |
| 1194 | using aff_independent_finite[of B] card_gt_0_iff[of B] by auto | |
| 1195 | qed | |
| 1196 | ||
| 1197 | lemma aff_dim_empty_eq [simp]: "aff_dim ({}::'a::euclidean_space set) = -1"
 | |
| 1198 | by (simp add: aff_dim_empty [symmetric]) | |
| 1199 | ||
| 1200 | lemma aff_dim_affine_hull [simp]: "aff_dim (affine hull S) = aff_dim S" | |
| 1201 | unfolding aff_dim_def using hull_hull[of _ S] by auto | |
| 1202 | ||
| 1203 | lemma aff_dim_affine_hull2: | |
| 1204 | assumes "affine hull S = affine hull T" | |
| 1205 | shows "aff_dim S = aff_dim T" | |
| 1206 | unfolding aff_dim_def using assms by auto | |
| 1207 | ||
| 1208 | lemma aff_dim_unique: | |
| 1209 | fixes B V :: "'n::euclidean_space set" | |
| 1210 | assumes "affine hull B = affine hull V \<and> \<not> affine_dependent B" | |
| 1211 | shows "of_nat (card B) = aff_dim V + 1" | |
| 1212 | proof (cases "B = {}")
 | |
| 1213 | case True | |
| 1214 |   then have "V = {}"
 | |
| 1215 | using assms | |
| 1216 | by auto | |
| 1217 | then have "aff_dim V = (-1::int)" | |
| 1218 | using aff_dim_empty by auto | |
| 1219 | then show ?thesis | |
| 1220 |     using \<open>B = {}\<close> by auto
 | |
| 1221 | next | |
| 1222 | case False | |
| 1223 | then obtain a where a: "a \<in> B" by auto | |
| 1224 |   define Lb where "Lb = span ((\<lambda>x. -a+x) ` (B-{a}))"
 | |
| 1225 | have "affine_parallel (affine hull B) Lb" | |
| 1226 | using Lb_def affine_hull_span2[of a B] a | |
| 1227 | affine_parallel_commut[of "Lb" "(affine hull B)"] | |
| 1228 | unfolding affine_parallel_def by auto | |
| 1229 | moreover have "subspace Lb" | |
| 1230 | using Lb_def subspace_span by auto | |
| 1231 | ultimately have "aff_dim B = int(dim Lb)" | |
| 1232 |     using aff_dim_parallel_subspace[of B Lb] \<open>B \<noteq> {}\<close> by auto
 | |
| 1233 | moreover have "(card B) - 1 = dim Lb" "finite B" | |
| 1234 | using Lb_def aff_dim_parallel_subspace_aux a assms by auto | |
| 1235 | ultimately have "of_nat (card B) = aff_dim B + 1" | |
| 1236 |     using \<open>B \<noteq> {}\<close> card_gt_0_iff[of B] by auto
 | |
| 1237 | then show ?thesis | |
| 1238 | using aff_dim_affine_hull2 assms by auto | |
| 1239 | qed | |
| 1240 | ||
| 1241 | lemma aff_dim_affine_independent: | |
| 1242 | fixes B :: "'n::euclidean_space set" | |
| 1243 | assumes "\<not> affine_dependent B" | |
| 1244 | shows "of_nat (card B) = aff_dim B + 1" | |
| 1245 | using aff_dim_unique[of B B] assms by auto | |
| 1246 | ||
| 1247 | lemma affine_independent_iff_card: | |
| 1248 | fixes s :: "'a::euclidean_space set" | |
| 1249 | shows "\<not> affine_dependent s \<longleftrightarrow> finite s \<and> aff_dim s = int(card s) - 1" | |
| 1250 | apply (rule iffI) | |
| 1251 | apply (simp add: aff_dim_affine_independent aff_independent_finite) | |
| 1252 | by (metis affine_basis_exists [of s] aff_dim_unique card_subset_eq diff_add_cancel of_nat_eq_iff) | |
| 1253 | ||
| 1254 | lemma aff_dim_sing [simp]: | |
| 1255 | fixes a :: "'n::euclidean_space" | |
| 1256 |   shows "aff_dim {a} = 0"
 | |
| 1257 |   using aff_dim_affine_independent[of "{a}"] affine_independent_1 by auto
 | |
| 1258 | ||
| 72492 | 1259 | lemma aff_dim_2 [simp]: | 
| 1260 | fixes a :: "'n::euclidean_space" | |
| 1261 |   shows "aff_dim {a,b} = (if a = b then 0 else 1)"
 | |
| 71242 | 1262 | proof (clarsimp) | 
| 1263 | assume "a \<noteq> b" | |
| 1264 |   then have "aff_dim{a,b} = card{a,b} - 1"
 | |
| 1265 | using affine_independent_2 [of a b] aff_dim_affine_independent by fastforce | |
| 1266 | also have "\<dots> = 1" | |
| 1267 | using \<open>a \<noteq> b\<close> by simp | |
| 1268 |   finally show "aff_dim {a, b} = 1" .
 | |
| 1269 | qed | |
| 1270 | ||
| 1271 | lemma aff_dim_inner_basis_exists: | |
| 1272 |   fixes V :: "('n::euclidean_space) set"
 | |
| 1273 | shows "\<exists>B. B \<subseteq> V \<and> affine hull B = affine hull V \<and> | |
| 1274 | \<not> affine_dependent B \<and> of_nat (card B) = aff_dim V + 1" | |
| 1275 | proof - | |
| 1276 | obtain B where B: "\<not> affine_dependent B" "B \<subseteq> V" "affine hull B = affine hull V" | |
| 1277 | using affine_basis_exists[of V] by auto | |
| 1278 | then have "of_nat(card B) = aff_dim V+1" using aff_dim_unique by auto | |
| 1279 | with B show ?thesis by auto | |
| 1280 | qed | |
| 1281 | ||
| 1282 | lemma aff_dim_le_card: | |
| 1283 | fixes V :: "'n::euclidean_space set" | |
| 1284 | assumes "finite V" | |
| 1285 | shows "aff_dim V \<le> of_nat (card V) - 1" | |
| 1286 | proof - | |
| 1287 | obtain B where B: "B \<subseteq> V" "of_nat (card B) = aff_dim V + 1" | |
| 1288 | using aff_dim_inner_basis_exists[of V] by auto | |
| 1289 | then have "card B \<le> card V" | |
| 1290 | using assms card_mono by auto | |
| 1291 | with B show ?thesis by auto | |
| 1292 | qed | |
| 1293 | ||
| 1294 | lemma aff_dim_parallel_eq: | |
| 1295 | fixes S T :: "'n::euclidean_space set" | |
| 1296 | assumes "affine_parallel (affine hull S) (affine hull T)" | |
| 1297 | shows "aff_dim S = aff_dim T" | |
| 1298 | proof - | |
| 1299 |   {
 | |
| 1300 |     assume "T \<noteq> {}" "S \<noteq> {}"
 | |
| 1301 | then obtain L where L: "subspace L \<and> affine_parallel (affine hull T) L" | |
| 1302 | using affine_parallel_subspace[of "affine hull T"] | |
| 1303 | affine_affine_hull[of T] | |
| 1304 | by auto | |
| 1305 | then have "aff_dim T = int (dim L)" | |
| 1306 |       using aff_dim_parallel_subspace \<open>T \<noteq> {}\<close> by auto
 | |
| 1307 | moreover have *: "subspace L \<and> affine_parallel (affine hull S) L" | |
| 1308 | using L affine_parallel_assoc[of "affine hull S" "affine hull T" L] assms by auto | |
| 1309 | moreover from * have "aff_dim S = int (dim L)" | |
| 1310 |       using aff_dim_parallel_subspace \<open>S \<noteq> {}\<close> by auto
 | |
| 1311 | ultimately have ?thesis by auto | |
| 1312 | } | |
| 1313 | moreover | |
| 1314 |   {
 | |
| 1315 |     assume "S = {}"
 | |
| 1316 |     then have "S = {}" and "T = {}"
 | |
| 1317 | using assms | |
| 1318 | unfolding affine_parallel_def | |
| 1319 | by auto | |
| 1320 | then have ?thesis using aff_dim_empty by auto | |
| 1321 | } | |
| 1322 | moreover | |
| 1323 |   {
 | |
| 1324 |     assume "T = {}"
 | |
| 1325 |     then have "S = {}" and "T = {}"
 | |
| 1326 | using assms | |
| 1327 | unfolding affine_parallel_def | |
| 1328 | by auto | |
| 1329 | then have ?thesis | |
| 1330 | using aff_dim_empty by auto | |
| 1331 | } | |
| 1332 | ultimately show ?thesis by blast | |
| 1333 | qed | |
| 1334 | ||
| 1335 | lemma aff_dim_translation_eq: | |
| 1336 | "aff_dim ((+) a ` S) = aff_dim S" for a :: "'n::euclidean_space" | |
| 1337 | proof - | |
| 1338 | have "affine_parallel (affine hull S) (affine hull ((\<lambda>x. a + x) ` S))" | |
| 1339 | unfolding affine_parallel_def | |
| 1340 | apply (rule exI[of _ "a"]) | |
| 1341 | using affine_hull_translation[of a S] | |
| 1342 | apply auto | |
| 1343 | done | |
| 1344 | then show ?thesis | |
| 1345 | using aff_dim_parallel_eq[of S "(\<lambda>x. a + x) ` S"] by auto | |
| 1346 | qed | |
| 1347 | ||
| 1348 | lemma aff_dim_translation_eq_subtract: | |
| 1349 | "aff_dim ((\<lambda>x. x - a) ` S) = aff_dim S" for a :: "'n::euclidean_space" | |
| 1350 | using aff_dim_translation_eq [of "- a"] by (simp cong: image_cong_simp) | |
| 1351 | ||
| 1352 | lemma aff_dim_affine: | |
| 1353 | fixes S L :: "'n::euclidean_space set" | |
| 1354 |   assumes "S \<noteq> {}"
 | |
| 1355 | and "affine S" | |
| 1356 | and "subspace L" | |
| 1357 | and "affine_parallel S L" | |
| 1358 | shows "aff_dim S = int (dim L)" | |
| 1359 | proof - | |
| 1360 | have *: "affine hull S = S" | |
| 1361 | using assms affine_hull_eq[of S] by auto | |
| 1362 | then have "affine_parallel (affine hull S) L" | |
| 1363 | using assms by (simp add: *) | |
| 1364 | then show ?thesis | |
| 1365 | using assms aff_dim_parallel_subspace[of S L] by blast | |
| 1366 | qed | |
| 1367 | ||
| 1368 | lemma dim_affine_hull: | |
| 1369 | fixes S :: "'n::euclidean_space set" | |
| 1370 | shows "dim (affine hull S) = dim S" | |
| 1371 | proof - | |
| 1372 | have "dim (affine hull S) \<ge> dim S" | |
| 1373 | using dim_subset by auto | |
| 1374 | moreover have "dim (span S) \<ge> dim (affine hull S)" | |
| 1375 | using dim_subset affine_hull_subset_span by blast | |
| 1376 | moreover have "dim (span S) = dim S" | |
| 1377 | using dim_span by auto | |
| 1378 | ultimately show ?thesis by auto | |
| 1379 | qed | |
| 1380 | ||
| 1381 | lemma aff_dim_subspace: | |
| 1382 | fixes S :: "'n::euclidean_space set" | |
| 1383 | assumes "subspace S" | |
| 1384 | shows "aff_dim S = int (dim S)" | |
| 1385 | proof (cases "S={}")
 | |
| 1386 | case True with assms show ?thesis | |
| 1387 | by (simp add: subspace_affine) | |
| 1388 | next | |
| 1389 | case False | |
| 1390 | with aff_dim_affine[of S S] assms subspace_imp_affine[of S] affine_parallel_reflex[of S] subspace_affine | |
| 1391 | show ?thesis by auto | |
| 1392 | qed | |
| 1393 | ||
| 1394 | lemma aff_dim_zero: | |
| 1395 | fixes S :: "'n::euclidean_space set" | |
| 1396 | assumes "0 \<in> affine hull S" | |
| 1397 | shows "aff_dim S = int (dim S)" | |
| 1398 | proof - | |
| 1399 | have "subspace (affine hull S)" | |
| 1400 | using subspace_affine[of "affine hull S"] affine_affine_hull assms | |
| 1401 | by auto | |
| 1402 | then have "aff_dim (affine hull S) = int (dim (affine hull S))" | |
| 1403 | using assms aff_dim_subspace[of "affine hull S"] by auto | |
| 1404 | then show ?thesis | |
| 1405 | using aff_dim_affine_hull[of S] dim_affine_hull[of S] | |
| 1406 | by auto | |
| 1407 | qed | |
| 1408 | ||
| 1409 | lemma aff_dim_eq_dim: | |
| 1410 | "aff_dim S = int (dim ((+) (- a) ` S))" if "a \<in> affine hull S" | |
| 1411 | for S :: "'n::euclidean_space set" | |
| 1412 | proof - | |
| 1413 | have "0 \<in> affine hull (+) (- a) ` S" | |
| 1414 | unfolding affine_hull_translation | |
| 1415 | using that by (simp add: ac_simps) | |
| 1416 | with aff_dim_zero show ?thesis | |
| 1417 | by (metis aff_dim_translation_eq) | |
| 1418 | qed | |
| 1419 | ||
| 1420 | lemma aff_dim_eq_dim_subtract: | |
| 1421 | "aff_dim S = int (dim ((\<lambda>x. x - a) ` S))" if "a \<in> affine hull S" | |
| 1422 | for S :: "'n::euclidean_space set" | |
| 1423 | using aff_dim_eq_dim [of a] that by (simp cong: image_cong_simp) | |
| 1424 | ||
| 1425 | lemma aff_dim_UNIV [simp]: "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))"
 | |
| 1426 | using aff_dim_subspace[of "(UNIV :: 'n::euclidean_space set)"] | |
| 1427 | dim_UNIV[where 'a="'n::euclidean_space"] | |
| 1428 | by auto | |
| 1429 | ||
| 1430 | lemma aff_dim_geq: | |
| 1431 | fixes V :: "'n::euclidean_space set" | |
| 1432 | shows "aff_dim V \<ge> -1" | |
| 1433 | proof - | |
| 1434 | obtain B where "affine hull B = affine hull V" | |
| 1435 | and "\<not> affine_dependent B" | |
| 1436 | and "int (card B) = aff_dim V + 1" | |
| 1437 | using aff_dim_basis_exists by auto | |
| 1438 | then show ?thesis by auto | |
| 1439 | qed | |
| 1440 | ||
| 1441 | lemma aff_dim_negative_iff [simp]: | |
| 1442 | fixes S :: "'n::euclidean_space set" | |
| 1443 |   shows "aff_dim S < 0 \<longleftrightarrow>S = {}"
 | |
| 1444 | by (metis aff_dim_empty aff_dim_geq diff_0 eq_iff zle_diff1_eq) | |
| 1445 | ||
| 1446 | lemma aff_lowdim_subset_hyperplane: | |
| 1447 | fixes S :: "'a::euclidean_space set" | |
| 1448 |   assumes "aff_dim S < DIM('a)"
 | |
| 1449 |   obtains a b where "a \<noteq> 0" "S \<subseteq> {x. a \<bullet> x = b}"
 | |
| 1450 | proof (cases "S={}")
 | |
| 1451 | case True | |
| 1452 | moreover | |
| 1453 | have "(SOME b. b \<in> Basis) \<noteq> 0" | |
| 1454 | by (metis norm_some_Basis norm_zero zero_neq_one) | |
| 1455 | ultimately show ?thesis | |
| 1456 | using that by blast | |
| 1457 | next | |
| 1458 | case False | |
| 1459 | then obtain c S' where "c \<notin> S'" "S = insert c S'" | |
| 1460 | by (meson equals0I mk_disjoint_insert) | |
| 1461 |   have "dim ((+) (-c) ` S) < DIM('a)"
 | |
| 1462 | by (metis \<open>S = insert c S'\<close> aff_dim_eq_dim assms hull_inc insertI1 of_nat_less_imp_less) | |
| 1463 |   then obtain a where "a \<noteq> 0" "span ((+) (-c) ` S) \<subseteq> {x. a \<bullet> x = 0}"
 | |
| 1464 | using lowdim_subset_hyperplane by blast | |
| 1465 | moreover | |
| 1466 |   have "a \<bullet> w = a \<bullet> c" if "span ((+) (- c) ` S) \<subseteq> {x. a \<bullet> x = 0}" "w \<in> S" for w
 | |
| 1467 | proof - | |
| 1468 | have "w-c \<in> span ((+) (- c) ` S)" | |
| 1469 | by (simp add: span_base \<open>w \<in> S\<close>) | |
| 1470 |     with that have "w-c \<in> {x. a \<bullet> x = 0}"
 | |
| 1471 | by blast | |
| 1472 | then show ?thesis | |
| 1473 | by (auto simp: algebra_simps) | |
| 1474 | qed | |
| 1475 |   ultimately have "S \<subseteq> {x. a \<bullet> x = a \<bullet> c}"
 | |
| 1476 | by blast | |
| 1477 | then show ?thesis | |
| 1478 | by (rule that[OF \<open>a \<noteq> 0\<close>]) | |
| 1479 | qed | |
| 1480 | ||
| 1481 | lemma affine_independent_card_dim_diffs: | |
| 1482 | fixes S :: "'a :: euclidean_space set" | |
| 1483 | assumes "\<not> affine_dependent S" "a \<in> S" | |
| 72567 | 1484 | shows "card S = dim ((\<lambda>x. x - a) ` S) + 1" | 
| 71242 | 1485 | proof - | 
| 72567 | 1486 | have non: "\<not> affine_dependent (insert a S)" | 
| 71242 | 1487 | by (simp add: assms insert_absorb) | 
| 1488 | have "finite S" | |
| 1489 | by (meson assms aff_independent_finite) | |
| 1490 | with \<open>a \<in> S\<close> have "card S \<noteq> 0" by auto | |
| 72567 | 1491 | moreover have "dim ((\<lambda>x. x - a) ` S) = card S - 1" | 
| 1492 | using aff_dim_eq_dim_subtract aff_dim_unique \<open>a \<in> S\<close> hull_inc insert_absorb non by fastforce | |
| 71242 | 1493 | ultimately show ?thesis | 
| 1494 | by auto | |
| 1495 | qed | |
| 1496 | ||
| 1497 | lemma independent_card_le_aff_dim: | |
| 1498 | fixes B :: "'n::euclidean_space set" | |
| 1499 | assumes "B \<subseteq> V" | |
| 1500 | assumes "\<not> affine_dependent B" | |
| 1501 | shows "int (card B) \<le> aff_dim V + 1" | |
| 1502 | proof - | |
| 1503 | obtain T where T: "\<not> affine_dependent T \<and> B \<subseteq> T \<and> T \<subseteq> V \<and> affine hull T = affine hull V" | |
| 1504 | by (metis assms extend_to_affine_basis[of B V]) | |
| 1505 | then have "of_nat (card T) = aff_dim V + 1" | |
| 1506 | using aff_dim_unique by auto | |
| 1507 | then show ?thesis | |
| 1508 | using T card_mono[of T B] aff_independent_finite[of T] by auto | |
| 1509 | qed | |
| 1510 | ||
| 1511 | lemma aff_dim_subset: | |
| 1512 | fixes S T :: "'n::euclidean_space set" | |
| 1513 | assumes "S \<subseteq> T" | |
| 1514 | shows "aff_dim S \<le> aff_dim T" | |
| 1515 | proof - | |
| 1516 | obtain B where B: "\<not> affine_dependent B" "B \<subseteq> S" "affine hull B = affine hull S" | |
| 1517 | "of_nat (card B) = aff_dim S + 1" | |
| 1518 | using aff_dim_inner_basis_exists[of S] by auto | |
| 1519 | then have "int (card B) \<le> aff_dim T + 1" | |
| 1520 | using assms independent_card_le_aff_dim[of B T] by auto | |
| 1521 | with B show ?thesis by auto | |
| 1522 | qed | |
| 1523 | ||
| 1524 | lemma aff_dim_le_DIM: | |
| 1525 | fixes S :: "'n::euclidean_space set" | |
| 1526 |   shows "aff_dim S \<le> int (DIM('n))"
 | |
| 1527 | proof - | |
| 1528 |   have "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))"
 | |
| 1529 | using aff_dim_UNIV by auto | |
| 1530 |   then show "aff_dim (S:: 'n::euclidean_space set) \<le> int(DIM('n))"
 | |
| 1531 |     using aff_dim_subset[of S "(UNIV :: ('n::euclidean_space) set)"] subset_UNIV by auto
 | |
| 1532 | qed | |
| 1533 | ||
| 1534 | lemma affine_dim_equal: | |
| 1535 | fixes S :: "'n::euclidean_space set" | |
| 1536 |   assumes "affine S" "affine T" "S \<noteq> {}" "S \<subseteq> T" "aff_dim S = aff_dim T"
 | |
| 1537 | shows "S = T" | |
| 1538 | proof - | |
| 1539 | obtain a where "a \<in> S" using assms by auto | |
| 1540 | then have "a \<in> T" using assms by auto | |
| 1541 |   define LS where "LS = {y. \<exists>x \<in> S. (-a) + x = y}"
 | |
| 1542 | then have ls: "subspace LS" "affine_parallel S LS" | |
| 1543 | using assms parallel_subspace_explicit[of S a LS] \<open>a \<in> S\<close> by auto | |
| 1544 | then have h1: "int(dim LS) = aff_dim S" | |
| 1545 | using assms aff_dim_affine[of S LS] by auto | |
| 1546 |   have "T \<noteq> {}" using assms by auto
 | |
| 1547 |   define LT where "LT = {y. \<exists>x \<in> T. (-a) + x = y}"
 | |
| 1548 | then have lt: "subspace LT \<and> affine_parallel T LT" | |
| 1549 | using assms parallel_subspace_explicit[of T a LT] \<open>a \<in> T\<close> by auto | |
| 1550 | then have "int(dim LT) = aff_dim T" | |
| 1551 |     using assms aff_dim_affine[of T LT] \<open>T \<noteq> {}\<close> by auto
 | |
| 1552 | then have "dim LS = dim LT" | |
| 1553 | using h1 assms by auto | |
| 1554 | moreover have "LS \<le> LT" | |
| 1555 | using LS_def LT_def assms by auto | |
| 1556 | ultimately have "LS = LT" | |
| 1557 | using subspace_dim_equal[of LS LT] ls lt by auto | |
| 1558 |   moreover have "S = {x. \<exists>y \<in> LS. a+y=x}"
 | |
| 1559 | using LS_def by auto | |
| 1560 |   moreover have "T = {x. \<exists>y \<in> LT. a+y=x}"
 | |
| 1561 | using LT_def by auto | |
| 1562 | ultimately show ?thesis by auto | |
| 1563 | qed | |
| 1564 | ||
| 1565 | lemma aff_dim_eq_0: | |
| 1566 | fixes S :: "'a::euclidean_space set" | |
| 1567 |   shows "aff_dim S = 0 \<longleftrightarrow> (\<exists>a. S = {a})"
 | |
| 1568 | proof (cases "S = {}")
 | |
| 1569 | case True | |
| 1570 | then show ?thesis | |
| 1571 | by auto | |
| 1572 | next | |
| 1573 | case False | |
| 1574 | then obtain a where "a \<in> S" by auto | |
| 1575 | show ?thesis | |
| 1576 | proof safe | |
| 1577 | assume 0: "aff_dim S = 0" | |
| 1578 |     have "\<not> {a,b} \<subseteq> S" if "b \<noteq> a" for b
 | |
| 1579 | by (metis "0" aff_dim_2 aff_dim_subset not_one_le_zero that) | |
| 1580 |     then show "\<exists>a. S = {a}"
 | |
| 1581 | using \<open>a \<in> S\<close> by blast | |
| 1582 | qed auto | |
| 1583 | qed | |
| 1584 | ||
| 1585 | lemma affine_hull_UNIV: | |
| 1586 | fixes S :: "'n::euclidean_space set" | |
| 1587 |   assumes "aff_dim S = int(DIM('n))"
 | |
| 1588 |   shows "affine hull S = (UNIV :: ('n::euclidean_space) set)"
 | |
| 1589 | proof - | |
| 1590 |   have "S \<noteq> {}"
 | |
| 1591 | using assms aff_dim_empty[of S] by auto | |
| 1592 | have h0: "S \<subseteq> affine hull S" | |
| 1593 | using hull_subset[of S _] by auto | |
| 1594 |   have h1: "aff_dim (UNIV :: ('n::euclidean_space) set) = aff_dim S"
 | |
| 1595 | using aff_dim_UNIV assms by auto | |
| 1596 |   then have h2: "aff_dim (affine hull S) \<le> aff_dim (UNIV :: ('n::euclidean_space) set)"
 | |
| 1597 | using aff_dim_le_DIM[of "affine hull S"] assms h0 by auto | |
| 1598 | have h3: "aff_dim S \<le> aff_dim (affine hull S)" | |
| 1599 | using h0 aff_dim_subset[of S "affine hull S"] assms by auto | |
| 1600 |   then have h4: "aff_dim (affine hull S) = aff_dim (UNIV :: ('n::euclidean_space) set)"
 | |
| 1601 | using h0 h1 h2 by auto | |
| 1602 | then show ?thesis | |
| 1603 |     using affine_dim_equal[of "affine hull S" "(UNIV :: ('n::euclidean_space) set)"]
 | |
| 1604 |       affine_affine_hull[of S] affine_UNIV assms h4 h0 \<open>S \<noteq> {}\<close>
 | |
| 1605 | by auto | |
| 1606 | qed | |
| 1607 | ||
| 1608 | lemma disjoint_affine_hull: | |
| 1609 | fixes s :: "'n::euclidean_space set" | |
| 1610 |   assumes "\<not> affine_dependent s" "t \<subseteq> s" "u \<subseteq> s" "t \<inter> u = {}"
 | |
| 1611 |     shows "(affine hull t) \<inter> (affine hull u) = {}"
 | |
| 1612 | proof - | |
| 73372 | 1613 | from assms(1) have "finite s" | 
| 1614 | by (simp add: aff_independent_finite) | |
| 1615 | with assms(2,3) have "finite t" "finite u" | |
| 1616 | by (blast intro: finite_subset)+ | |
| 1617 | have False if "y \<in> affine hull t" and "y \<in> affine hull u" for y | |
| 1618 | proof - | |
| 1619 | from that obtain a b | |
| 1620 | where a1 [simp]: "sum a t = 1" | |
| 1621 | and [simp]: "sum (\<lambda>v. a v *\<^sub>R v) t = y" | |
| 1622 | and [simp]: "sum b u = 1" "sum (\<lambda>v. b v *\<^sub>R v) u = y" | |
| 71242 | 1623 | by (auto simp: affine_hull_finite \<open>finite t\<close> \<open>finite u\<close>) | 
| 1624 | define c where "c x = (if x \<in> t then a x else if x \<in> u then -(b x) else 0)" for x | |
| 73372 | 1625 | from assms(2,3,4) have [simp]: "s \<inter> t = t" "s \<inter> - t \<inter> u = u" | 
| 1626 | by auto | |
| 71242 | 1627 | have "sum c s = 0" | 
| 1628 | by (simp add: c_def comm_monoid_add_class.sum.If_cases \<open>finite s\<close> sum_negf) | |
| 1629 | moreover have "\<not> (\<forall>v\<in>s. c v = 0)" | |
| 1630 | by (metis (no_types) IntD1 \<open>s \<inter> t = t\<close> a1 c_def sum.neutral zero_neq_one) | |
| 1631 | moreover have "(\<Sum>v\<in>s. c v *\<^sub>R v) = 0" | |
| 73372 | 1632 | by (simp add: c_def if_smult sum_negf comm_monoid_add_class.sum.If_cases \<open>finite s\<close>) | 
| 1633 | ultimately show ?thesis | |
| 1634 | using assms(1) \<open>finite s\<close> by (auto simp: affine_dependent_explicit) | |
| 1635 | qed | |
| 71242 | 1636 | then show ?thesis by blast | 
| 1637 | qed | |
| 1638 | ||
| 1639 | end |