src/HOL/Auth/Message.thy
author wenzelm
Wed, 01 Aug 2007 20:25:16 +0200
changeset 24122 fc7f857d33c8
parent 23746 a455e69c31cc
child 26342 0f65fa163304
permissions -rw-r--r--
tuned ML bindings (for multithreading);
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
     1
(*  Title:      HOL/Auth/Message
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
     2
    ID:         $Id$
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
     4
    Copyright   1996  University of Cambridge
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
     5
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
     6
Datatypes of agents and messages;
1913
2809adb15eb0 Renaming of functions, and tidying
paulson
parents: 1839
diff changeset
     7
Inductive relations "parts", "analz" and "synth"
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
     8
*)
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
     9
13956
8fe7e12290e1 improved presentation of HOL/Auth theories
paulson
parents: 13926
diff changeset
    10
header{*Theory of Agents and Messages for Security Protocols*}
8fe7e12290e1 improved presentation of HOL/Auth theories
paulson
parents: 13926
diff changeset
    11
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 15032
diff changeset
    12
theory Message imports Main begin
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    13
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    14
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*)
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
    15
lemma [simp] : "A \<union> (B \<union> A) = B \<union> A"
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    16
by blast
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    17
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    18
types 
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    19
  key = nat
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    20
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    21
consts
14126
28824746d046 Tidying and replacement of some axioms by specifications
paulson
parents: 13956
diff changeset
    22
  all_symmetric :: bool        --{*true if all keys are symmetric*}
28824746d046 Tidying and replacement of some axioms by specifications
paulson
parents: 13956
diff changeset
    23
  invKey        :: "key=>key"  --{*inverse of a symmetric key*}
28824746d046 Tidying and replacement of some axioms by specifications
paulson
parents: 13956
diff changeset
    24
28824746d046 Tidying and replacement of some axioms by specifications
paulson
parents: 13956
diff changeset
    25
specification (invKey)
14181
942db403d4bb new, separate specifications
paulson
parents: 14145
diff changeset
    26
  invKey [simp]: "invKey (invKey K) = K"
942db403d4bb new, separate specifications
paulson
parents: 14145
diff changeset
    27
  invKey_symmetric: "all_symmetric --> invKey = id"
14126
28824746d046 Tidying and replacement of some axioms by specifications
paulson
parents: 13956
diff changeset
    28
    by (rule exI [of _ id], auto)
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    29
14126
28824746d046 Tidying and replacement of some axioms by specifications
paulson
parents: 13956
diff changeset
    30
28824746d046 Tidying and replacement of some axioms by specifications
paulson
parents: 13956
diff changeset
    31
text{*The inverse of a symmetric key is itself; that of a public key
28824746d046 Tidying and replacement of some axioms by specifications
paulson
parents: 13956
diff changeset
    32
      is the private key and vice versa*}
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    33
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    34
constdefs
11230
756c5034f08b misc tidying; changing the predicate isSymKey to the set symKeys
paulson
parents: 11192
diff changeset
    35
  symKeys :: "key set"
756c5034f08b misc tidying; changing the predicate isSymKey to the set symKeys
paulson
parents: 11192
diff changeset
    36
  "symKeys == {K. invKey K = K}"
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    37
16818
paulson
parents: 16796
diff changeset
    38
datatype  --{*We allow any number of friendly agents*}
2032
1bbf1bdcaf56 Introduction of "lost" argument
paulson
parents: 2010
diff changeset
    39
  agent = Server | Friend nat | Spy
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    40
3668
a39baf59ea47 Split base cases from "msg" to "atomic" in order
paulson
parents: 2516
diff changeset
    41
datatype
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
    42
     msg = Agent  agent	    --{*Agent names*}
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
    43
         | Number nat       --{*Ordinary integers, timestamps, ...*}
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
    44
         | Nonce  nat       --{*Unguessable nonces*}
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
    45
         | Key    key       --{*Crypto keys*}
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
    46
	 | Hash   msg       --{*Hashing*}
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
    47
	 | MPair  msg msg   --{*Compound messages*}
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
    48
	 | Crypt  key msg   --{*Encryption, public- or shared-key*}
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    49
5234
701fa0ed77b7 Better comments
paulson
parents: 5183
diff changeset
    50
16818
paulson
parents: 16796
diff changeset
    51
text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*}
5234
701fa0ed77b7 Better comments
paulson
parents: 5183
diff changeset
    52
syntax
2516
4d68fbe6378b Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents: 2484
diff changeset
    53
  "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    54
9686
87b460d72e80 xsymbols for {| and |}
paulson
parents: 7057
diff changeset
    55
syntax (xsymbols)
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    56
  "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
9686
87b460d72e80 xsymbols for {| and |}
paulson
parents: 7057
diff changeset
    57
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    58
translations
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    59
  "{|x, y, z|}"   == "{|x, {|y, z|}|}"
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    60
  "{|x, y|}"      == "MPair x y"
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    61
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    62
2484
596a5b5a68ff Incorporation of HPair into Message
paulson
parents: 2373
diff changeset
    63
constdefs
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    64
  HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
16818
paulson
parents: 16796
diff changeset
    65
    --{*Message Y paired with a MAC computed with the help of X*}
2516
4d68fbe6378b Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents: 2484
diff changeset
    66
    "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
2484
596a5b5a68ff Incorporation of HPair into Message
paulson
parents: 2373
diff changeset
    67
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    68
  keysFor :: "msg set => key set"
16818
paulson
parents: 16796
diff changeset
    69
    --{*Keys useful to decrypt elements of a message set*}
11192
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
    70
  "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    71
16818
paulson
parents: 16796
diff changeset
    72
paulson
parents: 16796
diff changeset
    73
subsubsection{*Inductive Definition of All Parts" of a Message*}
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    74
23746
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
    75
inductive_set
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
    76
  parts :: "msg set => msg set"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
    77
  for H :: "msg set"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
    78
  where
11192
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
    79
    Inj [intro]:               "X \<in> H ==> X \<in> parts H"
23746
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
    80
  | Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
    81
  | Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
    82
  | Body:        "Crypt K X \<in> parts H ==> X \<in> parts H"
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    83
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    84
16818
paulson
parents: 16796
diff changeset
    85
text{*Monotonicity*}
paulson
parents: 16796
diff changeset
    86
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)"
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    87
apply auto
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    88
apply (erule parts.induct) 
16818
paulson
parents: 16796
diff changeset
    89
apply (blast dest: parts.Fst parts.Snd parts.Body)+
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
    90
done
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    91
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
    92
16818
paulson
parents: 16796
diff changeset
    93
text{*Equations hold because constructors are injective.*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
    94
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
    95
by auto
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
    96
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
    97
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
    98
by auto
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
    99
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   100
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   101
by auto
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   102
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   103
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   104
subsubsection{*Inverse of keys *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   105
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   106
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   107
apply safe
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   108
apply (drule_tac f = invKey in arg_cong, simp)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   109
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   110
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   111
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   112
subsection{*keysFor operator*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   113
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   114
lemma keysFor_empty [simp]: "keysFor {} = {}"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   115
by (unfold keysFor_def, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   116
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   117
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   118
by (unfold keysFor_def, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   119
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   120
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   121
by (unfold keysFor_def, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   122
16818
paulson
parents: 16796
diff changeset
   123
text{*Monotonicity*}
paulson
parents: 16796
diff changeset
   124
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   125
by (unfold keysFor_def, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   126
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   127
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   128
by (unfold keysFor_def, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   129
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   130
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   131
by (unfold keysFor_def, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   132
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   133
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   134
by (unfold keysFor_def, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   135
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   136
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   137
by (unfold keysFor_def, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   138
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   139
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   140
by (unfold keysFor_def, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   141
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   142
lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   143
by (unfold keysFor_def, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   144
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   145
lemma keysFor_insert_Crypt [simp]: 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   146
    "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   147
by (unfold keysFor_def, auto)
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   148
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   149
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   150
by (unfold keysFor_def, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   151
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   152
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   153
by (unfold keysFor_def, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   154
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   155
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   156
subsection{*Inductive relation "parts"*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   157
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   158
lemma MPair_parts:
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   159
     "[| {|X,Y|} \<in> parts H;        
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   160
         [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   161
by (blast dest: parts.Fst parts.Snd) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   162
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   163
declare MPair_parts [elim!]  parts.Body [dest!]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   164
text{*NB These two rules are UNSAFE in the formal sense, as they discard the
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   165
     compound message.  They work well on THIS FILE.  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   166
  @{text MPair_parts} is left as SAFE because it speeds up proofs.
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   167
  The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   168
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   169
lemma parts_increasing: "H \<subseteq> parts(H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   170
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   171
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   172
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   173
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   174
lemma parts_empty [simp]: "parts{} = {}"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   175
apply safe
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   176
apply (erule parts.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   177
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   178
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   179
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   180
by simp
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   181
16818
paulson
parents: 16796
diff changeset
   182
text{*WARNING: loops if H = {Y}, therefore must not be repeated!*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   183
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   184
by (erule parts.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   185
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   186
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   187
subsubsection{*Unions *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   188
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   189
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   190
by (intro Un_least parts_mono Un_upper1 Un_upper2)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   191
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   192
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   193
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   194
apply (erule parts.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   195
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   196
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   197
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   198
by (intro equalityI parts_Un_subset1 parts_Un_subset2)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   199
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   200
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   201
apply (subst insert_is_Un [of _ H])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   202
apply (simp only: parts_Un)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   203
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   204
16818
paulson
parents: 16796
diff changeset
   205
text{*TWO inserts to avoid looping.  This rewrite is better than nothing.
paulson
parents: 16796
diff changeset
   206
  Not suitable for Addsimps: its behaviour can be strange.*}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   207
lemma parts_insert2:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   208
     "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   209
apply (simp add: Un_assoc)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   210
apply (simp add: parts_insert [symmetric])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   211
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   212
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   213
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   214
by (intro UN_least parts_mono UN_upper)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   215
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   216
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   217
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   218
apply (erule parts.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   219
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   220
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   221
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   222
by (intro equalityI parts_UN_subset1 parts_UN_subset2)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   223
16818
paulson
parents: 16796
diff changeset
   224
text{*Added to simplify arguments to parts, analz and synth.
paulson
parents: 16796
diff changeset
   225
  NOTE: the UN versions are no longer used!*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   226
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   227
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   228
text{*This allows @{text blast} to simplify occurrences of 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   229
  @{term "parts(G\<union>H)"} in the assumption.*}
17729
d74d0b5052a0 theorems need names
paulson
parents: 17689
diff changeset
   230
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] 
d74d0b5052a0 theorems need names
paulson
parents: 17689
diff changeset
   231
declare in_parts_UnE [elim!]
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   232
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   233
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   234
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   235
by (blast intro: parts_mono [THEN [2] rev_subsetD])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   236
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   237
subsubsection{*Idempotence and transitivity *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   238
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   239
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   240
by (erule parts.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   241
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   242
lemma parts_idem [simp]: "parts (parts H) = parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   243
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   244
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   245
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)"
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   246
apply (rule iffI)
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   247
apply (iprover intro: subset_trans parts_increasing)  
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   248
apply (frule parts_mono, simp) 
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   249
done
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   250
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   251
lemma parts_trans: "[| X\<in> parts G;  G \<subseteq> parts H |] ==> X\<in> parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   252
by (drule parts_mono, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   253
16818
paulson
parents: 16796
diff changeset
   254
text{*Cut*}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   255
lemma parts_cut:
18492
b0fe60800623 shorter proof
paulson
parents: 17729
diff changeset
   256
     "[| Y\<in> parts (insert X G);  X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" 
b0fe60800623 shorter proof
paulson
parents: 17729
diff changeset
   257
by (blast intro: parts_trans) 
b0fe60800623 shorter proof
paulson
parents: 17729
diff changeset
   258
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   259
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   260
lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   261
by (force dest!: parts_cut intro: parts_insertI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   262
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   263
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   264
subsubsection{*Rewrite rules for pulling out atomic messages *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   265
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   266
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   267
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   268
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   269
lemma parts_insert_Agent [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   270
     "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   271
apply (rule parts_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   272
apply (erule parts.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   273
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   274
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   275
lemma parts_insert_Nonce [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   276
     "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   277
apply (rule parts_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   278
apply (erule parts.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   279
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   280
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   281
lemma parts_insert_Number [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   282
     "parts (insert (Number N) H) = insert (Number N) (parts H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   283
apply (rule parts_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   284
apply (erule parts.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   285
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   286
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   287
lemma parts_insert_Key [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   288
     "parts (insert (Key K) H) = insert (Key K) (parts H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   289
apply (rule parts_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   290
apply (erule parts.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   291
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   292
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   293
lemma parts_insert_Hash [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   294
     "parts (insert (Hash X) H) = insert (Hash X) (parts H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   295
apply (rule parts_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   296
apply (erule parts.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   297
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   298
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   299
lemma parts_insert_Crypt [simp]:
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   300
     "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   301
apply (rule equalityI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   302
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   303
apply (erule parts.induct, auto)
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   304
apply (blast intro: parts.Body)
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   305
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   306
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   307
lemma parts_insert_MPair [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   308
     "parts (insert {|X,Y|} H) =  
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   309
          insert {|X,Y|} (parts (insert X (insert Y H)))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   310
apply (rule equalityI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   311
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   312
apply (erule parts.induct, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   313
apply (blast intro: parts.Fst parts.Snd)+
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   314
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   315
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   316
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   317
apply auto
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   318
apply (erule parts.induct, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   319
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   320
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   321
16818
paulson
parents: 16796
diff changeset
   322
text{*In any message, there is an upper bound N on its greatest nonce.*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   323
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   324
apply (induct_tac "msg")
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   325
apply (simp_all (no_asm_simp) add: exI parts_insert2)
16818
paulson
parents: 16796
diff changeset
   326
 txt{*MPair case: blast works out the necessary sum itself!*}
22424
8a5412121687 *** empty log message ***
haftmann
parents: 21588
diff changeset
   327
 prefer 2 apply auto apply (blast elim!: add_leE)
16818
paulson
parents: 16796
diff changeset
   328
txt{*Nonce case*}
paulson
parents: 16796
diff changeset
   329
apply (rule_tac x = "N + Suc nat" in exI, auto) 
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   330
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   331
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   332
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   333
subsection{*Inductive relation "analz"*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   334
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   335
text{*Inductive definition of "analz" -- what can be broken down from a set of
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
   336
    messages, including keys.  A form of downward closure.  Pairs can
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   337
    be taken apart; messages decrypted with known keys.  *}
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
   338
23746
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   339
inductive_set
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   340
  analz :: "msg set => msg set"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   341
  for H :: "msg set"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   342
  where
11192
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
   343
    Inj [intro,simp] :    "X \<in> H ==> X \<in> analz H"
23746
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   344
  | Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   345
  | Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   346
  | Decrypt [dest]: 
11192
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
   347
             "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H"
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
   348
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
   349
16818
paulson
parents: 16796
diff changeset
   350
text{*Monotonicity; Lemma 1 of Lowe's paper*}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   351
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)"
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   352
apply auto
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   353
apply (erule analz.induct) 
16818
paulson
parents: 16796
diff changeset
   354
apply (auto dest: analz.Fst analz.Snd) 
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   355
done
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   356
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   357
text{*Making it safe speeds up proofs*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   358
lemma MPair_analz [elim!]:
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   359
     "[| {|X,Y|} \<in> analz H;        
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   360
             [| X \<in> analz H; Y \<in> analz H |] ==> P   
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   361
          |] ==> P"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   362
by (blast dest: analz.Fst analz.Snd)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   363
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   364
lemma analz_increasing: "H \<subseteq> analz(H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   365
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   366
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   367
lemma analz_subset_parts: "analz H \<subseteq> parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   368
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   369
apply (erule analz.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   370
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   371
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   372
lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard]
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   373
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   374
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   375
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   376
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   377
lemma parts_analz [simp]: "parts (analz H) = parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   378
apply (rule equalityI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   379
apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   380
apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   381
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   382
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   383
lemma analz_parts [simp]: "analz (parts H) = parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   384
apply auto
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   385
apply (erule analz.induct, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   386
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   387
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   388
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   389
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   390
subsubsection{*General equational properties *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   391
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   392
lemma analz_empty [simp]: "analz{} = {}"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   393
apply safe
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   394
apply (erule analz.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   395
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   396
16818
paulson
parents: 16796
diff changeset
   397
text{*Converse fails: we can analz more from the union than from the 
paulson
parents: 16796
diff changeset
   398
  separate parts, as a key in one might decrypt a message in the other*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   399
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   400
by (intro Un_least analz_mono Un_upper1 Un_upper2)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   401
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   402
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   403
by (blast intro: analz_mono [THEN [2] rev_subsetD])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   404
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   405
subsubsection{*Rewrite rules for pulling out atomic messages *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   406
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   407
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   408
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   409
lemma analz_insert_Agent [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   410
     "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   411
apply (rule analz_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   412
apply (erule analz.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   413
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   414
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   415
lemma analz_insert_Nonce [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   416
     "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   417
apply (rule analz_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   418
apply (erule analz.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   419
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   420
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   421
lemma analz_insert_Number [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   422
     "analz (insert (Number N) H) = insert (Number N) (analz H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   423
apply (rule analz_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   424
apply (erule analz.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   425
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   426
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   427
lemma analz_insert_Hash [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   428
     "analz (insert (Hash X) H) = insert (Hash X) (analz H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   429
apply (rule analz_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   430
apply (erule analz.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   431
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   432
16818
paulson
parents: 16796
diff changeset
   433
text{*Can only pull out Keys if they are not needed to decrypt the rest*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   434
lemma analz_insert_Key [simp]: 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   435
    "K \<notin> keysFor (analz H) ==>   
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   436
          analz (insert (Key K) H) = insert (Key K) (analz H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   437
apply (unfold keysFor_def)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   438
apply (rule analz_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   439
apply (erule analz.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   440
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   441
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   442
lemma analz_insert_MPair [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   443
     "analz (insert {|X,Y|} H) =  
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   444
          insert {|X,Y|} (analz (insert X (insert Y H)))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   445
apply (rule equalityI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   446
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   447
apply (erule analz.induct, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   448
apply (erule analz.induct)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   449
apply (blast intro: analz.Fst analz.Snd)+
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   450
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   451
16818
paulson
parents: 16796
diff changeset
   452
text{*Can pull out enCrypted message if the Key is not known*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   453
lemma analz_insert_Crypt:
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   454
     "Key (invKey K) \<notin> analz H 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   455
      ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   456
apply (rule analz_insert_eq_I) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   457
apply (erule analz.induct, auto) 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   458
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   459
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   460
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   461
lemma lemma1: "Key (invKey K) \<in> analz H ==>   
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   462
               analz (insert (Crypt K X) H) \<subseteq>  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   463
               insert (Crypt K X) (analz (insert X H))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   464
apply (rule subsetI)
23746
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   465
apply (erule_tac x = x in analz.induct, auto)
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   466
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   467
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   468
lemma lemma2: "Key (invKey K) \<in> analz H ==>   
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   469
               insert (Crypt K X) (analz (insert X H)) \<subseteq>  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   470
               analz (insert (Crypt K X) H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   471
apply auto
23746
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   472
apply (erule_tac x = x in analz.induct, auto)
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   473
apply (blast intro: analz_insertI analz.Decrypt)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   474
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   475
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   476
lemma analz_insert_Decrypt:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   477
     "Key (invKey K) \<in> analz H ==>   
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   478
               analz (insert (Crypt K X) H) =  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   479
               insert (Crypt K X) (analz (insert X H))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   480
by (intro equalityI lemma1 lemma2)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   481
16818
paulson
parents: 16796
diff changeset
   482
text{*Case analysis: either the message is secure, or it is not! Effective,
paulson
parents: 16796
diff changeset
   483
but can cause subgoals to blow up! Use with @{text "split_if"}; apparently
paulson
parents: 16796
diff changeset
   484
@{text "split_tac"} does not cope with patterns such as @{term"analz (insert
paulson
parents: 16796
diff changeset
   485
(Crypt K X) H)"} *} 
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   486
lemma analz_Crypt_if [simp]:
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   487
     "analz (insert (Crypt K X) H) =                 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   488
          (if (Key (invKey K) \<in> analz H)                 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   489
           then insert (Crypt K X) (analz (insert X H))  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   490
           else insert (Crypt K X) (analz H))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   491
by (simp add: analz_insert_Crypt analz_insert_Decrypt)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   492
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   493
16818
paulson
parents: 16796
diff changeset
   494
text{*This rule supposes "for the sake of argument" that we have the key.*}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   495
lemma analz_insert_Crypt_subset:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   496
     "analz (insert (Crypt K X) H) \<subseteq>   
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   497
           insert (Crypt K X) (analz (insert X H))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   498
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   499
apply (erule analz.induct, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   500
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   501
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   502
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   503
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   504
apply auto
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   505
apply (erule analz.induct, auto)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   506
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   507
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   508
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   509
subsubsection{*Idempotence and transitivity *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   510
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   511
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   512
by (erule analz.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   513
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   514
lemma analz_idem [simp]: "analz (analz H) = analz H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   515
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   516
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   517
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)"
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   518
apply (rule iffI)
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   519
apply (iprover intro: subset_trans analz_increasing)  
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   520
apply (frule analz_mono, simp) 
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   521
done
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   522
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   523
lemma analz_trans: "[| X\<in> analz G;  G \<subseteq> analz H |] ==> X\<in> analz H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   524
by (drule analz_mono, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   525
16818
paulson
parents: 16796
diff changeset
   526
text{*Cut; Lemma 2 of Lowe*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   527
lemma analz_cut: "[| Y\<in> analz (insert X H);  X\<in> analz H |] ==> Y\<in> analz H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   528
by (erule analz_trans, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   529
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   530
(*Cut can be proved easily by induction on
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   531
   "Y: analz (insert X H) ==> X: analz H --> Y: analz H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   532
*)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   533
16818
paulson
parents: 16796
diff changeset
   534
text{*This rewrite rule helps in the simplification of messages that involve
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   535
  the forwarding of unknown components (X).  Without it, removing occurrences
16818
paulson
parents: 16796
diff changeset
   536
  of X can be very complicated. *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   537
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   538
by (blast intro: analz_cut analz_insertI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   539
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   540
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   541
text{*A congruence rule for "analz" *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   542
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   543
lemma analz_subset_cong:
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   544
     "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] 
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   545
      ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   546
apply simp
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   547
apply (iprover intro: conjI subset_trans analz_mono Un_upper1 Un_upper2) 
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   548
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   549
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   550
lemma analz_cong:
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   551
     "[| analz G = analz G'; analz H = analz H' |] 
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   552
      ==> analz (G \<union> H) = analz (G' \<union> H')"
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   553
by (intro equalityI analz_subset_cong, simp_all) 
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   554
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   555
lemma analz_insert_cong:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   556
     "analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   557
by (force simp only: insert_def intro!: analz_cong)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   558
16818
paulson
parents: 16796
diff changeset
   559
text{*If there are no pairs or encryptions then analz does nothing*}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   560
lemma analz_trivial:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   561
     "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   562
apply safe
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   563
apply (erule analz.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   564
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   565
16818
paulson
parents: 16796
diff changeset
   566
text{*These two are obsolete (with a single Spy) but cost little to prove...*}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   567
lemma analz_UN_analz_lemma:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   568
     "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   569
apply (erule analz.induct)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   570
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   571
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   572
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   573
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   574
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   575
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   576
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   577
subsection{*Inductive relation "synth"*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   578
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   579
text{*Inductive definition of "synth" -- what can be built up from a set of
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
   580
    messages.  A form of upward closure.  Pairs can be built, messages
3668
a39baf59ea47 Split base cases from "msg" to "atomic" in order
paulson
parents: 2516
diff changeset
   581
    encrypted with known keys.  Agent names are public domain.
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   582
    Numbers can be guessed, but Nonces cannot be.  *}
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
   583
23746
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   584
inductive_set
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   585
  synth :: "msg set => msg set"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   586
  for H :: "msg set"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   587
  where
11192
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
   588
    Inj    [intro]:   "X \<in> H ==> X \<in> synth H"
23746
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   589
  | Agent  [intro]:   "Agent agt \<in> synth H"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   590
  | Number [intro]:   "Number n  \<in> synth H"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   591
  | Hash   [intro]:   "X \<in> synth H ==> Hash X \<in> synth H"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   592
  | MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
a455e69c31cc Adapted to new inductive definition package.
berghofe
parents: 22843
diff changeset
   593
  | Crypt  [intro]:   "[|X \<in> synth H;  Key(K) \<in> H|] ==> Crypt K X \<in> synth H"
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   594
16818
paulson
parents: 16796
diff changeset
   595
text{*Monotonicity*}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   596
lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)"
16818
paulson
parents: 16796
diff changeset
   597
  by (auto, erule synth.induct, auto)  
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   598
16818
paulson
parents: 16796
diff changeset
   599
text{*NO @{text Agent_synth}, as any Agent name can be synthesized.  
paulson
parents: 16796
diff changeset
   600
  The same holds for @{term Number}*}
11192
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
   601
inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
   602
inductive_cases Key_synth   [elim!]: "Key K \<in> synth H"
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
   603
inductive_cases Hash_synth  [elim!]: "Hash X \<in> synth H"
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
   604
inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
5fd02b905a9a a few basic X-symbols
paulson
parents: 11189
diff changeset
   605
inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   606
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   607
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   608
lemma synth_increasing: "H \<subseteq> synth(H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   609
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   610
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   611
subsubsection{*Unions *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   612
16818
paulson
parents: 16796
diff changeset
   613
text{*Converse fails: we can synth more from the union than from the 
paulson
parents: 16796
diff changeset
   614
  separate parts, building a compound message using elements of each.*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   615
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   616
by (intro Un_least synth_mono Un_upper1 Un_upper2)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   617
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   618
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   619
by (blast intro: synth_mono [THEN [2] rev_subsetD])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   620
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   621
subsubsection{*Idempotence and transitivity *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   622
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   623
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   624
by (erule synth.induct, blast+)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   625
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   626
lemma synth_idem: "synth (synth H) = synth H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   627
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   628
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   629
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)"
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   630
apply (rule iffI)
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   631
apply (iprover intro: subset_trans synth_increasing)  
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   632
apply (frule synth_mono, simp add: synth_idem) 
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   633
done
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   634
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   635
lemma synth_trans: "[| X\<in> synth G;  G \<subseteq> synth H |] ==> X\<in> synth H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   636
by (drule synth_mono, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   637
16818
paulson
parents: 16796
diff changeset
   638
text{*Cut; Lemma 2 of Lowe*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   639
lemma synth_cut: "[| Y\<in> synth (insert X H);  X\<in> synth H |] ==> Y\<in> synth H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   640
by (erule synth_trans, blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   641
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   642
lemma Agent_synth [simp]: "Agent A \<in> synth H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   643
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   644
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   645
lemma Number_synth [simp]: "Number n \<in> synth H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   646
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   647
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   648
lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   649
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   650
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   651
lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   652
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   653
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   654
lemma Crypt_synth_eq [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   655
     "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   656
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   657
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   658
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   659
lemma keysFor_synth [simp]: 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   660
    "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   661
by (unfold keysFor_def, blast)
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   662
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   663
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   664
subsubsection{*Combinations of parts, analz and synth *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   665
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   666
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   667
apply (rule equalityI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   668
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   669
apply (erule parts.induct)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   670
apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   671
                    parts.Fst parts.Snd parts.Body)+
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   672
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   673
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   674
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   675
apply (intro equalityI analz_subset_cong)+
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   676
apply simp_all
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   677
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   678
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   679
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   680
apply (rule equalityI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   681
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   682
apply (erule analz.induct)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   683
prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   684
apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   685
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   686
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   687
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   688
apply (cut_tac H = "{}" in analz_synth_Un)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   689
apply (simp (no_asm_use))
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   690
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   691
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   692
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   693
subsubsection{*For reasoning about the Fake rule in traces *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   694
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   695
lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   696
by (rule subset_trans [OF parts_mono parts_Un_subset2], blast)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   697
16818
paulson
parents: 16796
diff changeset
   698
text{*More specifically for Fake.  Very occasionally we could do with a version
paulson
parents: 16796
diff changeset
   699
  of the form  @{term"parts{X} \<subseteq> synth (analz H) \<union> parts H"} *}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   700
lemma Fake_parts_insert:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   701
     "X \<in> synth (analz H) ==>  
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   702
      parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   703
apply (drule parts_insert_subset_Un)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   704
apply (simp (no_asm_use))
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   705
apply blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   706
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   707
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   708
lemma Fake_parts_insert_in_Un:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   709
     "[|Z \<in> parts (insert X H);  X: synth (analz H)|] 
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   710
      ==> Z \<in>  synth (analz H) \<union> parts H";
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   711
by (blast dest: Fake_parts_insert  [THEN subsetD, dest])
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   712
16818
paulson
parents: 16796
diff changeset
   713
text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put 
paulson
parents: 16796
diff changeset
   714
  @{term "G=H"}.*}
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   715
lemma Fake_analz_insert:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   716
     "X\<in> synth (analz G) ==>  
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   717
      analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   718
apply (rule subsetI)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   719
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   720
prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD])
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   721
apply (simp (no_asm_use))
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   722
apply blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   723
done
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   724
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   725
lemma analz_conj_parts [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   726
     "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)"
14145
2e31b8cc8788 ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents: 14126
diff changeset
   727
by (blast intro: analz_subset_parts [THEN subsetD])
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   728
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   729
lemma analz_disj_parts [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   730
     "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)"
14145
2e31b8cc8788 ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents: 14126
diff changeset
   731
by (blast intro: analz_subset_parts [THEN subsetD])
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   732
16818
paulson
parents: 16796
diff changeset
   733
text{*Without this equation, other rules for synth and analz would yield
paulson
parents: 16796
diff changeset
   734
  redundant cases*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   735
lemma MPair_synth_analz [iff]:
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   736
     "({|X,Y|} \<in> synth (analz H)) =  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   737
      (X \<in> synth (analz H) & Y \<in> synth (analz H))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   738
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   739
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   740
lemma Crypt_synth_analz:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   741
     "[| Key K \<in> analz H;  Key (invKey K) \<in> analz H |]  
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   742
       ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   743
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   744
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   745
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   746
lemma Hash_synth_analz [simp]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   747
     "X \<notin> synth (analz H)  
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   748
      ==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   749
by blast
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   750
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   751
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   752
subsection{*HPair: a combination of Hash and MPair*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   753
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   754
subsubsection{*Freeness *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   755
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   756
lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   757
by (unfold HPair_def, simp)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   758
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   759
lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   760
by (unfold HPair_def, simp)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   761
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   762
lemma Number_neq_HPair: "Number N ~= Hash[X] Y"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   763
by (unfold HPair_def, simp)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   764
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   765
lemma Key_neq_HPair: "Key K ~= Hash[X] Y"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   766
by (unfold HPair_def, simp)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   767
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   768
lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   769
by (unfold HPair_def, simp)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   770
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   771
lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   772
by (unfold HPair_def, simp)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   773
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   774
lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   775
                    Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   776
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   777
declare HPair_neqs [iff]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   778
declare HPair_neqs [symmetric, iff]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   779
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   780
lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   781
by (simp add: HPair_def)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   782
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   783
lemma MPair_eq_HPair [iff]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   784
     "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   785
by (simp add: HPair_def)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   786
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   787
lemma HPair_eq_MPair [iff]:
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   788
     "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)"
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   789
by (auto simp add: HPair_def)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   790
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   791
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   792
subsubsection{*Specialized laws, proved in terms of those for Hash and MPair *}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   793
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   794
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   795
by (simp add: HPair_def)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   796
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   797
lemma parts_insert_HPair [simp]: 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   798
    "parts (insert (Hash[X] Y) H) =  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   799
     insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   800
by (simp add: HPair_def)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   801
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   802
lemma analz_insert_HPair [simp]: 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   803
    "analz (insert (Hash[X] Y) H) =  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   804
     insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   805
by (simp add: HPair_def)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   806
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   807
lemma HPair_synth_analz [simp]:
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   808
     "X \<notin> synth (analz H)  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   809
    ==> (Hash[X] Y \<in> synth (analz H)) =  
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   810
        (Hash {|X, Y|} \<in> analz H & Y \<in> synth (analz H))"
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   811
by (simp add: HPair_def)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   812
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   813
16818
paulson
parents: 16796
diff changeset
   814
text{*We do NOT want Crypt... messages broken up in protocols!!*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   815
declare parts.Body [rule del]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   816
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   817
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   818
text{*Rewrites to push in Key and Crypt messages, so that other messages can
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   819
    be pulled out using the @{text analz_insert} rules*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   820
ML
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   821
{*
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   822
fun insComm x y = inst "x" x (inst "y" y insert_commute);
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   823
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   824
bind_thms ("pushKeys",
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   825
           map (insComm "Key ?K") 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   826
                   ["Agent ?C", "Nonce ?N", "Number ?N", 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   827
		    "Hash ?X", "MPair ?X ?Y", "Crypt ?X ?K'"]);
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   828
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   829
bind_thms ("pushCrypts",
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   830
           map (insComm "Crypt ?X ?K") 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   831
                     ["Agent ?C", "Nonce ?N", "Number ?N", 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   832
		      "Hash ?X'", "MPair ?X' ?Y"]);
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   833
*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   834
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   835
text{*Cannot be added with @{text "[simp]"} -- messages should not always be
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   836
  re-ordered. *}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   837
lemmas pushes = pushKeys pushCrypts
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   838
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   839
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   840
subsection{*Tactics useful for many protocol proofs*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   841
ML
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   842
{*
24122
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   843
structure Message =
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   844
struct
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   845
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   846
(*Prove base case (subgoal i) and simplify others.  A typical base case
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   847
  concerns  Crypt K X \<notin> Key`shrK`bad  and cannot be proved by rewriting
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   848
  alone.*)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   849
fun prove_simple_subgoals_tac i = 
22843
189e214845dd dropped legacy ML binding
haftmann
parents: 22424
diff changeset
   850
    force_tac (claset(), simpset() addsimps [@{thm image_eq_UN}]) i THEN
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   851
    ALLGOALS Asm_simp_tac
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   852
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   853
(*Analysis of Fake cases.  Also works for messages that forward unknown parts,
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   854
  but this application is no longer necessary if analz_insert_eq is used.
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   855
  Abstraction over i is ESSENTIAL: it delays the dereferencing of claset
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   856
  DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   857
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   858
(*Apply rules to break down assumptions of the form
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   859
  Y \<in> parts(insert X H)  and  Y \<in> analz(insert X H)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   860
*)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   861
val Fake_insert_tac = 
24122
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   862
    dresolve_tac [impOfSubs @{thm Fake_analz_insert},
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   863
                  impOfSubs @{thm Fake_parts_insert}] THEN'
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   864
    eresolve_tac [asm_rl, @{thm synth.Inj}];
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   865
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   866
fun Fake_insert_simp_tac ss i = 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   867
    REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i;
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   868
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   869
fun atomic_spy_analz_tac (cs,ss) = SELECT_GOAL
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   870
    (Fake_insert_simp_tac ss 1
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   871
     THEN
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   872
     IF_UNSOLVED (Blast.depth_tac
24122
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   873
		  (cs addIs [@{thm analz_insertI},
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   874
				   impOfSubs @{thm analz_subset_parts}]) 4 1))
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   875
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   876
(*The explicit claset and simpset arguments help it work with Isar*)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   877
fun gen_spy_analz_tac (cs,ss) i =
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   878
  DETERM
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   879
   (SELECT_GOAL
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   880
     (EVERY 
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   881
      [  (*push in occurrences of X...*)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   882
       (REPEAT o CHANGED)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   883
           (res_inst_tac [("x1","X")] (insert_commute RS ssubst) 1),
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   884
       (*...allowing further simplifications*)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   885
       simp_tac ss 1,
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   886
       REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])),
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   887
       DEPTH_SOLVE (atomic_spy_analz_tac (cs,ss) 1)]) i)
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   888
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   889
fun spy_analz_tac i = gen_spy_analz_tac (claset(), simpset()) i
24122
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   890
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   891
end
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   892
*}
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   893
16818
paulson
parents: 16796
diff changeset
   894
text{*By default only @{text o_apply} is built-in.  But in the presence of
paulson
parents: 16796
diff changeset
   895
eta-expansion this means that some terms displayed as @{term "f o g"} will be
paulson
parents: 16796
diff changeset
   896
rewritten, and others will not!*}
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   897
declare o_def [simp]
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   898
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   899
13922
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   900
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A"
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   901
by auto
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   902
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   903
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A"
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   904
by auto
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   905
14200
d8598e24f8fa Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents: 14181
diff changeset
   906
lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))"
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   907
by (iprover intro: synth_mono analz_mono) 
13922
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   908
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   909
lemma Fake_analz_eq [simp]:
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   910
     "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)"
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   911
apply (drule Fake_analz_insert[of _ _ "H"])
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   912
apply (simp add: synth_increasing[THEN Un_absorb2])
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   913
apply (drule synth_mono)
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   914
apply (simp add: synth_idem)
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   915
apply (rule equalityI)
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   916
apply (simp add: );
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   917
apply (rule synth_analz_mono, blast)   
13922
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   918
done
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   919
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   920
text{*Two generalizations of @{text analz_insert_eq}*}
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   921
lemma gen_analz_insert_eq [rule_format]:
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   922
     "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G";
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   923
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   924
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   925
lemma synth_analz_insert_eq [rule_format]:
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   926
     "X \<in> synth (analz H) 
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   927
      ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)";
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   928
apply (erule synth.induct) 
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   929
apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) 
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   930
done
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   931
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   932
lemma Fake_parts_sing:
13926
6e62e5357a10 converting more HOL-Auth to new-style theories
paulson
parents: 13922
diff changeset
   933
     "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H";
13922
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   934
apply (rule subset_trans) 
17689
a04b5b43625e streamlined theory; conformance to recent publication
paulson
parents: 16818
diff changeset
   935
 apply (erule_tac [2] Fake_parts_insert)
20648
paulson
parents: 18492
diff changeset
   936
apply (rule parts_mono, blast)
13922
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   937
done
75ae4244a596 Changes required by the certified email protocol
paulson
parents: 11270
diff changeset
   938
14145
2e31b8cc8788 ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents: 14126
diff changeset
   939
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]
2e31b8cc8788 ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents: 14126
diff changeset
   940
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   941
method_setup spy_analz = {*
11270
a315a3862bb4 better treatment of methods: uses Method.ctxt_args to refer to current
paulson
parents: 11264
diff changeset
   942
    Method.ctxt_args (fn ctxt =>
24122
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   943
        Method.SIMPLE_METHOD (Message.gen_spy_analz_tac (local_clasimpset_of ctxt) 1)) *}
11189
1ea763a5d186 conversion of Message.thy to Isar format
paulson
parents: 10833
diff changeset
   944
    "for proving the Fake case when analz is involved"
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
   945
11264
a47a9288f3f6 (rough) conversion of Auth/Recur to Isar format
paulson
parents: 11251
diff changeset
   946
method_setup atomic_spy_analz = {*
11270
a315a3862bb4 better treatment of methods: uses Method.ctxt_args to refer to current
paulson
parents: 11264
diff changeset
   947
    Method.ctxt_args (fn ctxt =>
24122
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   948
        Method.SIMPLE_METHOD (Message.atomic_spy_analz_tac (local_clasimpset_of ctxt) 1)) *}
11264
a47a9288f3f6 (rough) conversion of Auth/Recur to Isar format
paulson
parents: 11251
diff changeset
   949
    "for debugging spy_analz"
a47a9288f3f6 (rough) conversion of Auth/Recur to Isar format
paulson
parents: 11251
diff changeset
   950
a47a9288f3f6 (rough) conversion of Auth/Recur to Isar format
paulson
parents: 11251
diff changeset
   951
method_setup Fake_insert_simp = {*
11270
a315a3862bb4 better treatment of methods: uses Method.ctxt_args to refer to current
paulson
parents: 11264
diff changeset
   952
    Method.ctxt_args (fn ctxt =>
24122
fc7f857d33c8 tuned ML bindings (for multithreading);
wenzelm
parents: 23746
diff changeset
   953
        Method.SIMPLE_METHOD (Message.Fake_insert_simp_tac (local_simpset_of ctxt) 1)) *}
11264
a47a9288f3f6 (rough) conversion of Auth/Recur to Isar format
paulson
parents: 11251
diff changeset
   954
    "for debugging spy_analz"
a47a9288f3f6 (rough) conversion of Auth/Recur to Isar format
paulson
parents: 11251
diff changeset
   955
1839
199243afac2b Proving safety properties of authentication protocols
paulson
parents:
diff changeset
   956
end