| 
0
 | 
     1  | 
(*  Title: 	FOL/ex/nat.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Examples for the manual "Introduction to Isabelle"
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Theory of the natural numbers: Peano's axioms, primitive recursion
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
INCOMPATIBLE with nat2.thy, Nipkow's example
  | 
| 
 | 
    11  | 
*)
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
Nat = FOL +
  | 
| 
 | 
    14  | 
types   nat 0
  | 
| 
 | 
    15  | 
arities nat         :: term
  | 
| 
 | 
    16  | 
consts  "0"         :: "nat"    ("0")
 | 
| 
 | 
    17  | 
        Suc         :: "nat=>nat"
  | 
| 
 | 
    18  | 
        rec         :: "[nat, 'a, [nat,'a]=>'a] => 'a"
  | 
| 
 | 
    19  | 
        "+"         :: "[nat, nat] => nat"              (infixl 60)
  | 
| 
 | 
    20  | 
rules   induct      "[| P(0);  !!x. P(x) ==> P(Suc(x)) |]  ==> P(n)"
  | 
| 
 | 
    21  | 
        Suc_inject  "Suc(m)=Suc(n) ==> m=n"
  | 
| 
 | 
    22  | 
        Suc_neq_0   "Suc(m)=0      ==> R"
  | 
| 
 | 
    23  | 
        rec_0       "rec(0,a,f) = a"
  | 
| 
 | 
    24  | 
        rec_Suc     "rec(Suc(m), a, f) = f(m, rec(m,a,f))"
  | 
| 
 | 
    25  | 
        add_def     "m+n == rec(m, n, %x y. Suc(y))"
  | 
| 
 | 
    26  | 
end
  |