| author | wenzelm | 
| Thu, 15 Aug 2019 16:57:09 +0200 | |
| changeset 70538 | fc9ba6fe367f | 
| parent 69597 | ff784d5a5bfb | 
| child 70680 | b8cd7ea34e33 | 
| permissions | -rw-r--r-- | 
| 11054 | 1 | (* Title: HOL/Library/Permutation.thy | 
| 15005 | 2 | Author: Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker | 
| 11054 | 3 | *) | 
| 4 | ||
| 60500 | 5 | section \<open>Permutations\<close> | 
| 11054 | 6 | |
| 15131 | 7 | theory Permutation | 
| 51542 | 8 | imports Multiset | 
| 15131 | 9 | begin | 
| 11054 | 10 | |
| 69597 | 11 | inductive perm :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (\<open>_ <~~> _\<close> [50, 50] 50) (* FIXME proper infix, without ambiguity!? *) | 
| 53238 | 12 | where | 
| 13 | Nil [intro!]: "[] <~~> []" | |
| 14 | | swap [intro!]: "y # x # l <~~> x # y # l" | |
| 15 | | Cons [intro!]: "xs <~~> ys \<Longrightarrow> z # xs <~~> z # ys" | |
| 16 | | trans [intro]: "xs <~~> ys \<Longrightarrow> ys <~~> zs \<Longrightarrow> xs <~~> zs" | |
| 11054 | 17 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 18 | proposition perm_refl [iff]: "l <~~> l" | 
| 17200 | 19 | by (induct l) auto | 
| 11054 | 20 | |
| 21 | ||
| 60500 | 22 | subsection \<open>Some examples of rule induction on permutations\<close> | 
| 11054 | 23 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 24 | proposition xperm_empty_imp: "[] <~~> ys \<Longrightarrow> ys = []" | 
| 56796 | 25 | by (induct xs == "[] :: 'a list" ys pred: perm) simp_all | 
| 11054 | 26 | |
| 27 | ||
| 60500 | 28 | text \<open>\medskip This more general theorem is easier to understand!\<close> | 
| 11054 | 29 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 30 | proposition perm_length: "xs <~~> ys \<Longrightarrow> length xs = length ys" | 
| 25379 | 31 | by (induct pred: perm) simp_all | 
| 11054 | 32 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 33 | proposition perm_empty_imp: "[] <~~> xs \<Longrightarrow> xs = []" | 
| 17200 | 34 | by (drule perm_length) auto | 
| 11054 | 35 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 36 | proposition perm_sym: "xs <~~> ys \<Longrightarrow> ys <~~> xs" | 
| 25379 | 37 | by (induct pred: perm) auto | 
| 11054 | 38 | |
| 39 | ||
| 60500 | 40 | subsection \<open>Ways of making new permutations\<close> | 
| 11054 | 41 | |
| 60500 | 42 | text \<open>We can insert the head anywhere in the list.\<close> | 
| 11054 | 43 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 44 | proposition perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys" | 
| 17200 | 45 | by (induct xs) auto | 
| 11054 | 46 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 47 | proposition perm_append_swap: "xs @ ys <~~> ys @ xs" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 48 | by (induct xs) (auto intro: perm_append_Cons) | 
| 11054 | 49 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 50 | proposition perm_append_single: "a # xs <~~> xs @ [a]" | 
| 17200 | 51 | by (rule perm.trans [OF _ perm_append_swap]) simp | 
| 11054 | 52 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 53 | proposition perm_rev: "rev xs <~~> xs" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 54 | by (induct xs) (auto intro!: perm_append_single intro: perm_sym) | 
| 11054 | 55 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 56 | proposition perm_append1: "xs <~~> ys \<Longrightarrow> l @ xs <~~> l @ ys" | 
| 17200 | 57 | by (induct l) auto | 
| 11054 | 58 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 59 | proposition perm_append2: "xs <~~> ys \<Longrightarrow> xs @ l <~~> ys @ l" | 
| 17200 | 60 | by (blast intro!: perm_append_swap perm_append1) | 
| 11054 | 61 | |
| 62 | ||
| 60500 | 63 | subsection \<open>Further results\<close> | 
| 11054 | 64 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 65 | proposition perm_empty [iff]: "[] <~~> xs \<longleftrightarrow> xs = []" | 
| 17200 | 66 | by (blast intro: perm_empty_imp) | 
| 11054 | 67 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 68 | proposition perm_empty2 [iff]: "xs <~~> [] \<longleftrightarrow> xs = []" | 
| 11054 | 69 | apply auto | 
| 70 | apply (erule perm_sym [THEN perm_empty_imp]) | |
| 71 | done | |
| 72 | ||
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 73 | proposition perm_sing_imp: "ys <~~> xs \<Longrightarrow> xs = [y] \<Longrightarrow> ys = [y]" | 
| 25379 | 74 | by (induct pred: perm) auto | 
| 11054 | 75 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 76 | proposition perm_sing_eq [iff]: "ys <~~> [y] \<longleftrightarrow> ys = [y]" | 
| 17200 | 77 | by (blast intro: perm_sing_imp) | 
| 11054 | 78 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 79 | proposition perm_sing_eq2 [iff]: "[y] <~~> ys \<longleftrightarrow> ys = [y]" | 
| 17200 | 80 | by (blast dest: perm_sym) | 
| 11054 | 81 | |
| 82 | ||
| 60500 | 83 | subsection \<open>Removing elements\<close> | 
| 11054 | 84 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 85 | proposition perm_remove: "x \<in> set ys \<Longrightarrow> ys <~~> x # remove1 x ys" | 
| 17200 | 86 | by (induct ys) auto | 
| 11054 | 87 | |
| 88 | ||
| 60500 | 89 | text \<open>\medskip Congruence rule\<close> | 
| 11054 | 90 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 91 | proposition perm_remove_perm: "xs <~~> ys \<Longrightarrow> remove1 z xs <~~> remove1 z ys" | 
| 25379 | 92 | by (induct pred: perm) auto | 
| 11054 | 93 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 94 | proposition remove_hd [simp]: "remove1 z (z # xs) = xs" | 
| 15072 | 95 | by auto | 
| 11054 | 96 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 97 | proposition cons_perm_imp_perm: "z # xs <~~> z # ys \<Longrightarrow> xs <~~> ys" | 
| 63649 | 98 | by (drule perm_remove_perm [where z = z]) auto | 
| 11054 | 99 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 100 | proposition cons_perm_eq [iff]: "z#xs <~~> z#ys \<longleftrightarrow> xs <~~> ys" | 
| 17200 | 101 | by (blast intro: cons_perm_imp_perm) | 
| 11054 | 102 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 103 | proposition append_perm_imp_perm: "zs @ xs <~~> zs @ ys \<Longrightarrow> xs <~~> ys" | 
| 53238 | 104 | by (induct zs arbitrary: xs ys rule: rev_induct) auto | 
| 11054 | 105 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 106 | proposition perm_append1_eq [iff]: "zs @ xs <~~> zs @ ys \<longleftrightarrow> xs <~~> ys" | 
| 17200 | 107 | by (blast intro: append_perm_imp_perm perm_append1) | 
| 11054 | 108 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 109 | proposition perm_append2_eq [iff]: "xs @ zs <~~> ys @ zs \<longleftrightarrow> xs <~~> ys" | 
| 11054 | 110 | apply (safe intro!: perm_append2) | 
| 111 | apply (rule append_perm_imp_perm) | |
| 112 | apply (rule perm_append_swap [THEN perm.trans]) | |
| 61585 | 113 | \<comment> \<open>the previous step helps this \<open>blast\<close> call succeed quickly\<close> | 
| 11054 | 114 | apply (blast intro: perm_append_swap) | 
| 115 | done | |
| 116 | ||
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 117 | theorem mset_eq_perm: "mset xs = mset ys \<longleftrightarrow> xs <~~> ys" | 
| 17200 | 118 | apply (rule iffI) | 
| 56796 | 119 | apply (erule_tac [2] perm.induct) | 
| 120 | apply (simp_all add: union_ac) | |
| 121 | apply (erule rev_mp) | |
| 122 | apply (rule_tac x=ys in spec) | |
| 123 | apply (induct_tac xs) | |
| 124 | apply auto | |
| 125 | apply (erule_tac x = "remove1 a x" in allE) | |
| 126 | apply (drule sym) | |
| 127 | apply simp | |
| 17200 | 128 | apply (subgoal_tac "a \<in> set x") | 
| 53238 | 129 | apply (drule_tac z = a in perm.Cons) | 
| 56796 | 130 | apply (erule perm.trans) | 
| 131 | apply (rule perm_sym) | |
| 132 | apply (erule perm_remove) | |
| 60495 | 133 | apply (drule_tac f=set_mset in arg_cong) | 
| 56796 | 134 | apply simp | 
| 15005 | 135 | done | 
| 136 | ||
| 64587 | 137 | proposition mset_le_perm_append: "mset xs \<subseteq># mset ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)" | 
| 63310 
caaacf37943f
normalising multiset theorem names
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
61699diff
changeset | 138 | apply (auto simp: mset_eq_perm[THEN sym] mset_subset_eq_exists_conv) | 
| 60515 | 139 | apply (insert surj_mset) | 
| 56796 | 140 | apply (drule surjD) | 
| 15072 | 141 | apply (blast intro: sym)+ | 
| 142 | done | |
| 15005 | 143 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 144 | proposition perm_set_eq: "xs <~~> ys \<Longrightarrow> set xs = set ys" | 
| 60515 | 145 | by (metis mset_eq_perm mset_eq_setD) | 
| 25277 | 146 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 147 | proposition perm_distinct_iff: "xs <~~> ys \<Longrightarrow> distinct xs = distinct ys" | 
| 25379 | 148 | apply (induct pred: perm) | 
| 149 | apply simp_all | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40122diff
changeset | 150 | apply fastforce | 
| 25379 | 151 | apply (metis perm_set_eq) | 
| 152 | done | |
| 25277 | 153 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 154 | theorem eq_set_perm_remdups: "set xs = set ys \<Longrightarrow> remdups xs <~~> remdups ys" | 
| 25379 | 155 | apply (induct xs arbitrary: ys rule: length_induct) | 
| 53238 | 156 | apply (case_tac "remdups xs") | 
| 157 | apply simp_all | |
| 158 | apply (subgoal_tac "a \<in> set (remdups ys)") | |
| 57816 
d8bbb97689d3
no need for 'set_simps' now that 'datatype_new' generates the desired 'set' property
 blanchet parents: 
56796diff
changeset | 159 | prefer 2 apply (metis list.set(2) insert_iff set_remdups) | 
| 56796 | 160 | apply (drule split_list) apply (elim exE conjE) | 
| 161 | apply (drule_tac x = list in spec) apply (erule impE) prefer 2 | |
| 162 | apply (drule_tac x = "ysa @ zs" in spec) apply (erule impE) prefer 2 | |
| 25379 | 163 | apply simp | 
| 53238 | 164 | apply (subgoal_tac "a # list <~~> a # ysa @ zs") | 
| 25379 | 165 | apply (metis Cons_eq_appendI perm_append_Cons trans) | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
39916diff
changeset | 166 | apply (metis Cons Cons_eq_appendI distinct.simps(2) | 
| 25379 | 167 | distinct_remdups distinct_remdups_id perm_append_swap perm_distinct_iff) | 
| 56796 | 168 | apply (subgoal_tac "set (a # list) = | 
| 169 | set (ysa @ a # zs) \<and> distinct (a # list) \<and> distinct (ysa @ a # zs)") | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40122diff
changeset | 170 | apply (fastforce simp add: insert_ident) | 
| 25379 | 171 | apply (metis distinct_remdups set_remdups) | 
| 30742 | 172 | apply (subgoal_tac "length (remdups xs) < Suc (length xs)") | 
| 173 | apply simp | |
| 174 | apply (subgoal_tac "length (remdups xs) \<le> length xs") | |
| 175 | apply simp | |
| 176 | apply (rule length_remdups_leq) | |
| 25379 | 177 | done | 
| 25287 | 178 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 179 | proposition perm_remdups_iff_eq_set: "remdups x <~~> remdups y \<longleftrightarrow> set x = set y" | 
| 25379 | 180 | by (metis List.set_remdups perm_set_eq eq_set_perm_remdups) | 
| 25287 | 181 | |
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 182 | theorem permutation_Ex_bij: | 
| 39075 | 183 | assumes "xs <~~> ys" | 
| 184 |   shows "\<exists>f. bij_betw f {..<length xs} {..<length ys} \<and> (\<forall>i<length xs. xs ! i = ys ! (f i))"
 | |
| 56796 | 185 | using assms | 
| 186 | proof induct | |
| 53238 | 187 | case Nil | 
| 56796 | 188 | then show ?case | 
| 189 | unfolding bij_betw_def by simp | |
| 39075 | 190 | next | 
| 191 | case (swap y x l) | |
| 192 | show ?case | |
| 193 | proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI) | |
| 194 |     show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
 | |
| 50037 | 195 | by (auto simp: bij_betw_def) | 
| 53238 | 196 | fix i | 
| 56796 | 197 | assume "i < length (y # x # l)" | 
| 39075 | 198 | show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i" | 
| 199 | by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc) | |
| 200 | qed | |
| 201 | next | |
| 202 | case (Cons xs ys z) | |
| 56796 | 203 |   then obtain f where bij: "bij_betw f {..<length xs} {..<length ys}"
 | 
| 204 | and perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" | |
| 205 | by blast | |
| 53238 | 206 | let ?f = "\<lambda>i. case i of Suc n \<Rightarrow> Suc (f n) | 0 \<Rightarrow> 0" | 
| 39075 | 207 | show ?case | 
| 208 | proof (intro exI[of _ ?f] allI conjI impI) | |
| 209 |     have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}"
 | |
| 210 |             "{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}"
 | |
| 39078 | 211 | by (simp_all add: lessThan_Suc_eq_insert_0) | 
| 53238 | 212 |     show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}"
 | 
| 213 | unfolding * | |
| 39075 | 214 | proof (rule bij_betw_combine) | 
| 215 |       show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})"
 | |
| 216 | using bij unfolding bij_betw_def | |
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
55584diff
changeset | 217 | by (auto intro!: inj_onI imageI dest: inj_onD simp: image_comp comp_def) | 
| 39075 | 218 | qed (auto simp: bij_betw_def) | 
| 53238 | 219 | fix i | 
| 56796 | 220 | assume "i < length (z # xs)" | 
| 39075 | 221 | then show "(z # xs) ! i = (z # ys) ! (?f i)" | 
| 222 | using perm by (cases i) auto | |
| 223 | qed | |
| 224 | next | |
| 225 | case (trans xs ys zs) | |
| 56796 | 226 | then obtain f g | 
| 227 |     where bij: "bij_betw f {..<length xs} {..<length ys}" "bij_betw g {..<length ys} {..<length zs}"
 | |
| 228 | and perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" "\<forall>i<length ys. ys ! i = zs ! (g i)" | |
| 229 | by blast | |
| 39075 | 230 | show ?case | 
| 53238 | 231 | proof (intro exI[of _ "g \<circ> f"] conjI allI impI) | 
| 39075 | 232 |     show "bij_betw (g \<circ> f) {..<length xs} {..<length zs}"
 | 
| 233 | using bij by (rule bij_betw_trans) | |
| 56796 | 234 | fix i | 
| 235 | assume "i < length xs" | |
| 236 | with bij have "f i < length ys" | |
| 237 | unfolding bij_betw_def by force | |
| 60500 | 238 | with \<open>i < length xs\<close> show "xs ! i = zs ! (g \<circ> f) i" | 
| 53238 | 239 | using trans(1,3)[THEN perm_length] perm by auto | 
| 39075 | 240 | qed | 
| 241 | qed | |
| 242 | ||
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 243 | proposition perm_finite: "finite {B. B <~~> A}"
 | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 244 | proof (rule finite_subset[where B="{xs. set xs \<subseteq> set A \<and> length xs \<le> length A}"])
 | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 245 |  show "finite {xs. set xs \<subseteq> set A \<and> length xs \<le> length A}"
 | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 246 | apply (cases A, simp) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 247 | apply (rule card_ge_0_finite) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 248 | apply (auto simp: card_lists_length_le) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 249 | done | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 250 | next | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 251 |  show "{B. B <~~> A} \<subseteq> {xs. set xs \<subseteq> set A \<and> length xs \<le> length A}"
 | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 252 | by (clarsimp simp add: perm_length perm_set_eq) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 253 | qed | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 254 | |
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 255 | proposition perm_swap: | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 256 | assumes "i < length xs" "j < length xs" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 257 | shows "xs[i := xs ! j, j := xs ! i] <~~> xs" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 258 | using assms by (simp add: mset_eq_perm[symmetric] mset_swap) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 259 | |
| 11054 | 260 | end |