author | wenzelm |
Fri, 01 Dec 2000 19:39:54 +0100 | |
changeset 10562 | fcd29e58c40c |
parent 10216 | e928bdf62014 |
child 11386 | cf8d81cf8034 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/Cardinal.ML |
435 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
435 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
Cardinals in Zermelo-Fraenkel Set Theory |
|
7 |
||
8 |
This theory does NOT assume the Axiom of Choice |
|
9 |
*) |
|
10 |
||
11 |
(*** The Schroeder-Bernstein Theorem -- see Davey & Priestly, page 106 ***) |
|
12 |
||
13 |
(** Lemma: Banach's Decomposition Theorem **) |
|
14 |
||
5067 | 15 |
Goal "bnd_mono(X, %W. X - g``(Y - f``W))"; |
435 | 16 |
by (rtac bnd_monoI 1); |
17 |
by (REPEAT (ares_tac [Diff_subset, subset_refl, Diff_mono, image_mono] 1)); |
|
760 | 18 |
qed "decomp_bnd_mono"; |
435 | 19 |
|
9907 | 20 |
val [gfun] = goal (the_context ()) |
1461 | 21 |
"g: Y->X ==> \ |
22 |
\ g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) = \ |
|
435 | 23 |
\ X - lfp(X, %W. X - g``(Y - f``W)) "; |
24 |
by (res_inst_tac [("P", "%u. ?v = X-u")] |
|
10216 | 25 |
(decomp_bnd_mono RS lfp_unfold RS ssubst) 1); |
4091 | 26 |
by (simp_tac (simpset() addsimps [subset_refl, double_complement, |
1461 | 27 |
gfun RS fun_is_rel RS image_subset]) 1); |
760 | 28 |
qed "Banach_last_equation"; |
435 | 29 |
|
5325
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5284
diff
changeset
|
30 |
Goal "[| f: X->Y; g: Y->X |] ==> \ |
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5284
diff
changeset
|
31 |
\ EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) & \ |
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5284
diff
changeset
|
32 |
\ (YA Int YB = 0) & (YA Un YB = Y) & \ |
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5284
diff
changeset
|
33 |
\ f``XA=YA & g``YB=XB"; |
435 | 34 |
by (REPEAT |
35 |
(FIRSTGOAL |
|
36 |
(resolve_tac [refl, exI, conjI, Diff_disjoint, Diff_partition]))); |
|
37 |
by (rtac Banach_last_equation 3); |
|
5325
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5284
diff
changeset
|
38 |
by (REPEAT (ares_tac [fun_is_rel, image_subset, lfp_subset] 1)); |
760 | 39 |
qed "decomposition"; |
435 | 40 |
|
9907 | 41 |
val prems = goal (the_context ()) |
435 | 42 |
"[| f: inj(X,Y); g: inj(Y,X) |] ==> EX h. h: bij(X,Y)"; |
43 |
by (cut_facts_tac prems 1); |
|
44 |
by (cut_facts_tac [(prems RL [inj_is_fun]) MRS decomposition] 1); |
|
4091 | 45 |
by (blast_tac (claset() addSIs [restrict_bij,bij_disjoint_Un] |
435 | 46 |
addIs [bij_converse_bij]) 1); |
47 |
(* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))" |
|
48 |
is forced by the context!! *) |
|
760 | 49 |
qed "schroeder_bernstein"; |
435 | 50 |
|
51 |
||
52 |
(** Equipollence is an equivalence relation **) |
|
53 |
||
5137 | 54 |
Goalw [eqpoll_def] "f: bij(A,B) ==> A eqpoll B"; |
845
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
55 |
by (etac exI 1); |
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
56 |
qed "bij_imp_eqpoll"; |
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
57 |
|
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
58 |
(*A eqpoll A*) |
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
59 |
bind_thm ("eqpoll_refl", id_bij RS bij_imp_eqpoll); |
435 | 60 |
|
5137 | 61 |
Goalw [eqpoll_def] "X eqpoll Y ==> Y eqpoll X"; |
4091 | 62 |
by (blast_tac (claset() addIs [bij_converse_bij]) 1); |
760 | 63 |
qed "eqpoll_sym"; |
435 | 64 |
|
5067 | 65 |
Goalw [eqpoll_def] |
5137 | 66 |
"[| X eqpoll Y; Y eqpoll Z |] ==> X eqpoll Z"; |
4091 | 67 |
by (blast_tac (claset() addIs [comp_bij]) 1); |
760 | 68 |
qed "eqpoll_trans"; |
435 | 69 |
|
70 |
(** Le-pollence is a partial ordering **) |
|
71 |
||
5137 | 72 |
Goalw [lepoll_def] "X<=Y ==> X lepoll Y"; |
437 | 73 |
by (rtac exI 1); |
74 |
by (etac id_subset_inj 1); |
|
760 | 75 |
qed "subset_imp_lepoll"; |
435 | 76 |
|
1609 | 77 |
bind_thm ("lepoll_refl", subset_refl RS subset_imp_lepoll); |
78 |
||
79 |
bind_thm ("le_imp_lepoll", le_imp_subset RS subset_imp_lepoll); |
|
435 | 80 |
|
5067 | 81 |
Goalw [eqpoll_def, bij_def, lepoll_def] |
5137 | 82 |
"X eqpoll Y ==> X lepoll Y"; |
2875 | 83 |
by (Blast_tac 1); |
760 | 84 |
qed "eqpoll_imp_lepoll"; |
435 | 85 |
|
5067 | 86 |
Goalw [lepoll_def] |
5137 | 87 |
"[| X lepoll Y; Y lepoll Z |] ==> X lepoll Z"; |
4091 | 88 |
by (blast_tac (claset() addIs [comp_inj]) 1); |
760 | 89 |
qed "lepoll_trans"; |
435 | 90 |
|
91 |
(*Asymmetry law*) |
|
5067 | 92 |
Goalw [lepoll_def,eqpoll_def] |
5137 | 93 |
"[| X lepoll Y; Y lepoll X |] ==> X eqpoll Y"; |
435 | 94 |
by (REPEAT (etac exE 1)); |
95 |
by (rtac schroeder_bernstein 1); |
|
96 |
by (REPEAT (assume_tac 1)); |
|
760 | 97 |
qed "eqpollI"; |
435 | 98 |
|
5268 | 99 |
val [major,minor] = Goal |
435 | 100 |
"[| X eqpoll Y; [| X lepoll Y; Y lepoll X |] ==> P |] ==> P"; |
437 | 101 |
by (rtac minor 1); |
435 | 102 |
by (REPEAT (resolve_tac [major, eqpoll_imp_lepoll, eqpoll_sym] 1)); |
760 | 103 |
qed "eqpollE"; |
435 | 104 |
|
5067 | 105 |
Goal "X eqpoll Y <-> X lepoll Y & Y lepoll X"; |
4091 | 106 |
by (blast_tac (claset() addIs [eqpollI] addSEs [eqpollE]) 1); |
760 | 107 |
qed "eqpoll_iff"; |
435 | 108 |
|
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
109 |
Goalw [lepoll_def, inj_def] "A lepoll 0 ==> A = 0"; |
4091 | 110 |
by (blast_tac (claset() addDs [apply_type]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
111 |
qed "lepoll_0_is_0"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
112 |
|
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
113 |
(*0 lepoll Y*) |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
114 |
bind_thm ("empty_lepollI", empty_subsetI RS subset_imp_lepoll); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
115 |
|
5067 | 116 |
Goal "A lepoll 0 <-> A=0"; |
4091 | 117 |
by (blast_tac (claset() addIs [lepoll_0_is_0, lepoll_refl]) 1); |
1609 | 118 |
qed "lepoll_0_iff"; |
119 |
||
5067 | 120 |
Goalw [lepoll_def] |
5137 | 121 |
"[| A lepoll B; C lepoll D; B Int D = 0 |] ==> A Un C lepoll B Un D"; |
4091 | 122 |
by (blast_tac (claset() addIs [inj_disjoint_Un]) 1); |
1709 | 123 |
qed "Un_lepoll_Un"; |
124 |
||
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
125 |
(*A eqpoll 0 ==> A=0*) |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
126 |
bind_thm ("eqpoll_0_is_0", eqpoll_imp_lepoll RS lepoll_0_is_0); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
127 |
|
5067 | 128 |
Goal "A eqpoll 0 <-> A=0"; |
4091 | 129 |
by (blast_tac (claset() addIs [eqpoll_0_is_0, eqpoll_refl]) 1); |
1609 | 130 |
qed "eqpoll_0_iff"; |
131 |
||
5067 | 132 |
Goalw [eqpoll_def] |
9099
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
133 |
"[| A eqpoll B; C eqpoll D; A Int C = 0; B Int D = 0 |] \ |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
134 |
\ ==> A Un C eqpoll B Un D"; |
4091 | 135 |
by (blast_tac (claset() addIs [bij_disjoint_Un]) 1); |
1609 | 136 |
qed "eqpoll_disjoint_Un"; |
137 |
||
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
138 |
|
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
139 |
(*** lesspoll: contributions by Krzysztof Grabczewski ***) |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
140 |
|
5137 | 141 |
Goalw [lesspoll_def] "A lesspoll B ==> A lepoll B"; |
2875 | 142 |
by (Blast_tac 1); |
1609 | 143 |
qed "lesspoll_imp_lepoll"; |
144 |
||
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
145 |
Goalw [lepoll_def] "[| A lepoll B; well_ord(B,r) |] ==> EX s. well_ord(A,s)"; |
4091 | 146 |
by (blast_tac (claset() addIs [well_ord_rvimage]) 1); |
1609 | 147 |
qed "lepoll_well_ord"; |
148 |
||
5067 | 149 |
Goalw [lesspoll_def] "A lepoll B <-> A lesspoll B | A eqpoll B"; |
4091 | 150 |
by (blast_tac (claset() addSIs [eqpollI] addSEs [eqpollE]) 1); |
1609 | 151 |
qed "lepoll_iff_leqpoll"; |
152 |
||
5067 | 153 |
Goalw [inj_def, surj_def] |
5137 | 154 |
"[| f : inj(A, succ(m)); f ~: surj(A, succ(m)) |] ==> EX f. f:inj(A,m)"; |
4091 | 155 |
by (safe_tac (claset_of ZF.thy)); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
156 |
by (swap_res_tac [exI] 1); |
6068 | 157 |
by (res_inst_tac [("a", "lam z:A. if f`z=m then y else f`z")] CollectI 1); |
4091 | 158 |
by (best_tac (claset() addSIs [if_type RS lam_type] |
3016 | 159 |
addEs [apply_funtype RS succE]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
160 |
(*Proving it's injective*) |
5137 | 161 |
by (Asm_simp_tac 1); |
4091 | 162 |
by (blast_tac (claset() delrules [equalityI]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
163 |
qed "inj_not_surj_succ"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
164 |
|
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
165 |
(** Variations on transitivity **) |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
166 |
|
5067 | 167 |
Goalw [lesspoll_def] |
5137 | 168 |
"[| X lesspoll Y; Y lesspoll Z |] ==> X lesspoll Z"; |
4091 | 169 |
by (blast_tac (claset() addSEs [eqpollE] addIs [eqpollI, lepoll_trans]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
170 |
qed "lesspoll_trans"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
171 |
|
5067 | 172 |
Goalw [lesspoll_def] |
5137 | 173 |
"[| X lesspoll Y; Y lepoll Z |] ==> X lesspoll Z"; |
4091 | 174 |
by (blast_tac (claset() addSEs [eqpollE] addIs [eqpollI, lepoll_trans]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
175 |
qed "lesspoll_lepoll_lesspoll"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
176 |
|
5067 | 177 |
Goalw [lesspoll_def] |
5137 | 178 |
"[| X lesspoll Y; Z lepoll X |] ==> Z lesspoll Y"; |
4091 | 179 |
by (blast_tac (claset() addSEs [eqpollE] addIs [eqpollI, lepoll_trans]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
180 |
qed "lepoll_lesspoll_lesspoll"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
181 |
|
435 | 182 |
|
183 |
(** LEAST -- the least number operator [from HOL/Univ.ML] **) |
|
184 |
||
5268 | 185 |
val [premP,premOrd,premNot] = Goalw [Least_def] |
3840 | 186 |
"[| P(i); Ord(i); !!x. x<i ==> ~P(x) |] ==> (LEAST x. P(x)) = i"; |
435 | 187 |
by (rtac the_equality 1); |
4091 | 188 |
by (blast_tac (claset() addSIs [premP,premOrd,premNot]) 1); |
435 | 189 |
by (REPEAT (etac conjE 1)); |
437 | 190 |
by (etac (premOrd RS Ord_linear_lt) 1); |
4091 | 191 |
by (ALLGOALS (blast_tac (claset() addSIs [premP] addSDs [premNot]))); |
760 | 192 |
qed "Least_equality"; |
435 | 193 |
|
5137 | 194 |
Goal "[| P(i); Ord(i) |] ==> P(LEAST x. P(x))"; |
435 | 195 |
by (etac rev_mp 1); |
196 |
by (trans_ind_tac "i" [] 1); |
|
197 |
by (rtac impI 1); |
|
198 |
by (rtac classical 1); |
|
2033 | 199 |
by (EVERY1 [stac Least_equality, assume_tac, assume_tac]); |
435 | 200 |
by (assume_tac 2); |
4091 | 201 |
by (blast_tac (claset() addSEs [ltE]) 1); |
760 | 202 |
qed "LeastI"; |
435 | 203 |
|
204 |
(*Proof is almost identical to the one above!*) |
|
5137 | 205 |
Goal "[| P(i); Ord(i) |] ==> (LEAST x. P(x)) le i"; |
435 | 206 |
by (etac rev_mp 1); |
207 |
by (trans_ind_tac "i" [] 1); |
|
208 |
by (rtac impI 1); |
|
209 |
by (rtac classical 1); |
|
2033 | 210 |
by (EVERY1 [stac Least_equality, assume_tac, assume_tac]); |
435 | 211 |
by (etac le_refl 2); |
4091 | 212 |
by (blast_tac (claset() addEs [ltE] addIs [leI, ltI, lt_trans1]) 1); |
760 | 213 |
qed "Least_le"; |
435 | 214 |
|
215 |
(*LEAST really is the smallest*) |
|
5137 | 216 |
Goal "[| P(i); i < (LEAST x. P(x)) |] ==> Q"; |
437 | 217 |
by (rtac (Least_le RSN (2,lt_trans2) RS lt_irrefl) 1); |
435 | 218 |
by (REPEAT (eresolve_tac [asm_rl, ltE] 1)); |
760 | 219 |
qed "less_LeastE"; |
435 | 220 |
|
1031 | 221 |
(*Easier to apply than LeastI: conclusion has only one occurrence of P*) |
9907 | 222 |
val prems = goal (the_context ()) |
9211 | 223 |
"[| P(i); Ord(i); !!j. P(j) ==> Q(j) |] ==> Q(LEAST j. P(j))"; |
224 |
by (resolve_tac prems 1); |
|
225 |
by (rtac LeastI 1); |
|
226 |
by (resolve_tac prems 1); |
|
227 |
by (resolve_tac prems 1) ; |
|
228 |
qed "LeastI2"; |
|
845
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
229 |
|
437 | 230 |
(*If there is no such P then LEAST is vacuously 0*) |
5067 | 231 |
Goalw [Least_def] |
5137 | 232 |
"[| ~ (EX i. Ord(i) & P(i)) |] ==> (LEAST x. P(x)) = 0"; |
437 | 233 |
by (rtac the_0 1); |
2875 | 234 |
by (Blast_tac 1); |
760 | 235 |
qed "Least_0"; |
437 | 236 |
|
5067 | 237 |
Goal "Ord(LEAST x. P(x))"; |
437 | 238 |
by (excluded_middle_tac "EX i. Ord(i) & P(i)" 1); |
4152 | 239 |
by Safe_tac; |
437 | 240 |
by (rtac (Least_le RS ltE) 2); |
435 | 241 |
by (REPEAT_SOME assume_tac); |
437 | 242 |
by (etac (Least_0 RS ssubst) 1); |
243 |
by (rtac Ord_0 1); |
|
760 | 244 |
qed "Ord_Least"; |
435 | 245 |
|
246 |
||
247 |
(** Basic properties of cardinals **) |
|
248 |
||
249 |
(*Not needed for simplification, but helpful below*) |
|
5268 | 250 |
val prems = Goal "(!!y. P(y) <-> Q(y)) ==> (LEAST x. P(x)) = (LEAST x. Q(x))"; |
4091 | 251 |
by (simp_tac (simpset() addsimps prems) 1); |
760 | 252 |
qed "Least_cong"; |
435 | 253 |
|
1609 | 254 |
(*Need AC to get X lepoll Y ==> |X| le |Y|; see well_ord_lepoll_imp_Card_le |
255 |
Converse also requires AC, but see well_ord_cardinal_eqE*) |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5137
diff
changeset
|
256 |
Goalw [eqpoll_def,cardinal_def] "X eqpoll Y ==> |X| = |Y|"; |
437 | 257 |
by (rtac Least_cong 1); |
4091 | 258 |
by (blast_tac (claset() addIs [comp_bij, bij_converse_bij]) 1); |
760 | 259 |
qed "cardinal_cong"; |
435 | 260 |
|
261 |
(*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*) |
|
5067 | 262 |
Goalw [cardinal_def] |
5137 | 263 |
"well_ord(A,r) ==> |A| eqpoll A"; |
437 | 264 |
by (rtac LeastI 1); |
265 |
by (etac Ord_ordertype 2); |
|
845
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
266 |
by (etac (ordermap_bij RS bij_converse_bij RS bij_imp_eqpoll) 1); |
760 | 267 |
qed "well_ord_cardinal_eqpoll"; |
435 | 268 |
|
1609 | 269 |
(* Ord(A) ==> |A| eqpoll A *) |
803
4c8333ab3eae
changed useless "qed" calls for lemmas back to uses of "result",
lcp
parents:
792
diff
changeset
|
270 |
bind_thm ("Ord_cardinal_eqpoll", well_ord_Memrel RS well_ord_cardinal_eqpoll); |
435 | 271 |
|
5268 | 272 |
Goal "[| well_ord(X,r); well_ord(Y,s); |X| = |Y| |] ==> X eqpoll Y"; |
437 | 273 |
by (rtac (eqpoll_sym RS eqpoll_trans) 1); |
274 |
by (etac well_ord_cardinal_eqpoll 1); |
|
4091 | 275 |
by (asm_simp_tac (simpset() addsimps [well_ord_cardinal_eqpoll]) 1); |
760 | 276 |
qed "well_ord_cardinal_eqE"; |
435 | 277 |
|
5268 | 278 |
Goal "[| well_ord(X,r); well_ord(Y,s) |] ==> |X| = |Y| <-> X eqpoll Y"; |
4091 | 279 |
by (blast_tac (claset() addIs [cardinal_cong, well_ord_cardinal_eqE]) 1); |
1609 | 280 |
qed "well_ord_cardinal_eqpoll_iff"; |
281 |
||
435 | 282 |
|
283 |
(** Observations from Kunen, page 28 **) |
|
284 |
||
5137 | 285 |
Goalw [cardinal_def] "Ord(i) ==> |i| le i"; |
437 | 286 |
by (etac (eqpoll_refl RS Least_le) 1); |
760 | 287 |
qed "Ord_cardinal_le"; |
435 | 288 |
|
5137 | 289 |
Goalw [Card_def] "Card(K) ==> |K| = K"; |
437 | 290 |
by (etac sym 1); |
760 | 291 |
qed "Card_cardinal_eq"; |
435 | 292 |
|
845
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
293 |
(* Could replace the ~(j eqpoll i) by ~(i lepoll j) *) |
5268 | 294 |
val prems = Goalw [Card_def,cardinal_def] |
435 | 295 |
"[| Ord(i); !!j. j<i ==> ~(j eqpoll i) |] ==> Card(i)"; |
2033 | 296 |
by (stac Least_equality 1); |
435 | 297 |
by (REPEAT (ares_tac ([refl,eqpoll_refl]@prems) 1)); |
760 | 298 |
qed "CardI"; |
435 | 299 |
|
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
300 |
Goalw [Card_def, cardinal_def] "Card(i) ==> Ord(i)"; |
437 | 301 |
by (etac ssubst 1); |
302 |
by (rtac Ord_Least 1); |
|
760 | 303 |
qed "Card_is_Ord"; |
435 | 304 |
|
5137 | 305 |
Goal "Card(K) ==> K le |K|"; |
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
306 |
by (asm_simp_tac (simpset() addsimps [Card_is_Ord, Card_cardinal_eq]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
765
diff
changeset
|
307 |
qed "Card_cardinal_le"; |
765 | 308 |
|
5067 | 309 |
Goalw [cardinal_def] "Ord(|A|)"; |
437 | 310 |
by (rtac Ord_Least 1); |
760 | 311 |
qed "Ord_cardinal"; |
435 | 312 |
|
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
313 |
Addsimps [Ord_cardinal]; |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
314 |
AddSIs [Ord_cardinal]; |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
315 |
|
845
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
316 |
(*The cardinals are the initial ordinals*) |
5067 | 317 |
Goal "Card(K) <-> Ord(K) & (ALL j. j<K --> ~ j eqpoll K)"; |
4091 | 318 |
by (safe_tac (claset() addSIs [CardI, Card_is_Ord])); |
2875 | 319 |
by (Blast_tac 2); |
845
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
320 |
by (rewrite_goals_tac [Card_def, cardinal_def]); |
1461 | 321 |
by (rtac less_LeastE 1); |
322 |
by (etac subst 2); |
|
845
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
323 |
by (ALLGOALS assume_tac); |
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
324 |
qed "Card_iff_initial"; |
825e96b87ef7
Added Krzysztof's theorem LeastI2. Proof of sum_eqpoll_cong
lcp
parents:
833
diff
changeset
|
325 |
|
5137 | 326 |
Goalw [lesspoll_def] "[| Card(a); i<a |] ==> i lesspoll a"; |
1609 | 327 |
by (dresolve_tac [Card_iff_initial RS iffD1] 1); |
4091 | 328 |
by (blast_tac (claset() addSIs [leI RS le_imp_lepoll]) 1); |
1609 | 329 |
qed "lt_Card_imp_lesspoll"; |
330 |
||
5067 | 331 |
Goal "Card(0)"; |
437 | 332 |
by (rtac (Ord_0 RS CardI) 1); |
4091 | 333 |
by (blast_tac (claset() addSEs [ltE]) 1); |
760 | 334 |
qed "Card_0"; |
437 | 335 |
|
9907 | 336 |
val [premK,premL] = goal (the_context ()) |
522 | 337 |
"[| Card(K); Card(L) |] ==> Card(K Un L)"; |
338 |
by (rtac ([premK RS Card_is_Ord, premL RS Card_is_Ord] MRS Ord_linear_le) 1); |
|
339 |
by (asm_simp_tac |
|
4091 | 340 |
(simpset() addsimps [premL, le_imp_subset, subset_Un_iff RS iffD1]) 1); |
522 | 341 |
by (asm_simp_tac |
4091 | 342 |
(simpset() addsimps [premK, le_imp_subset, subset_Un_iff2 RS iffD1]) 1); |
760 | 343 |
qed "Card_Un"; |
522 | 344 |
|
345 |
(*Infinite unions of cardinals? See Devlin, Lemma 6.7, page 98*) |
|
346 |
||
5067 | 347 |
Goalw [cardinal_def] "Card(|A|)"; |
437 | 348 |
by (excluded_middle_tac "EX i. Ord(i) & i eqpoll A" 1); |
349 |
by (etac (Least_0 RS ssubst) 1 THEN rtac Card_0 1); |
|
350 |
by (rtac (Ord_Least RS CardI) 1); |
|
4152 | 351 |
by Safe_tac; |
437 | 352 |
by (rtac less_LeastE 1); |
353 |
by (assume_tac 2); |
|
354 |
by (etac eqpoll_trans 1); |
|
355 |
by (REPEAT (ares_tac [LeastI] 1)); |
|
760 | 356 |
qed "Card_cardinal"; |
437 | 357 |
|
435 | 358 |
(*Kunen's Lemma 10.5*) |
5137 | 359 |
Goal "[| |i| le j; j le i |] ==> |j| = |i|"; |
437 | 360 |
by (rtac (eqpollI RS cardinal_cong) 1); |
1609 | 361 |
by (etac le_imp_lepoll 1); |
437 | 362 |
by (rtac lepoll_trans 1); |
1609 | 363 |
by (etac le_imp_lepoll 2); |
437 | 364 |
by (rtac (eqpoll_sym RS eqpoll_imp_lepoll) 1); |
365 |
by (rtac Ord_cardinal_eqpoll 1); |
|
435 | 366 |
by (REPEAT (eresolve_tac [ltE, Ord_succD] 1)); |
760 | 367 |
qed "cardinal_eq_lemma"; |
435 | 368 |
|
5137 | 369 |
Goal "i le j ==> |i| le |j|"; |
435 | 370 |
by (res_inst_tac [("i","|i|"),("j","|j|")] Ord_linear_le 1); |
371 |
by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI])); |
|
437 | 372 |
by (rtac cardinal_eq_lemma 1); |
373 |
by (assume_tac 2); |
|
374 |
by (etac le_trans 1); |
|
375 |
by (etac ltE 1); |
|
376 |
by (etac Ord_cardinal_le 1); |
|
760 | 377 |
qed "cardinal_mono"; |
435 | 378 |
|
379 |
(*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*) |
|
5137 | 380 |
Goal "[| |i| < |j|; Ord(i); Ord(j) |] ==> i < j"; |
437 | 381 |
by (rtac Ord_linear2 1); |
435 | 382 |
by (REPEAT_SOME assume_tac); |
437 | 383 |
by (etac (lt_trans2 RS lt_irrefl) 1); |
384 |
by (etac cardinal_mono 1); |
|
760 | 385 |
qed "cardinal_lt_imp_lt"; |
435 | 386 |
|
5137 | 387 |
Goal "[| |i| < K; Ord(i); Card(K) |] ==> i < K"; |
4091 | 388 |
by (asm_simp_tac (simpset() addsimps |
1461 | 389 |
[cardinal_lt_imp_lt, Card_is_Ord, Card_cardinal_eq]) 1); |
760 | 390 |
qed "Card_lt_imp_lt"; |
435 | 391 |
|
5137 | 392 |
Goal "[| Ord(i); Card(K) |] ==> (|i| < K) <-> (i < K)"; |
4091 | 393 |
by (blast_tac (claset() addIs [Card_lt_imp_lt, Ord_cardinal_le RS lt_trans1]) 1); |
760 | 394 |
qed "Card_lt_iff"; |
484 | 395 |
|
5137 | 396 |
Goal "[| Ord(i); Card(K) |] ==> (K le |i|) <-> (K le i)"; |
4091 | 397 |
by (asm_simp_tac (simpset() addsimps |
1461 | 398 |
[Card_lt_iff, Card_is_Ord, Ord_cardinal, |
399 |
not_lt_iff_le RS iff_sym]) 1); |
|
760 | 400 |
qed "Card_le_iff"; |
484 | 401 |
|
1609 | 402 |
(*Can use AC or finiteness to discharge first premise*) |
5268 | 403 |
Goal "[| well_ord(B,r); A lepoll B |] ==> |A| le |B|"; |
1609 | 404 |
by (res_inst_tac [("i","|A|"),("j","|B|")] Ord_linear_le 1); |
405 |
by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI])); |
|
406 |
by (rtac (eqpollI RS cardinal_cong) 1 THEN assume_tac 1); |
|
407 |
by (rtac lepoll_trans 1); |
|
408 |
by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym RS eqpoll_imp_lepoll) 1); |
|
409 |
by (assume_tac 1); |
|
410 |
by (etac (le_imp_lepoll RS lepoll_trans) 1); |
|
411 |
by (rtac eqpoll_imp_lepoll 1); |
|
412 |
by (rewtac lepoll_def); |
|
413 |
by (etac exE 1); |
|
414 |
by (rtac well_ord_cardinal_eqpoll 1); |
|
415 |
by (etac well_ord_rvimage 1); |
|
416 |
by (assume_tac 1); |
|
417 |
qed "well_ord_lepoll_imp_Card_le"; |
|
418 |
||
419 |
||
5137 | 420 |
Goal "[| A lepoll i; Ord(i) |] ==> |A| le i"; |
1623 | 421 |
by (rtac le_trans 1); |
422 |
by (etac (well_ord_Memrel RS well_ord_lepoll_imp_Card_le) 1); |
|
423 |
by (assume_tac 1); |
|
424 |
by (etac Ord_cardinal_le 1); |
|
1609 | 425 |
qed "lepoll_cardinal_le"; |
426 |
||
9099
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
427 |
Goal "[| A lepoll i; Ord(i) |] ==> |A| eqpoll A"; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
428 |
by (blast_tac (claset() addIs [lepoll_cardinal_le, well_ord_Memrel, |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
429 |
well_ord_cardinal_eqpoll] |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
430 |
addSDs [lepoll_well_ord]) 1); |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
431 |
qed "lepoll_Ord_imp_eqpoll"; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
432 |
|
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
433 |
Goalw [lesspoll_def] |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
434 |
"[| A lesspoll i; Ord(i) |] ==> |A| eqpoll A"; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
435 |
by (blast_tac (claset() addIs [lepoll_Ord_imp_eqpoll]) 1); |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
436 |
qed "lesspoll_imp_eqpoll"; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
437 |
|
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
438 |
Goalw [lesspoll_def] |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
439 |
"[| A lesspoll i; Ord(i) |] ==> |A| eqpoll A"; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
440 |
by (blast_tac (claset() addIs [lepoll_Ord_imp_eqpoll]) 1); |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
441 |
qed "lesspoll_imp_eqpoll"; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
442 |
|
435 | 443 |
|
444 |
(*** The finite cardinals ***) |
|
445 |
||
5067 | 446 |
Goalw [lepoll_def, inj_def] |
5137 | 447 |
"[| cons(u,A) lepoll cons(v,B); u~:A; v~:B |] ==> A lepoll B"; |
4152 | 448 |
by Safe_tac; |
6068 | 449 |
by (res_inst_tac [("x", "lam x:A. if f`x=v then f`u else f`x")] exI 1); |
437 | 450 |
by (rtac CollectI 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
451 |
(*Proving it's in the function space A->B*) |
437 | 452 |
by (rtac (if_type RS lam_type) 1); |
9173 | 453 |
by (blast_tac (claset() addDs [apply_funtype]) 1); |
454 |
by (blast_tac (claset() addSEs [mem_irrefl] addDs [apply_funtype]) 1); |
|
435 | 455 |
(*Proving it's injective*) |
5137 | 456 |
by (Asm_simp_tac 1); |
2875 | 457 |
by (Blast_tac 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
458 |
qed "cons_lepoll_consD"; |
435 | 459 |
|
5268 | 460 |
Goal "[| cons(u,A) eqpoll cons(v,B); u~:A; v~:B |] ==> A eqpoll B"; |
4091 | 461 |
by (asm_full_simp_tac (simpset() addsimps [eqpoll_iff]) 1); |
462 |
by (blast_tac (claset() addIs [cons_lepoll_consD]) 1); |
|
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
463 |
qed "cons_eqpoll_consD"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
464 |
|
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
465 |
(*Lemma suggested by Mike Fourman*) |
5137 | 466 |
Goalw [succ_def] "succ(m) lepoll succ(n) ==> m lepoll n"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
467 |
by (etac cons_lepoll_consD 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
468 |
by (REPEAT (rtac mem_not_refl 1)); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
469 |
qed "succ_lepoll_succD"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
470 |
|
5268 | 471 |
Goal "m:nat ==> ALL n: nat. m lepoll n --> m le n"; |
9683 | 472 |
by (nat_ind_tac "m" [] 1); (*induct_tac isn't available yet*) |
4091 | 473 |
by (blast_tac (claset() addSIs [nat_0_le]) 1); |
437 | 474 |
by (rtac ballI 1); |
435 | 475 |
by (eres_inst_tac [("n","n")] natE 1); |
9683 | 476 |
by (asm_simp_tac (simpset() addsimps [lepoll_def, inj_def]) 1); |
4091 | 477 |
by (blast_tac (claset() addSIs [succ_leI] addSDs [succ_lepoll_succD]) 1); |
6112 | 478 |
qed_spec_mp "nat_lepoll_imp_le"; |
435 | 479 |
|
5268 | 480 |
Goal "[| m:nat; n: nat |] ==> m eqpoll n <-> m = n"; |
437 | 481 |
by (rtac iffI 1); |
4091 | 482 |
by (asm_simp_tac (simpset() addsimps [eqpoll_refl]) 2); |
483 |
by (blast_tac (claset() addIs [nat_lepoll_imp_le, le_anti_sym] |
|
9173 | 484 |
addSEs [eqpollE]) 1); |
760 | 485 |
qed "nat_eqpoll_iff"; |
435 | 486 |
|
1609 | 487 |
(*The object of all this work: every natural number is a (finite) cardinal*) |
5067 | 488 |
Goalw [Card_def,cardinal_def] |
5137 | 489 |
"n: nat ==> Card(n)"; |
2033 | 490 |
by (stac Least_equality 1); |
435 | 491 |
by (REPEAT_FIRST (ares_tac [eqpoll_refl, nat_into_Ord, refl])); |
4091 | 492 |
by (asm_simp_tac (simpset() addsimps [lt_nat_in_nat RS nat_eqpoll_iff]) 1); |
493 |
by (blast_tac (claset() addSEs [lt_irrefl]) 1); |
|
760 | 494 |
qed "nat_into_Card"; |
435 | 495 |
|
496 |
(*Part of Kunen's Lemma 10.6*) |
|
5137 | 497 |
Goal "[| succ(n) lepoll n; n:nat |] ==> P"; |
437 | 498 |
by (rtac (nat_lepoll_imp_le RS lt_irrefl) 1); |
435 | 499 |
by (REPEAT (ares_tac [nat_succI] 1)); |
760 | 500 |
qed "succ_lepoll_natE"; |
435 | 501 |
|
502 |
||
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
503 |
(** lepoll, lesspoll and natural numbers **) |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
504 |
|
5067 | 505 |
Goalw [lesspoll_def] |
9099
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
506 |
"[| A lepoll m; m:nat |] ==> A lesspoll succ(m)"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
507 |
by (rtac conjI 1); |
4091 | 508 |
by (blast_tac (claset() addIs [subset_imp_lepoll RSN (2,lepoll_trans)]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
509 |
by (rtac notI 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
510 |
by (dresolve_tac [eqpoll_sym RS eqpoll_imp_lepoll] 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
511 |
by (dtac lepoll_trans 1 THEN assume_tac 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
512 |
by (etac succ_lepoll_natE 1 THEN assume_tac 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
513 |
qed "lepoll_imp_lesspoll_succ"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
514 |
|
5067 | 515 |
Goalw [lesspoll_def, lepoll_def, eqpoll_def, bij_def] |
9099
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
516 |
"[| A lesspoll succ(m); m:nat |] ==> A lepoll m"; |
3736
39ee3d31cfbc
Much tidying including step_tac -> clarify_tac or safe_tac; sometimes
paulson
parents:
3016
diff
changeset
|
517 |
by (Clarify_tac 1); |
4091 | 518 |
by (blast_tac (claset() addSIs [inj_not_surj_succ]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
519 |
qed "lesspoll_succ_imp_lepoll"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
520 |
|
5137 | 521 |
Goal "m:nat ==> A lesspoll succ(m) <-> A lepoll m"; |
4091 | 522 |
by (blast_tac (claset() addSIs [lepoll_imp_lesspoll_succ, |
9099
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
523 |
lesspoll_succ_imp_lepoll]) 1); |
1031 | 524 |
qed "lesspoll_succ_iff"; |
525 |
||
9099
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
526 |
Goal "[| A lepoll succ(m); m:nat |] ==> A lepoll m | A eqpoll succ(m)"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
527 |
by (rtac disjCI 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
528 |
by (rtac lesspoll_succ_imp_lepoll 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
529 |
by (assume_tac 2); |
4091 | 530 |
by (asm_simp_tac (simpset() addsimps [lesspoll_def]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
531 |
qed "lepoll_succ_disj"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
532 |
|
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
533 |
Goalw [lesspoll_def] "[| A lesspoll i; Ord(i) |] ==> |A| < i"; |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
534 |
by (Clarify_tac 1); |
8183 | 535 |
by (ftac lepoll_cardinal_le 1); |
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
536 |
by (assume_tac 1); |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
537 |
by (blast_tac (claset() addIs [well_ord_Memrel, |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
538 |
well_ord_cardinal_eqpoll RS eqpoll_sym] |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
539 |
addDs [lepoll_well_ord] |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
540 |
addSEs [leE]) 1); |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
541 |
qed "lesspoll_cardinal_lt"; |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
542 |
|
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
543 |
|
435 | 544 |
(*** The first infinite cardinal: Omega, or nat ***) |
545 |
||
546 |
(*This implies Kunen's Lemma 10.6*) |
|
5137 | 547 |
Goal "[| n<i; n:nat |] ==> ~ i lepoll n"; |
437 | 548 |
by (rtac notI 1); |
435 | 549 |
by (rtac succ_lepoll_natE 1 THEN assume_tac 2); |
550 |
by (rtac lepoll_trans 1 THEN assume_tac 2); |
|
437 | 551 |
by (etac ltE 1); |
435 | 552 |
by (REPEAT (ares_tac [Ord_succ_subsetI RS subset_imp_lepoll] 1)); |
760 | 553 |
qed "lt_not_lepoll"; |
435 | 554 |
|
5137 | 555 |
Goal "[| Ord(i); n:nat |] ==> i eqpoll n <-> i=n"; |
437 | 556 |
by (rtac iffI 1); |
4091 | 557 |
by (asm_simp_tac (simpset() addsimps [eqpoll_refl]) 2); |
435 | 558 |
by (rtac Ord_linear_lt 1); |
559 |
by (REPEAT_SOME (eresolve_tac [asm_rl, nat_into_Ord])); |
|
560 |
by (etac (lt_nat_in_nat RS nat_eqpoll_iff RS iffD1) 1 THEN |
|
561 |
REPEAT (assume_tac 1)); |
|
562 |
by (rtac (lt_not_lepoll RS notE) 1 THEN (REPEAT (assume_tac 1))); |
|
437 | 563 |
by (etac eqpoll_imp_lepoll 1); |
760 | 564 |
qed "Ord_nat_eqpoll_iff"; |
435 | 565 |
|
5067 | 566 |
Goalw [Card_def,cardinal_def] "Card(nat)"; |
2033 | 567 |
by (stac Least_equality 1); |
437 | 568 |
by (REPEAT_FIRST (ares_tac [eqpoll_refl, Ord_nat, refl])); |
569 |
by (etac ltE 1); |
|
4091 | 570 |
by (asm_simp_tac (simpset() addsimps [eqpoll_iff, lt_not_lepoll, ltI]) 1); |
760 | 571 |
qed "Card_nat"; |
435 | 572 |
|
437 | 573 |
(*Allows showing that |i| is a limit cardinal*) |
5137 | 574 |
Goal "nat le i ==> nat le |i|"; |
437 | 575 |
by (rtac (Card_nat RS Card_cardinal_eq RS subst) 1); |
576 |
by (etac cardinal_mono 1); |
|
760 | 577 |
qed "nat_le_cardinal"; |
437 | 578 |
|
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
579 |
|
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
580 |
(*** Towards Cardinal Arithmetic ***) |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
581 |
(** Congruence laws for successor, cardinal addition and multiplication **) |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
582 |
|
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
583 |
(*Congruence law for cons under equipollence*) |
5067 | 584 |
Goalw [lepoll_def] |
5137 | 585 |
"[| A lepoll B; b ~: B |] ==> cons(a,A) lepoll cons(b,B)"; |
4152 | 586 |
by Safe_tac; |
6068 | 587 |
by (res_inst_tac [("x", "lam y: cons(a,A). if y=a then b else f`y")] exI 1); |
588 |
by (res_inst_tac [("d","%z. if z:B then converse(f)`z else a")] |
|
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
589 |
lam_injective 1); |
4091 | 590 |
by (asm_simp_tac (simpset() addsimps [inj_is_fun RS apply_type, cons_iff] |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
591 |
setloop etac consE') 1); |
6176
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
paulson
parents:
6112
diff
changeset
|
592 |
by (asm_simp_tac (simpset() addsimps [inj_is_fun RS apply_type] |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
593 |
setloop etac consE') 1); |
760 | 594 |
qed "cons_lepoll_cong"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
595 |
|
5268 | 596 |
Goal "[| A eqpoll B; a ~: A; b ~: B |] ==> cons(a,A) eqpoll cons(b,B)"; |
4091 | 597 |
by (asm_full_simp_tac (simpset() addsimps [eqpoll_iff, cons_lepoll_cong]) 1); |
760 | 598 |
qed "cons_eqpoll_cong"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
599 |
|
5268 | 600 |
Goal "[| a ~: A; b ~: B |] ==> \ |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
601 |
\ cons(a,A) lepoll cons(b,B) <-> A lepoll B"; |
4091 | 602 |
by (blast_tac (claset() addIs [cons_lepoll_cong, cons_lepoll_consD]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
603 |
qed "cons_lepoll_cons_iff"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
604 |
|
5268 | 605 |
Goal "[| a ~: A; b ~: B |] ==> \ |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
606 |
\ cons(a,A) eqpoll cons(b,B) <-> A eqpoll B"; |
4091 | 607 |
by (blast_tac (claset() addIs [cons_eqpoll_cong, cons_eqpoll_consD]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
608 |
qed "cons_eqpoll_cons_iff"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
609 |
|
5067 | 610 |
Goalw [succ_def] "{a} eqpoll 1"; |
4091 | 611 |
by (blast_tac (claset() addSIs [eqpoll_refl RS cons_eqpoll_cong]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
612 |
qed "singleton_eqpoll_1"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
613 |
|
5067 | 614 |
Goal "|{a}| = 1"; |
1609 | 615 |
by (resolve_tac [singleton_eqpoll_1 RS cardinal_cong RS trans] 1); |
4091 | 616 |
by (simp_tac (simpset() addsimps [nat_into_Card RS Card_cardinal_eq]) 1); |
1609 | 617 |
qed "cardinal_singleton"; |
618 |
||
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
619 |
(*Congruence law for succ under equipollence*) |
5067 | 620 |
Goalw [succ_def] |
5137 | 621 |
"A eqpoll B ==> succ(A) eqpoll succ(B)"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
622 |
by (REPEAT (ares_tac [cons_eqpoll_cong, mem_not_refl] 1)); |
760 | 623 |
qed "succ_eqpoll_cong"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
624 |
|
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
625 |
(*Congruence law for + under equipollence*) |
5067 | 626 |
Goalw [eqpoll_def] |
5137 | 627 |
"[| A eqpoll C; B eqpoll D |] ==> A+B eqpoll C+D"; |
4091 | 628 |
by (blast_tac (claset() addSIs [sum_bij]) 1); |
760 | 629 |
qed "sum_eqpoll_cong"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
630 |
|
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
631 |
(*Congruence law for * under equipollence*) |
5067 | 632 |
Goalw [eqpoll_def] |
5137 | 633 |
"[| A eqpoll C; B eqpoll D |] ==> A*B eqpoll C*D"; |
4091 | 634 |
by (blast_tac (claset() addSIs [prod_bij]) 1); |
760 | 635 |
qed "prod_eqpoll_cong"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
636 |
|
5067 | 637 |
Goalw [eqpoll_def] |
5137 | 638 |
"[| f: inj(A,B); A Int B = 0 |] ==> A Un (B - range(f)) eqpoll B"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
639 |
by (rtac exI 1); |
6068 | 640 |
by (res_inst_tac [("c", "%x. if x:A then f`x else x"), |
641 |
("d", "%y. if y: range(f) then converse(f)`y else y")] |
|
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
642 |
lam_bijective 1); |
4091 | 643 |
by (blast_tac (claset() addSIs [if_type, inj_is_fun RS apply_type]) 1); |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
644 |
by (asm_simp_tac |
5137 | 645 |
(simpset() addsimps [inj_converse_fun RS apply_funtype]) 1); |
6176
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
paulson
parents:
6112
diff
changeset
|
646 |
by (asm_simp_tac (simpset() addsimps [inj_is_fun RS apply_rangeI] |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
522
diff
changeset
|
647 |
setloop etac UnE') 1); |
6176
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
paulson
parents:
6112
diff
changeset
|
648 |
by (asm_simp_tac (simpset() addsimps [inj_converse_fun RS apply_funtype]) 1); |
5265
9d1d4c43c76d
Disjointness reasoning by AddEs [equals0E, sym RS equals0E]
paulson
parents:
5242
diff
changeset
|
649 |
by (Blast_tac 1); |
760 | 650 |
qed "inj_disjoint_eqpoll"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
651 |
|
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
652 |
|
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
653 |
(*** Lemmas by Krzysztof Grabczewski. New proofs using cons_lepoll_cons. |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
654 |
Could easily generalise from succ to cons. ***) |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
655 |
|
1055
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
lcp
parents:
1031
diff
changeset
|
656 |
(*If A has at most n+1 elements and a:A then A-{a} has at most n.*) |
5067 | 657 |
Goalw [succ_def] |
5137 | 658 |
"[| a:A; A lepoll succ(n) |] ==> A - {a} lepoll n"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
659 |
by (rtac cons_lepoll_consD 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
660 |
by (rtac mem_not_refl 3); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
661 |
by (eresolve_tac [cons_Diff RS ssubst] 1); |
4152 | 662 |
by Safe_tac; |
1055
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
lcp
parents:
1031
diff
changeset
|
663 |
qed "Diff_sing_lepoll"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
664 |
|
1055
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
lcp
parents:
1031
diff
changeset
|
665 |
(*If A has at least n+1 elements then A-{a} has at least n.*) |
5067 | 666 |
Goalw [succ_def] |
5137 | 667 |
"[| succ(n) lepoll A |] ==> n lepoll A - {a}"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
668 |
by (rtac cons_lepoll_consD 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
669 |
by (rtac mem_not_refl 2); |
2875 | 670 |
by (Blast_tac 2); |
4091 | 671 |
by (blast_tac (claset() addIs [subset_imp_lepoll RSN (2, lepoll_trans)]) 1); |
1055
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
lcp
parents:
1031
diff
changeset
|
672 |
qed "lepoll_Diff_sing"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
673 |
|
5137 | 674 |
Goal "[| a:A; A eqpoll succ(n) |] ==> A - {a} eqpoll n"; |
4091 | 675 |
by (blast_tac (claset() addSIs [eqpollI] addSEs [eqpollE] |
1055
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
lcp
parents:
1031
diff
changeset
|
676 |
addIs [Diff_sing_lepoll,lepoll_Diff_sing]) 1); |
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
lcp
parents:
1031
diff
changeset
|
677 |
qed "Diff_sing_eqpoll"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
678 |
|
5137 | 679 |
Goal "[| A lepoll 1; a:A |] ==> A = {a}"; |
7499 | 680 |
by (ftac Diff_sing_lepoll 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
681 |
by (assume_tac 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
682 |
by (dtac lepoll_0_is_0 1); |
4091 | 683 |
by (blast_tac (claset() addEs [equalityE]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
684 |
qed "lepoll_1_is_sing"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
685 |
|
5067 | 686 |
Goalw [lepoll_def] "A Un B lepoll A+B"; |
6068 | 687 |
by (res_inst_tac [("x", |
688 |
"lam x: A Un B. if x:A then Inl(x) else Inr(x)")] exI 1); |
|
1609 | 689 |
by (res_inst_tac [("d","%z. snd(z)")] lam_injective 1); |
6068 | 690 |
by (asm_full_simp_tac (simpset() addsimps [Inl_def, Inr_def]) 2); |
691 |
by Auto_tac; |
|
1609 | 692 |
qed "Un_lepoll_sum"; |
693 |
||
5284
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5268
diff
changeset
|
694 |
Goal "[| well_ord(X,R); well_ord(Y,S) |] ==> EX T. well_ord(X Un Y, T)"; |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5268
diff
changeset
|
695 |
by (eresolve_tac [well_ord_radd RS (Un_lepoll_sum RS lepoll_well_ord)] 1); |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5268
diff
changeset
|
696 |
by (assume_tac 1); |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5268
diff
changeset
|
697 |
qed "well_ord_Un"; |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5268
diff
changeset
|
698 |
|
5242 | 699 |
(*Krzysztof Grabczewski*) |
700 |
Goalw [eqpoll_def] "A Int B = 0 ==> A Un B eqpoll A + B"; |
|
6068 | 701 |
by (res_inst_tac [("x","lam a:A Un B. if a:A then Inl(a) else Inr(a)")] exI 1); |
5242 | 702 |
by (res_inst_tac [("d","%z. case(%x. x, %x. x, z)")] lam_bijective 1); |
5265
9d1d4c43c76d
Disjointness reasoning by AddEs [equals0E, sym RS equals0E]
paulson
parents:
5242
diff
changeset
|
703 |
by Auto_tac; |
5242 | 704 |
qed "disj_Un_eqpoll_sum"; |
705 |
||
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
706 |
|
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
707 |
(*** Finite and infinite sets ***) |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
708 |
|
5067 | 709 |
Goalw [Finite_def] "Finite(0)"; |
4091 | 710 |
by (blast_tac (claset() addSIs [eqpoll_refl, nat_0I]) 1); |
1609 | 711 |
qed "Finite_0"; |
712 |
||
5067 | 713 |
Goalw [Finite_def] |
5137 | 714 |
"[| A lepoll n; n:nat |] ==> Finite(A)"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
715 |
by (etac rev_mp 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
716 |
by (etac nat_induct 1); |
4091 | 717 |
by (blast_tac (claset() addSDs [lepoll_0_is_0] addSIs [eqpoll_refl,nat_0I]) 1); |
5137 | 718 |
by (blast_tac (claset() addSDs [lepoll_succ_disj]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
719 |
qed "lepoll_nat_imp_Finite"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
720 |
|
5067 | 721 |
Goalw [Finite_def] |
9099
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
722 |
"A lesspoll nat ==> Finite(A)"; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
723 |
by (blast_tac (claset() addDs [ltD, lesspoll_cardinal_lt, |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
724 |
lesspoll_imp_eqpoll RS eqpoll_sym]) 1);; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
725 |
qed "lesspoll_nat_is_Finite"; |
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
726 |
|
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
paulson
parents:
8183
diff
changeset
|
727 |
Goalw [Finite_def] |
5137 | 728 |
"[| Y lepoll X; Finite(X) |] ==> Finite(Y)"; |
3016 | 729 |
by (blast_tac |
4091 | 730 |
(claset() addSEs [eqpollE] |
3016 | 731 |
addIs [lepoll_trans RS |
732 |
rewrite_rule [Finite_def] lepoll_nat_imp_Finite]) 1); |
|
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
733 |
qed "lepoll_Finite"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
734 |
|
1623 | 735 |
bind_thm ("subset_Finite", subset_imp_lepoll RS lepoll_Finite); |
736 |
||
737 |
bind_thm ("Finite_Diff", Diff_subset RS subset_Finite); |
|
1609 | 738 |
|
5137 | 739 |
Goalw [Finite_def] "Finite(x) ==> Finite(cons(y,x))"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
740 |
by (excluded_middle_tac "y:x" 1); |
4091 | 741 |
by (asm_simp_tac (simpset() addsimps [cons_absorb]) 2); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
742 |
by (etac bexE 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
743 |
by (rtac bexI 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
744 |
by (etac nat_succI 2); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
745 |
by (asm_simp_tac |
4091 | 746 |
(simpset() addsimps [succ_def, cons_eqpoll_cong, mem_not_refl]) 1); |
1609 | 747 |
qed "Finite_cons"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
748 |
|
5137 | 749 |
Goalw [succ_def] "Finite(x) ==> Finite(succ(x))"; |
1609 | 750 |
by (etac Finite_cons 1); |
751 |
qed "Finite_succ"; |
|
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
752 |
|
5067 | 753 |
Goalw [Finite_def] |
5137 | 754 |
"[| Ord(i); ~ Finite(i) |] ==> nat le i"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
755 |
by (eresolve_tac [Ord_nat RSN (2,Ord_linear2)] 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
756 |
by (assume_tac 2); |
4091 | 757 |
by (blast_tac (claset() addSIs [eqpoll_refl] addSEs [ltE]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
758 |
qed "nat_le_infinite_Ord"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
759 |
|
5067 | 760 |
Goalw [Finite_def, eqpoll_def] |
5137 | 761 |
"Finite(A) ==> EX r. well_ord(A,r)"; |
4091 | 762 |
by (blast_tac (claset() addIs [well_ord_rvimage, bij_is_inj, well_ord_Memrel, |
3016 | 763 |
nat_into_Ord]) 1); |
1609 | 764 |
qed "Finite_imp_well_ord"; |
765 |
||
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
766 |
|
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
767 |
(*Krzysztof Grabczewski's proof that the converse of a finite, well-ordered |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
768 |
set is well-ordered. Proofs simplified by lcp. *) |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
769 |
|
5325
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5284
diff
changeset
|
770 |
Goal "n:nat ==> wf[n](converse(Memrel(n)))"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
771 |
by (etac nat_induct 1); |
4091 | 772 |
by (blast_tac (claset() addIs [wf_onI]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
773 |
by (rtac wf_onI 1); |
9842 | 774 |
by (asm_full_simp_tac (simpset() addsimps [wf_on_def, wf_def]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
775 |
by (excluded_middle_tac "x:Z" 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
776 |
by (dres_inst_tac [("x", "x")] bspec 2 THEN assume_tac 2); |
4091 | 777 |
by (blast_tac (claset() addEs [mem_irrefl, mem_asym]) 2); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
778 |
by (dres_inst_tac [("x", "Z")] spec 1); |
4091 | 779 |
by (Blast.depth_tac (claset()) 4 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
780 |
qed "nat_wf_on_converse_Memrel"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
781 |
|
5137 | 782 |
Goal "n:nat ==> well_ord(n,converse(Memrel(n)))"; |
9907 | 783 |
by (forward_tac [transfer (the_context ()) Ord_nat RS Ord_in_Ord RS well_ord_Memrel] 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
784 |
by (rewtac well_ord_def); |
4091 | 785 |
by (blast_tac (claset() addSIs [tot_ord_converse, |
3016 | 786 |
nat_wf_on_converse_Memrel]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
787 |
qed "nat_well_ord_converse_Memrel"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
788 |
|
5268 | 789 |
Goal "[| well_ord(A,r); \ |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
790 |
\ well_ord(ordertype(A,r), converse(Memrel(ordertype(A, r)))) \ |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
791 |
\ |] ==> well_ord(A,converse(r))"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
792 |
by (resolve_tac [well_ord_Int_iff RS iffD1] 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
793 |
by (forward_tac [ordermap_bij RS bij_is_inj RS well_ord_rvimage] 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
794 |
by (assume_tac 1); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
795 |
by (asm_full_simp_tac |
4091 | 796 |
(simpset() addsimps [rvimage_converse, converse_Int, converse_prod, |
1461 | 797 |
ordertype_ord_iso RS ord_iso_rvimage_eq]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
798 |
qed "well_ord_converse"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
799 |
|
5268 | 800 |
Goal "[| well_ord(A,r); A eqpoll n; n:nat |] ==> ordertype(A,r)=n"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
801 |
by (rtac (Ord_ordertype RS Ord_nat_eqpoll_iff RS iffD1) 1 THEN |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
802 |
REPEAT (assume_tac 1)); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
803 |
by (rtac eqpoll_trans 1 THEN assume_tac 2); |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
804 |
by (rewtac eqpoll_def); |
4091 | 805 |
by (blast_tac (claset() addSIs [ordermap_bij RS bij_converse_bij]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
806 |
qed "ordertype_eq_n"; |
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
807 |
|
5067 | 808 |
Goalw [Finite_def] |
5137 | 809 |
"[| Finite(A); well_ord(A,r) |] ==> well_ord(A,converse(r))"; |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
810 |
by (rtac well_ord_converse 1 THEN assume_tac 1); |
4091 | 811 |
by (blast_tac (claset() addDs [ordertype_eq_n] |
3016 | 812 |
addSIs [nat_well_ord_converse_Memrel]) 1); |
833
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
lcp
parents:
803
diff
changeset
|
813 |
qed "Finite_well_ord_converse"; |
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
814 |
|
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
815 |
Goalw [Finite_def] "n:nat ==> Finite(n)"; |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
816 |
by (fast_tac (claset() addSIs [eqpoll_refl]) 1); |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
817 |
qed "nat_into_Finite"; |