| author | wenzelm | 
| Wed, 28 Aug 2002 15:27:43 +0200 | |
| changeset 13545 | fcdbd6cf5f9f | 
| parent 11335 | c150861633da | 
| child 14169 | 0590de71a016 | 
| permissions | -rw-r--r-- | 
| 9422 | 1 | (* Title: HOL/Gfp.ML | 
| 923 | 2 | ID: $Id$ | 
| 1465 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 923 | 4 | Copyright 1993 University of Cambridge | 
| 5 | ||
| 5148 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5069diff
changeset | 6 | The Knaster-Tarski Theorem for greatest fixed points. | 
| 923 | 7 | *) | 
| 8 | ||
| 9 | (*** Proof of Knaster-Tarski Theorem using gfp ***) | |
| 10 | ||
| 11 | (* gfp(f) is the least upper bound of {u. u <= f(u)} *)
 | |
| 12 | ||
| 5148 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5069diff
changeset | 13 | Goalw [gfp_def] "[| X <= f(X) |] ==> X <= gfp(f)"; | 
| 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5069diff
changeset | 14 | by (etac (CollectI RS Union_upper) 1); | 
| 923 | 15 | qed "gfp_upperbound"; | 
| 16 | ||
| 10067 | 17 | val prems = Goalw [gfp_def] | 
| 923 | 18 | "[| !!u. u <= f(u) ==> u<=X |] ==> gfp(f) <= X"; | 
| 19 | by (REPEAT (ares_tac ([Union_least]@prems) 1)); | |
| 20 | by (etac CollectD 1); | |
| 21 | qed "gfp_least"; | |
| 22 | ||
| 5316 | 23 | Goal "mono(f) ==> gfp(f) <= f(gfp(f))"; | 
| 923 | 24 | by (EVERY1 [rtac gfp_least, rtac subset_trans, atac, | 
| 5316 | 25 | etac monoD, rtac gfp_upperbound, atac]); | 
| 923 | 26 | qed "gfp_lemma2"; | 
| 27 | ||
| 5316 | 28 | Goal "mono(f) ==> f(gfp(f)) <= gfp(f)"; | 
| 29 | by (EVERY1 [rtac gfp_upperbound, rtac monoD, assume_tac, | |
| 30 | etac gfp_lemma2]); | |
| 923 | 31 | qed "gfp_lemma3"; | 
| 32 | ||
| 5316 | 33 | Goal "mono(f) ==> gfp(f) = f(gfp(f))"; | 
| 34 | by (REPEAT (ares_tac [equalityI,gfp_lemma2,gfp_lemma3] 1)); | |
| 10186 | 35 | qed "gfp_unfold"; | 
| 923 | 36 | |
| 37 | (*** Coinduction rules for greatest fixed points ***) | |
| 38 | ||
| 39 | (*weak version*) | |
| 5148 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5069diff
changeset | 40 | Goal "[| a: X; X <= f(X) |] ==> a : gfp(f)"; | 
| 923 | 41 | by (rtac (gfp_upperbound RS subsetD) 1); | 
| 5148 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5069diff
changeset | 42 | by Auto_tac; | 
| 923 | 43 | qed "weak_coinduct"; | 
| 44 | ||
| 11335 | 45 | Goal "!!X. [| a : X; g`X <= f (g`X) |] ==> g a : gfp f"; | 
| 46 | by (etac (gfp_upperbound RS subsetD) 1); | |
| 47 | by (etac imageI 1); | |
| 48 | qed "weak_coinduct_image"; | |
| 49 | ||
| 10067 | 50 | Goal "[| X <= f(X Un gfp(f)); mono(f) |] ==> \ | 
| 923 | 51 | \ X Un gfp(f) <= f(X Un gfp(f))"; | 
| 10067 | 52 | by (blast_tac (claset() addDs [gfp_lemma2, mono_Un]) 1); | 
| 923 | 53 | qed "coinduct_lemma"; | 
| 54 | ||
| 55 | (*strong version, thanks to Coen & Frost*) | |
| 5148 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5069diff
changeset | 56 | Goal "[| mono(f); a: X; X <= f(X Un gfp(f)) |] ==> a : gfp(f)"; | 
| 923 | 57 | by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1); | 
| 58 | by (REPEAT (ares_tac [UnI1, Un_least] 1)); | |
| 59 | qed "coinduct"; | |
| 60 | ||
| 10067 | 61 | Goal "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))"; | 
| 62 | by (blast_tac (claset() addDs [gfp_lemma2, mono_Un]) 1); | |
| 923 | 63 | qed "gfp_fun_UnI2"; | 
| 64 | ||
| 65 | (*** Even Stronger version of coinduct [by Martin Coen] | |
| 66 | - instead of the condition X <= f(X) | |
| 67 | consider X <= (f(X) Un f(f(X)) ...) Un gfp(X) ***) | |
| 68 | ||
| 5316 | 69 | Goal "mono(f) ==> mono(%x. f(x) Un X Un B)"; | 
| 70 | by (REPEAT (ares_tac [subset_refl, monoI, Un_mono] 1 ORELSE etac monoD 1)); | |
| 923 | 71 | qed "coinduct3_mono_lemma"; | 
| 72 | ||
| 10067 | 73 | Goal "[| X <= f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |] ==> \ | 
| 3842 | 74 | \ lfp(%x. f(x) Un X Un gfp(f)) <= f(lfp(%x. f(x) Un X Un gfp(f)))"; | 
| 923 | 75 | by (rtac subset_trans 1); | 
| 10067 | 76 | by (etac (coinduct3_mono_lemma RS lfp_lemma3) 1); | 
| 923 | 77 | by (rtac (Un_least RS Un_least) 1); | 
| 78 | by (rtac subset_refl 1); | |
| 10067 | 79 | by (assume_tac 1); | 
| 10186 | 80 | by (rtac (gfp_unfold RS equalityD1 RS subset_trans) 1); | 
| 10067 | 81 | by (assume_tac 1); | 
| 82 | by (rtac monoD 1 THEN assume_tac 1); | |
| 10186 | 83 | by (stac (coinduct3_mono_lemma RS lfp_unfold) 1); | 
| 10067 | 84 | by Auto_tac; | 
| 923 | 85 | qed "coinduct3_lemma"; | 
| 86 | ||
| 5316 | 87 | Goal | 
| 88 | "[| mono(f); a:X; X <= f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"; | |
| 923 | 89 | by (rtac (coinduct3_lemma RSN (2,weak_coinduct)) 1); | 
| 10186 | 90 | by (resolve_tac [coinduct3_mono_lemma RS lfp_unfold RS ssubst] 1); | 
| 5316 | 91 | by Auto_tac; | 
| 923 | 92 | qed "coinduct3"; | 
| 93 | ||
| 94 | ||
| 10186 | 95 | (** Definition forms of gfp_unfold and coinduct, to control unfolding **) | 
| 923 | 96 | |
| 10067 | 97 | Goal "[| A==gfp(f); mono(f) |] ==> A = f(A)"; | 
| 10186 | 98 | by (auto_tac (claset() addSIs [gfp_unfold], simpset())); | 
| 99 | qed "def_gfp_unfold"; | |
| 923 | 100 | |
| 10067 | 101 | Goal "[| A==gfp(f); mono(f); a:X; X <= f(X Un A) |] ==> a: A"; | 
| 102 | by (auto_tac (claset() addSIs [coinduct], simpset())); | |
| 923 | 103 | qed "def_coinduct"; | 
| 104 | ||
| 105 | (*The version used in the induction/coinduction package*) | |
| 5316 | 106 | val prems = Goal | 
| 923 | 107 | "[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); \ | 
| 108 | \ a: X; !!z. z: X ==> P (X Un A) z |] ==> \ | |
| 109 | \ a : A"; | |
| 110 | by (rtac def_coinduct 1); | |
| 111 | by (REPEAT (ares_tac (prems @ [subsetI,CollectI]) 1)); | |
| 112 | qed "def_Collect_coinduct"; | |
| 113 | ||
| 10067 | 114 | Goal "[| A==gfp(f); mono(f); a:X; X <= f(lfp(%x. f(x) Un X Un A)) |] \ | 
| 115 | \ ==> a: A"; | |
| 116 | by (auto_tac (claset() addSIs [coinduct3], simpset())); | |
| 923 | 117 | qed "def_coinduct3"; | 
| 118 | ||
| 119 | (*Monotonicity of gfp!*) | |
| 5316 | 120 | val [prem] = Goal "[| !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"; | 
| 1465 | 121 | by (rtac (gfp_upperbound RS gfp_least) 1); | 
| 122 | by (etac (prem RSN (2,subset_trans)) 1); | |
| 923 | 123 | qed "gfp_mono"; |