2112
|
1 |
structure Tfl
|
|
2 |
:sig
|
|
3 |
structure Prim : TFL_sig
|
|
4 |
|
|
5 |
val tgoalw : theory -> thm list -> thm -> thm list
|
|
6 |
val tgoal: theory -> thm -> thm list
|
|
7 |
|
|
8 |
val WF_TAC : thm list -> tactic
|
|
9 |
|
|
10 |
val simplifier : thm -> thm
|
|
11 |
val std_postprocessor : theory
|
|
12 |
-> {induction:thm, rules:thm, TCs:term list list}
|
|
13 |
-> {induction:thm, rules:thm, nested_tcs:thm list}
|
|
14 |
|
|
15 |
val rfunction : theory
|
|
16 |
-> (thm list -> thm -> thm)
|
|
17 |
-> term -> term
|
|
18 |
-> {induction:thm, rules:thm,
|
|
19 |
tcs:term list, theory:theory}
|
|
20 |
|
|
21 |
val Rfunction : theory -> term -> term
|
|
22 |
-> {induction:thm, rules:thm,
|
|
23 |
theory:theory, tcs:term list}
|
|
24 |
|
|
25 |
val function : theory -> term -> {theory:theory, eq_ind : thm}
|
|
26 |
val lazyR_def : theory -> term -> {theory:theory, eqns : thm}
|
|
27 |
|
|
28 |
val tflcongs : theory -> thm list
|
|
29 |
|
|
30 |
end =
|
|
31 |
struct
|
|
32 |
structure Prim = Prim
|
|
33 |
|
|
34 |
fun tgoalw thy defs thm =
|
|
35 |
let val L = Prim.termination_goals thm
|
|
36 |
open USyntax
|
|
37 |
val g = cterm_of (sign_of thy) (mk_prop(list_mk_conj L))
|
|
38 |
in goalw_cterm defs g
|
|
39 |
end;
|
|
40 |
|
|
41 |
val tgoal = Utils.C tgoalw [];
|
|
42 |
|
|
43 |
fun WF_TAC thms = REPEAT(FIRST1(map rtac thms))
|
|
44 |
val WFtac = WF_TAC[wf_measure, wf_inv_image, wf_lex_prod,
|
|
45 |
wf_pred_nat, wf_pred_list, wf_trancl];
|
|
46 |
|
|
47 |
val terminator = simp_tac(HOL_ss addsimps[pred_nat_def,pred_list_def,
|
|
48 |
fst_conv,snd_conv,
|
|
49 |
mem_Collect_eq,lessI]) 1
|
|
50 |
THEN TRY(fast_tac set_cs 1);
|
|
51 |
|
|
52 |
val simpls = [less_eq RS eq_reflection,
|
|
53 |
lex_prod_def, measure_def, inv_image_def,
|
|
54 |
fst_conv RS eq_reflection, snd_conv RS eq_reflection,
|
|
55 |
mem_Collect_eq RS eq_reflection(*, length_Cons RS eq_reflection*)];
|
|
56 |
|
|
57 |
val std_postprocessor = Prim.postprocess{WFtac = WFtac,
|
|
58 |
terminator = terminator,
|
|
59 |
simplifier = Prim.Rules.simpl_conv simpls};
|
|
60 |
|
|
61 |
val simplifier = rewrite_rule (simpls @ #simps(rep_ss HOL_ss) @
|
|
62 |
[pred_nat_def,pred_list_def]);
|
|
63 |
fun tflcongs thy = Prim.Context.read() @ (#case_congs(Thry.extract_info thy));
|
|
64 |
|
|
65 |
|
|
66 |
local structure S = Prim.USyntax
|
|
67 |
in
|
|
68 |
fun func_of_cond_eqn tm =
|
|
69 |
#1(S.strip_comb(#lhs(S.dest_eq(#2(S.strip_forall(#2(S.strip_imp tm)))))))
|
|
70 |
end;
|
|
71 |
|
|
72 |
|
|
73 |
val concl = #2 o Prim.Rules.dest_thm;
|
|
74 |
|
|
75 |
(*---------------------------------------------------------------------------
|
|
76 |
* Defining a function with an associated termination relation. Lots of
|
|
77 |
* postprocessing takes place.
|
|
78 |
*---------------------------------------------------------------------------*)
|
|
79 |
local
|
|
80 |
structure S = Prim.USyntax
|
|
81 |
structure R = Prim.Rules
|
|
82 |
structure U = Utils
|
|
83 |
|
|
84 |
val solved = not o U.can S.dest_eq o #2 o S.strip_forall o concl
|
|
85 |
|
|
86 |
fun id_thm th =
|
|
87 |
let val {lhs,rhs} = S.dest_eq(#2(S.strip_forall(#2 (R.dest_thm th))))
|
|
88 |
in S.aconv lhs rhs
|
|
89 |
end handle _ => false
|
|
90 |
|
|
91 |
fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]);
|
|
92 |
val P_imp_P_iff_True = prover "P --> (P= True)" RS mp;
|
|
93 |
val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
|
|
94 |
fun mk_meta_eq r = case concl_of r of
|
|
95 |
Const("==",_)$_$_ => r
|
|
96 |
| _$(Const("op =",_)$_$_) => r RS eq_reflection
|
|
97 |
| _ => r RS P_imp_P_eq_True
|
|
98 |
fun rewrite L = rewrite_rule (map mk_meta_eq (Utils.filter(not o id_thm) L))
|
|
99 |
|
|
100 |
fun join_assums th =
|
|
101 |
let val {sign,...} = rep_thm th
|
|
102 |
val tych = cterm_of sign
|
|
103 |
val {lhs,rhs} = S.dest_eq(#2 (S.strip_forall (concl th)))
|
|
104 |
val cntxtl = (#1 o S.strip_imp) lhs (* cntxtl should = cntxtr *)
|
|
105 |
val cntxtr = (#1 o S.strip_imp) rhs (* but union is solider *)
|
|
106 |
val cntxt = U.union S.aconv cntxtl cntxtr
|
|
107 |
in
|
|
108 |
R.GEN_ALL
|
|
109 |
(R.DISCH_ALL
|
|
110 |
(rewrite (map (R.ASSUME o tych) cntxt) (R.SPEC_ALL th)))
|
|
111 |
end
|
|
112 |
val gen_all = S.gen_all
|
|
113 |
in
|
|
114 |
fun rfunction theory reducer R eqs =
|
|
115 |
let val _ = output(std_out, "Making definition.. ")
|
|
116 |
val _ = flush_out std_out
|
|
117 |
val {rules,theory, full_pats_TCs,
|
|
118 |
TCs,...} = Prim.gen_wfrec_definition theory {R=R,eqs=eqs}
|
|
119 |
val f = func_of_cond_eqn(concl(R.CONJUNCT1 rules handle _ => rules))
|
|
120 |
val _ = output(std_out, "Definition made.\n")
|
|
121 |
val _ = output(std_out, "Proving induction theorem.. ")
|
|
122 |
val _ = flush_out std_out
|
|
123 |
val ind = Prim.mk_induction theory f R full_pats_TCs
|
|
124 |
val _ = output(std_out, "Proved induction theorem.\n")
|
|
125 |
val pp = std_postprocessor theory
|
|
126 |
val _ = output(std_out, "Postprocessing.. ")
|
|
127 |
val _ = flush_out std_out
|
|
128 |
val {rules,induction,nested_tcs} = pp{rules=rules,induction=ind,TCs=TCs}
|
|
129 |
val normal_tcs = Prim.termination_goals rules
|
|
130 |
in
|
|
131 |
case nested_tcs
|
|
132 |
of [] => (output(std_out, "Postprocessing done.\n");
|
|
133 |
{theory=theory, induction=induction, rules=rules,tcs=normal_tcs})
|
|
134 |
| L => let val _ = output(std_out, "Simplifying nested TCs.. ")
|
|
135 |
val (solved,simplified,stubborn) =
|
|
136 |
U.itlist (fn th => fn (So,Si,St) =>
|
|
137 |
if (id_thm th) then (So, Si, th::St) else
|
|
138 |
if (solved th) then (th::So, Si, St)
|
|
139 |
else (So, th::Si, St)) nested_tcs ([],[],[])
|
|
140 |
val simplified' = map join_assums simplified
|
|
141 |
val induction' = reducer (solved@simplified') induction
|
|
142 |
val rules' = reducer (solved@simplified') rules
|
|
143 |
val _ = output(std_out, "Postprocessing done.\n")
|
|
144 |
in
|
|
145 |
{induction = induction',
|
|
146 |
rules = rules',
|
|
147 |
tcs = normal_tcs @
|
|
148 |
map (gen_all o S.rhs o #2 o S.strip_forall o concl)
|
|
149 |
(simplified@stubborn),
|
|
150 |
theory = theory}
|
|
151 |
end
|
|
152 |
end
|
|
153 |
handle (e as Utils.ERR _) => Utils.Raise e
|
|
154 |
| e => print_exn e
|
|
155 |
|
|
156 |
|
|
157 |
fun Rfunction thry =
|
|
158 |
rfunction thry
|
|
159 |
(fn thl => rewrite (map standard thl @ #simps(rep_ss HOL_ss)));
|
|
160 |
|
|
161 |
|
|
162 |
end;
|
|
163 |
|
|
164 |
|
|
165 |
local structure R = Prim.Rules
|
|
166 |
in
|
|
167 |
fun function theory eqs =
|
|
168 |
let val _ = output(std_out, "Making definition.. ")
|
|
169 |
val {rules,R,theory,full_pats_TCs,...} = Prim.lazyR_def theory eqs
|
|
170 |
val f = func_of_cond_eqn (concl(R.CONJUNCT1 rules handle _ => rules))
|
|
171 |
val _ = output(std_out, "Definition made.\n")
|
|
172 |
val _ = output(std_out, "Proving induction theorem.. ")
|
|
173 |
val induction = Prim.mk_induction theory f R full_pats_TCs
|
|
174 |
val _ = output(std_out, "Induction theorem proved.\n")
|
|
175 |
in {theory = theory,
|
|
176 |
eq_ind = standard (induction RS (rules RS conjI))}
|
|
177 |
end
|
|
178 |
handle (e as Utils.ERR _) => Utils.Raise e
|
|
179 |
| e => print_exn e
|
|
180 |
end;
|
|
181 |
|
|
182 |
|
|
183 |
fun lazyR_def theory eqs =
|
|
184 |
let val {rules,theory, ...} = Prim.lazyR_def theory eqs
|
|
185 |
in {eqns=rules, theory=theory}
|
|
186 |
end
|
|
187 |
handle (e as Utils.ERR _) => Utils.Raise e
|
|
188 |
| e => print_exn e;
|
|
189 |
|
|
190 |
|
|
191 |
val () = Prim.Context.write[Thms.LET_CONG, Thms.COND_CONG];
|
|
192 |
|
|
193 |
end;
|