| author | wenzelm | 
| Thu, 09 Jan 2020 15:45:31 +0100 | |
| changeset 71360 | fcf5ee85743d | 
| parent 70721 | 47258727fa42 | 
| child 73253 | f6bb31879698 | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Set_Integral.thy | 
| 63329 | 2 | Author: Jeremy Avigad (CMU), Johannes Hölzl (TUM), Luke Serafin (CMU) | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 3 | Author: Sébastien Gouëzel sebastien.gouezel@univ-rennes1.fr | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 4 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 5 | Notation and useful facts for working with integrals over a set. | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 6 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 7 | TODO: keep all these? Need unicode translations as well. | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 8 | *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 9 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 10 | theory Set_Integral | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 11 | imports Radon_Nikodym | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 12 | begin | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 13 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 14 | (* | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 15 | Notation | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 16 | *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 17 | |
| 70136 | 18 | definition\<^marker>\<open>tag important\<close> "set_borel_measurable M A f \<equiv> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable M" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 19 | |
| 70136 | 20 | definition\<^marker>\<open>tag important\<close> "set_integrable M A f \<equiv> integrable M (\<lambda>x. indicator A x *\<^sub>R f x)" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 21 | |
| 70136 | 22 | definition\<^marker>\<open>tag important\<close> "set_lebesgue_integral M A f \<equiv> lebesgue_integral M (\<lambda>x. indicator A x *\<^sub>R f x)" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 23 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 24 | syntax | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 25 | "_ascii_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 26 |   ("(4LINT (_):(_)/|(_)./ _)" [0,60,110,61] 60)
 | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 27 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 28 | translations | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 29 | "LINT x:A|M. f" == "CONST set_lebesgue_integral M A (\<lambda>x. f)" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 30 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 31 | (* | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 32 | Notation for integration wrt lebesgue measure on the reals: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 33 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 34 | LBINT x. f | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 35 | LBINT x : A. f | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 36 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 37 | TODO: keep all these? Need unicode. | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 38 | *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 39 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 40 | syntax | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 41 | "_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 42 |   ("(2LBINT _./ _)" [0,60] 60)
 | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 43 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 44 | syntax | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 45 | "_set_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> real" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 46 |   ("(3LBINT _:_./ _)" [0,60,61] 60)
 | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 47 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 48 | (* | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 49 | Basic properties | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 50 | *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 51 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 52 | (* | 
| 61945 | 53 | lemma indicator_abs_eq: "\<And>A x. \<bar>indicator A x\<bar> = ((indicator A x) :: real)" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 54 | by (auto simp add: indicator_def) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 55 | *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 56 | |
| 68721 | 57 | lemma set_integrable_cong: | 
| 58 | assumes "M = M'" "A = A'" "\<And>x. x \<in> A \<Longrightarrow> f x = f' x" | |
| 59 | shows "set_integrable M A f = set_integrable M' A' f'" | |
| 60 | proof - | |
| 61 | have "(\<lambda>x. indicator A x *\<^sub>R f x) = (\<lambda>x. indicator A' x *\<^sub>R f' x)" | |
| 62 | using assms by (auto simp: indicator_def) | |
| 63 | thus ?thesis by (simp add: set_integrable_def assms) | |
| 64 | qed | |
| 65 | ||
| 62083 | 66 | lemma set_borel_measurable_sets: | 
| 67 | fixes f :: "_ \<Rightarrow> _::real_normed_vector" | |
| 68 | assumes "set_borel_measurable M X f" "B \<in> sets borel" "X \<in> sets M" | |
| 69 | shows "f -` B \<inter> X \<in> sets M" | |
| 70 | proof - | |
| 71 | have "f \<in> borel_measurable (restrict_space M X)" | |
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 72 | using assms unfolding set_borel_measurable_def by (subst borel_measurable_restrict_space_iff) auto | 
| 62083 | 73 | then have "f -` B \<inter> space (restrict_space M X) \<in> sets (restrict_space M X)" | 
| 74 | by (rule measurable_sets) fact | |
| 75 | with \<open>X \<in> sets M\<close> show ?thesis | |
| 76 | by (subst (asm) sets_restrict_space_iff) (auto simp: space_restrict_space) | |
| 77 | qed | |
| 78 | ||
| 67977 
557ea2740125
Probability builds with new definitions
 paulson <lp15@cam.ac.uk> parents: 
67974diff
changeset | 79 | lemma set_lebesgue_integral_zero [simp]: "set_lebesgue_integral M A (\<lambda>x. 0) = 0" | 
| 
557ea2740125
Probability builds with new definitions
 paulson <lp15@cam.ac.uk> parents: 
67974diff
changeset | 80 | by (auto simp: set_lebesgue_integral_def) | 
| 
557ea2740125
Probability builds with new definitions
 paulson <lp15@cam.ac.uk> parents: 
67974diff
changeset | 81 | |
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 82 | lemma set_lebesgue_integral_cong: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 83 | assumes "A \<in> sets M" and "\<forall>x. x \<in> A \<longrightarrow> f x = g x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 84 | shows "(LINT x:A|M. f x) = (LINT x:A|M. g x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 85 | unfolding set_lebesgue_integral_def | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 86 | using assms | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 87 | by (metis indicator_simps(2) real_vector.scale_zero_left) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 88 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 89 | lemma set_lebesgue_integral_cong_AE: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 90 | assumes [measurable]: "A \<in> sets M" "f \<in> borel_measurable M" "g \<in> borel_measurable M" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 91 | assumes "AE x \<in> A in M. f x = g x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 92 | shows "LINT x:A|M. f x = LINT x:A|M. g x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 93 | proof- | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 94 | have "AE x in M. indicator A x *\<^sub>R f x = indicator A x *\<^sub>R g x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 95 | using assms by auto | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 96 | thus ?thesis | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 97 | unfolding set_lebesgue_integral_def by (intro integral_cong_AE) auto | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 98 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 99 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 100 | lemma set_integrable_cong_AE: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 101 | "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 102 | AE x \<in> A in M. f x = g x \<Longrightarrow> A \<in> sets M \<Longrightarrow> | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 103 | set_integrable M A f = set_integrable M A g" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 104 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 105 | by (rule integrable_cong_AE) auto | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 106 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 107 | lemma set_integrable_subset: | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 108 |   fixes M A B and f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 109 | assumes "set_integrable M A f" "B \<in> sets M" "B \<subseteq> A" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 110 | shows "set_integrable M B f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 111 | proof - | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 112 | have "set_integrable M B (\<lambda>x. indicator A x *\<^sub>R f x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 113 | using assms integrable_mult_indicator set_integrable_def by blast | 
| 61808 | 114 | with \<open>B \<subseteq> A\<close> show ?thesis | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 115 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 116 | by (simp add: indicator_inter_arith[symmetric] Int_absorb2) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 117 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 118 | |
| 67339 | 119 | lemma set_integrable_restrict_space: | 
| 120 |   fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
 | |
| 121 | assumes f: "set_integrable M S f" and T: "T \<in> sets (restrict_space M S)" | |
| 122 | shows "set_integrable M T f" | |
| 123 | proof - | |
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 124 | obtain T' where T_eq: "T = S \<inter> T'" and "T' \<in> sets M" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 125 | using T by (auto simp: sets_restrict_space) | 
| 67339 | 126 | have \<open>integrable M (\<lambda>x. indicator T' x *\<^sub>R (indicator S x *\<^sub>R f x))\<close> | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 127 | using \<open>T' \<in> sets M\<close> f integrable_mult_indicator set_integrable_def by blast | 
| 67339 | 128 | then show ?thesis | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 129 | unfolding set_integrable_def | 
| 67339 | 130 | unfolding T_eq indicator_inter_arith by (simp add: ac_simps) | 
| 131 | qed | |
| 132 | ||
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 133 | (* TODO: integral_cmul_indicator should be named set_integral_const *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 134 | (* TODO: borel_integrable_atLeastAtMost should be named something like set_integrable_Icc_isCont *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 135 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 136 | lemma set_integral_scaleR_right [simp]: "LINT t:A|M. a *\<^sub>R f t = a *\<^sub>R (LINT t:A|M. f t)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 137 | unfolding set_lebesgue_integral_def | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 138 | by (subst integral_scaleR_right[symmetric]) (auto intro!: Bochner_Integration.integral_cong) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 139 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 140 | lemma set_integral_mult_right [simp]: | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 141 |   fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 142 | shows "LINT t:A|M. a * f t = a * (LINT t:A|M. f t)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 143 | unfolding set_lebesgue_integral_def | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 144 | by (subst integral_mult_right_zero[symmetric]) auto | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 145 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 146 | lemma set_integral_mult_left [simp]: | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 147 |   fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 148 | shows "LINT t:A|M. f t * a = (LINT t:A|M. f t) * a" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 149 | unfolding set_lebesgue_integral_def | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 150 | by (subst integral_mult_left_zero[symmetric]) auto | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 151 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 152 | lemma set_integral_divide_zero [simp]: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59358diff
changeset | 153 |   fixes a :: "'a::{real_normed_field, field, second_countable_topology}"
 | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 154 | shows "LINT t:A|M. f t / a = (LINT t:A|M. f t) / a" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 155 | unfolding set_lebesgue_integral_def | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 156 | by (subst integral_divide_zero[symmetric], intro Bochner_Integration.integral_cong) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 157 | (auto split: split_indicator) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 158 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 159 | lemma set_integrable_scaleR_right [simp, intro]: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 160 | shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. a *\<^sub>R f t)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 161 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 162 | unfolding scaleR_left_commute by (rule integrable_scaleR_right) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 163 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 164 | lemma set_integrable_scaleR_left [simp, intro]: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 165 |   fixes a :: "_ :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 166 | shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. f t *\<^sub>R a)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 167 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 168 | using integrable_scaleR_left[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 169 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 170 | lemma set_integrable_mult_right [simp, intro]: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 171 |   fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 172 | shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. a * f t)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 173 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 174 | using integrable_mult_right[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 175 | |
| 70721 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 176 | lemma set_integrable_mult_right_iff [simp]: | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 177 |   fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 178 | assumes "a \<noteq> 0" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 179 | shows "set_integrable M A (\<lambda>t. a * f t) \<longleftrightarrow> set_integrable M A f" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 180 | proof | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 181 | assume "set_integrable M A (\<lambda>t. a * f t)" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 182 | then have "set_integrable M A (\<lambda>t. 1/a * (a * f t))" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 183 | using set_integrable_mult_right by blast | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 184 | then show "set_integrable M A f" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 185 | using assms by auto | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 186 | qed auto | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 187 | |
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 188 | lemma set_integrable_mult_left [simp, intro]: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 189 |   fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 190 | shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. f t * a)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 191 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 192 | using integrable_mult_left[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 193 | |
| 70721 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 194 | lemma set_integrable_mult_left_iff [simp]: | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 195 |   fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 196 | assumes "a \<noteq> 0" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 197 | shows "set_integrable M A (\<lambda>t. f t * a) \<longleftrightarrow> set_integrable M A f" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 198 | using assms by (subst set_integrable_mult_right_iff [symmetric]) (auto simp: mult.commute) | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 199 | |
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 200 | lemma set_integrable_divide [simp, intro]: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59358diff
changeset | 201 |   fixes a :: "'a::{real_normed_field, field, second_countable_topology}"
 | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 202 | assumes "a \<noteq> 0 \<Longrightarrow> set_integrable M A f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 203 | shows "set_integrable M A (\<lambda>t. f t / a)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 204 | proof - | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 205 | have "integrable M (\<lambda>x. indicator A x *\<^sub>R f x / a)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 206 | using assms unfolding set_integrable_def by (rule integrable_divide_zero) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 207 | also have "(\<lambda>x. indicator A x *\<^sub>R f x / a) = (\<lambda>x. indicator A x *\<^sub>R (f x / a))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 208 | by (auto split: split_indicator) | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 209 | finally show ?thesis | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 210 | unfolding set_integrable_def . | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 211 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 212 | |
| 70721 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 213 | lemma set_integrable_mult_divide_iff [simp]: | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 214 |   fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 215 | assumes "a \<noteq> 0" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 216 | shows "set_integrable M A (\<lambda>t. f t / a) \<longleftrightarrow> set_integrable M A f" | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 217 | by (simp add: divide_inverse assms) | 
| 
47258727fa42
A few new theorems, tidying up and deletion of obsolete material
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 218 | |
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 219 | lemma set_integral_add [simp, intro]: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 220 |   fixes f g :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 221 | assumes "set_integrable M A f" "set_integrable M A g" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 222 | shows "set_integrable M A (\<lambda>x. f x + g x)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 223 | and "LINT x:A|M. f x + g x = (LINT x:A|M. f x) + (LINT x:A|M. g x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 224 | using assms unfolding set_integrable_def set_lebesgue_integral_def by (simp_all add: scaleR_add_right) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 225 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 226 | lemma set_integral_diff [simp, intro]: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 227 | assumes "set_integrable M A f" "set_integrable M A g" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 228 | shows "set_integrable M A (\<lambda>x. f x - g x)" and "LINT x:A|M. f x - g x = | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 229 | (LINT x:A|M. f x) - (LINT x:A|M. g x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 230 | using assms unfolding set_integrable_def set_lebesgue_integral_def by (simp_all add: scaleR_diff_right) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 231 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 232 | lemma set_integral_uminus: "set_integrable M A f \<Longrightarrow> LINT x:A|M. - f x = - (LINT x:A|M. f x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 233 | unfolding set_integrable_def set_lebesgue_integral_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 234 | by (subst integral_minus[symmetric]) simp_all | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 235 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 236 | lemma set_integral_complex_of_real: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 237 | "LINT x:A|M. complex_of_real (f x) = of_real (LINT x:A|M. f x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 238 | unfolding set_lebesgue_integral_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 239 | by (subst integral_complex_of_real[symmetric]) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 240 | (auto intro!: Bochner_Integration.integral_cong split: split_indicator) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 241 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 242 | lemma set_integral_mono: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 243 | fixes f g :: "_ \<Rightarrow> real" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 244 | assumes "set_integrable M A f" "set_integrable M A g" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 245 | "\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 246 | shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 247 | using assms unfolding set_integrable_def set_lebesgue_integral_def | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 248 | by (auto intro: integral_mono split: split_indicator) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 249 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 250 | lemma set_integral_mono_AE: | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 251 | fixes f g :: "_ \<Rightarrow> real" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 252 | assumes "set_integrable M A f" "set_integrable M A g" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 253 | "AE x \<in> A in M. f x \<le> g x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 254 | shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 255 | using assms unfolding set_integrable_def set_lebesgue_integral_def | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 256 | by (auto intro: integral_mono_AE split: split_indicator) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 257 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 258 | lemma set_integrable_abs: "set_integrable M A f \<Longrightarrow> set_integrable M A (\<lambda>x. \<bar>f x\<bar> :: real)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 259 | using integrable_abs[of M "\<lambda>x. f x * indicator A x"]unfolding set_integrable_def by (simp add: abs_mult ac_simps) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 260 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 261 | lemma set_integrable_abs_iff: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 262 | fixes f :: "_ \<Rightarrow> real" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 263 | shows "set_borel_measurable M A f \<Longrightarrow> set_integrable M A (\<lambda>x. \<bar>f x\<bar>) = set_integrable M A f" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 264 | unfolding set_integrable_def set_borel_measurable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 265 | by (subst (2) integrable_abs_iff[symmetric]) (simp_all add: abs_mult ac_simps) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 266 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 267 | lemma set_integrable_abs_iff': | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 268 | fixes f :: "_ \<Rightarrow> real" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 269 | shows "f \<in> borel_measurable M \<Longrightarrow> A \<in> sets M \<Longrightarrow> | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 270 | set_integrable M A (\<lambda>x. \<bar>f x\<bar>) = set_integrable M A f" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 271 | by (simp add: set_borel_measurable_def set_integrable_abs_iff) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 272 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 273 | lemma set_integrable_discrete_difference: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 274 |   fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 275 | assumes "countable X" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 276 | assumes diff: "(A - B) \<union> (B - A) \<subseteq> X" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 277 |   assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 278 | shows "set_integrable M A f \<longleftrightarrow> set_integrable M B f" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 279 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 280 | proof (rule integrable_discrete_difference[where X=X]) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 281 | show "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> indicator A x *\<^sub>R f x = indicator B x *\<^sub>R f x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 282 | using diff by (auto split: split_indicator) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 283 | qed fact+ | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 284 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 285 | lemma set_integral_discrete_difference: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 286 |   fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 287 | assumes "countable X" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 288 | assumes diff: "(A - B) \<union> (B - A) \<subseteq> X" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 289 |   assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 290 | shows "set_lebesgue_integral M A f = set_lebesgue_integral M B f" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 291 | unfolding set_lebesgue_integral_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 292 | proof (rule integral_discrete_difference[where X=X]) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 293 | show "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> indicator A x *\<^sub>R f x = indicator B x *\<^sub>R f x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 294 | using diff by (auto split: split_indicator) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 295 | qed fact+ | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 296 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 297 | lemma set_integrable_Un: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 298 |   fixes f g :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 299 | assumes f_A: "set_integrable M A f" and f_B: "set_integrable M B f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 300 | and [measurable]: "A \<in> sets M" "B \<in> sets M" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 301 | shows "set_integrable M (A \<union> B) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 302 | proof - | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 303 | have "set_integrable M (A - B) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 304 | using f_A by (rule set_integrable_subset) auto | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 305 | with f_B have "integrable M (\<lambda>x. indicator (A - B) x *\<^sub>R f x + indicator B x *\<^sub>R f x)" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 306 | unfolding set_integrable_def using integrable_add by blast | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 307 | then show ?thesis | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 308 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 309 | by (rule integrable_cong[THEN iffD1, rotated 2]) (auto split: split_indicator) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 310 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 311 | |
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 312 | lemma set_integrable_empty [simp]: "set_integrable M {} f"
 | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 313 | by (auto simp: set_integrable_def) | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 314 | |
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 315 | lemma set_integrable_UN: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 316 |   fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 317 | assumes "finite I" "\<And>i. i\<in>I \<Longrightarrow> set_integrable M (A i) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 318 | "\<And>i. i\<in>I \<Longrightarrow> A i \<in> sets M" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 319 | shows "set_integrable M (\<Union>i\<in>I. A i) f" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 320 | using assms | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 321 | by (induct I) (auto simp: set_integrable_Un sets.finite_UN) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 322 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 323 | lemma set_integral_Un: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 324 |   fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 325 |   assumes "A \<inter> B = {}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 326 | and "set_integrable M A f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 327 | and "set_integrable M B f" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 328 | shows "LINT x:A\<union>B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 329 | using assms | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 330 | unfolding set_integrable_def set_lebesgue_integral_def | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 331 | by (auto simp add: indicator_union_arith indicator_inter_arith[symmetric] scaleR_add_left) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 332 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 333 | lemma set_integral_cong_set: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 334 |   fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 335 | assumes "set_borel_measurable M A f" "set_borel_measurable M B f" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 336 | and ae: "AE x in M. x \<in> A \<longleftrightarrow> x \<in> B" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 337 | shows "LINT x:B|M. f x = LINT x:A|M. f x" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 338 | unfolding set_lebesgue_integral_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 339 | proof (rule integral_cong_AE) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 340 | show "AE x in M. indicator B x *\<^sub>R f x = indicator A x *\<^sub>R f x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 341 | using ae by (auto simp: subset_eq split: split_indicator) | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 342 | qed (use assms in \<open>auto simp: set_borel_measurable_def\<close>) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 343 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 344 | proposition set_borel_measurable_subset: | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 345 |   fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 346 | assumes [measurable]: "set_borel_measurable M A f" "B \<in> sets M" and "B \<subseteq> A" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 347 | shows "set_borel_measurable M B f" | 
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 348 | proof- | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 349 | have "set_borel_measurable M B (\<lambda>x. indicator A x *\<^sub>R f x)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 350 | using assms unfolding set_borel_measurable_def | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 351 | using borel_measurable_indicator borel_measurable_scaleR by blast | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 352 | moreover have "(\<lambda>x. indicator B x *\<^sub>R indicator A x *\<^sub>R f x) = (\<lambda>x. indicator B x *\<^sub>R f x)" | 
| 61808 | 353 | using \<open>B \<subseteq> A\<close> by (auto simp: fun_eq_iff split: split_indicator) | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 354 | ultimately show ?thesis | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 355 | unfolding set_borel_measurable_def by simp | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 356 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 357 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 358 | lemma set_integral_Un_AE: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 359 |   fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 360 | assumes ae: "AE x in M. \<not> (x \<in> A \<and> x \<in> B)" and [measurable]: "A \<in> sets M" "B \<in> sets M" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 361 | and "set_integrable M A f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 362 | and "set_integrable M B f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 363 | shows "LINT x:A\<union>B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 364 | proof - | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 365 | have f: "set_integrable M (A \<union> B) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 366 | by (intro set_integrable_Un assms) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 367 | then have f': "set_borel_measurable M (A \<union> B) f" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 368 | using integrable_iff_bounded set_borel_measurable_def set_integrable_def by blast | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 369 | have "LINT x:A\<union>B|M. f x = LINT x:(A - A \<inter> B) \<union> (B - A \<inter> B)|M. f x" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 370 | proof (rule set_integral_cong_set) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 371 | show "AE x in M. (x \<in> A - A \<inter> B \<union> (B - A \<inter> B)) = (x \<in> A \<union> B)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 372 | using ae by auto | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 373 | show "set_borel_measurable M (A - A \<inter> B \<union> (B - A \<inter> B)) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 374 | using f' by (rule set_borel_measurable_subset) auto | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 375 | qed fact | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 376 | also have "\<dots> = (LINT x:(A - A \<inter> B)|M. f x) + (LINT x:(B - A \<inter> B)|M. f x)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 377 | by (auto intro!: set_integral_Un set_integrable_subset[OF f]) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 378 | also have "\<dots> = (LINT x:A|M. f x) + (LINT x:B|M. f x)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 379 | using ae | 
| 67399 | 380 | by (intro arg_cong2[where f="(+)"] set_integral_cong_set) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 381 | (auto intro!: set_borel_measurable_subset[OF f']) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 382 | finally show ?thesis . | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 383 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 384 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 385 | lemma set_integral_finite_Union: | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 386 |   fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 387 | assumes "finite I" "disjoint_family_on A I" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 388 | and "\<And>i. i \<in> I \<Longrightarrow> set_integrable M (A i) f" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets M" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 389 | shows "(LINT x:(\<Union>i\<in>I. A i)|M. f x) = (\<Sum>i\<in>I. LINT x:A i|M. f x)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 390 | using assms | 
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 391 | proof induction | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 392 | case (insert x F) | 
| 69313 | 393 |   then have "A x \<inter> \<Union>(A ` F) = {}"
 | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 394 | by (meson disjoint_family_on_insert) | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 395 | with insert show ?case | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 396 | by (simp add: set_integral_Un set_integrable_Un set_integrable_UN disjoint_family_on_insert) | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 397 | qed (simp add: set_lebesgue_integral_def) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 398 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 399 | (* TODO: find a better name? *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 400 | lemma pos_integrable_to_top: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 401 | fixes l::real | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 402 | assumes "\<And>i. A i \<in> sets M" "mono A" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 403 | assumes nneg: "\<And>x i. x \<in> A i \<Longrightarrow> 0 \<le> f x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 404 | and intgbl: "\<And>i::nat. set_integrable M (A i) f" | 
| 61969 | 405 | and lim: "(\<lambda>i::nat. LINT x:A i|M. f x) \<longlonglongrightarrow> l" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 406 | shows "set_integrable M (\<Union>i. A i) f" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 407 | unfolding set_integrable_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 408 | apply (rule integrable_monotone_convergence[where f = "\<lambda>i::nat. \<lambda>x. indicator (A i) x *\<^sub>R f x" and x = l]) | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 409 | apply (rule intgbl [unfolded set_integrable_def]) | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 410 | prefer 3 apply (rule lim [unfolded set_lebesgue_integral_def]) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 411 | apply (rule AE_I2) | 
| 61808 | 412 | using \<open>mono A\<close> apply (auto simp: mono_def nneg split: split_indicator) [] | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 413 | proof (rule AE_I2) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 414 |   { fix x assume "x \<in> space M"
 | 
| 61969 | 415 | show "(\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Union>i. A i) x *\<^sub>R f x" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 416 | proof cases | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 417 | assume "\<exists>i. x \<in> A i" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 418 | then guess i .. | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 419 | then have *: "eventually (\<lambda>i. x \<in> A i) sequentially" | 
| 61808 | 420 | using \<open>x \<in> A i\<close> \<open>mono A\<close> by (auto simp: eventually_sequentially mono_def) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 421 | show ?thesis | 
| 70365 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70136diff
changeset | 422 | apply (intro tendsto_eventually) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 423 | using * | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 424 | apply eventually_elim | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 425 | apply (auto split: split_indicator) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 426 | done | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 427 | qed auto } | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 428 | then show "(\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R f x) \<in> borel_measurable M" | 
| 62624 
59ceeb6f3079
generalized some Borel measurable statements to support ennreal
 hoelzl parents: 
62083diff
changeset | 429 | apply (rule borel_measurable_LIMSEQ_real) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 430 | apply assumption | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 431 | using intgbl set_integrable_def by blast | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 432 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 433 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 434 | (* Proof from Royden Real Analysis, p. 91. *) | 
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 435 | lemma lebesgue_integral_countable_add: | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 436 |   fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 437 | assumes meas[intro]: "\<And>i::nat. A i \<in> sets M" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 438 |     and disj: "\<And>i j. i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 439 | and intgbl: "set_integrable M (\<Union>i. A i) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 440 | shows "LINT x:(\<Union>i. A i)|M. f x = (\<Sum>i. (LINT x:(A i)|M. f x))" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 441 | unfolding set_lebesgue_integral_def | 
| 70136 | 442 | proof (subst integral_suminf[symmetric]) | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 443 | show int_A: "integrable M (\<lambda>x. indicat_real (A i) x *\<^sub>R f x)" for i | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 444 | using intgbl unfolding set_integrable_def [symmetric] | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 445 | by (rule set_integrable_subset) auto | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 446 |   { fix x assume "x \<in> space M"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 447 | have "(\<lambda>i. indicator (A i) x *\<^sub>R f x) sums (indicator (\<Union>i. A i) x *\<^sub>R f x)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 448 | by (intro sums_scaleR_left indicator_sums) fact } | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 449 | note sums = this | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 450 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 451 | have norm_f: "\<And>i. set_integrable M (A i) (\<lambda>x. norm (f x))" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 452 | using int_A[THEN integrable_norm] unfolding set_integrable_def by auto | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 453 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 454 | show "AE x in M. summable (\<lambda>i. norm (indicator (A i) x *\<^sub>R f x))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 455 | using disj by (intro AE_I2) (auto intro!: summable_mult2 sums_summable[OF indicator_sums]) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 456 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 457 | show "summable (\<lambda>i. LINT x|M. norm (indicator (A i) x *\<^sub>R f x))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 458 | proof (rule summableI_nonneg_bounded) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 459 | fix n | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 460 | show "0 \<le> LINT x|M. norm (indicator (A n) x *\<^sub>R f x)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 461 | using norm_f by (auto intro!: integral_nonneg_AE) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 462 | |
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 463 | have "(\<Sum>i<n. LINT x|M. norm (indicator (A i) x *\<^sub>R f x)) = (\<Sum>i<n. LINT x:A i|M. norm (f x))" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 464 | by (simp add: abs_mult set_lebesgue_integral_def) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 465 | also have "\<dots> = set_lebesgue_integral M (\<Union>i<n. A i) (\<lambda>x. norm (f x))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 466 | using norm_f | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 467 | by (subst set_integral_finite_Union) (auto simp: disjoint_family_on_def disj) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 468 | also have "\<dots> \<le> set_lebesgue_integral M (\<Union>i. A i) (\<lambda>x. norm (f x))" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 469 | using intgbl[unfolded set_integrable_def, THEN integrable_norm] norm_f | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 470 | unfolding set_lebesgue_integral_def set_integrable_def | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 471 |       apply (intro integral_mono set_integrable_UN[of "{..<n}", unfolded set_integrable_def])
 | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 472 | apply (auto split: split_indicator) | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 473 | done | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 474 | finally show "(\<Sum>i<n. LINT x|M. norm (indicator (A i) x *\<^sub>R f x)) \<le> | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 475 | set_lebesgue_integral M (\<Union>i. A i) (\<lambda>x. norm (f x))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 476 | by simp | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 477 | qed | 
| 69313 | 478 | show "LINT x|M. indicator (\<Union>(A ` UNIV)) x *\<^sub>R f x = LINT x|M. (\<Sum>i. indicator (A i) x *\<^sub>R f x)" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 479 | apply (rule Bochner_Integration.integral_cong[OF refl]) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 480 | apply (subst suminf_scaleR_left[OF sums_summable[OF indicator_sums, OF disj], symmetric]) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 481 | using sums_unique[OF indicator_sums[OF disj]] | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 482 | apply auto | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 483 | done | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 484 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 485 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 486 | lemma set_integral_cont_up: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 487 |   fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 488 | assumes [measurable]: "\<And>i. A i \<in> sets M" and A: "incseq A" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 489 | and intgbl: "set_integrable M (\<Union>i. A i) f" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 490 | shows "(\<lambda>i. LINT x:(A i)|M. f x) \<longlonglongrightarrow> LINT x:(\<Union>i. A i)|M. f x" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 491 | unfolding set_lebesgue_integral_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 492 | proof (intro integral_dominated_convergence[where w="\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R norm (f x)"]) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 493 | have int_A: "\<And>i. set_integrable M (A i) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 494 | using intgbl by (rule set_integrable_subset) auto | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 495 | show "\<And>i. (\<lambda>x. indicator (A i) x *\<^sub>R f x) \<in> borel_measurable M" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 496 | using int_A integrable_iff_bounded set_integrable_def by blast | 
| 69313 | 497 | show "(\<lambda>x. indicator (\<Union>(A ` UNIV)) x *\<^sub>R f x) \<in> borel_measurable M" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 498 | using integrable_iff_bounded intgbl set_integrable_def by blast | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 499 | show "integrable M (\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R norm (f x))" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 500 | using int_A intgbl integrable_norm unfolding set_integrable_def | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 501 | by fastforce | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 502 |   { fix x i assume "x \<in> A i"
 | 
| 61969 | 503 | with A have "(\<lambda>xa. indicator (A xa) x::real) \<longlonglongrightarrow> 1 \<longleftrightarrow> (\<lambda>xa. 1::real) \<longlonglongrightarrow> 1" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 504 | by (intro filterlim_cong refl) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 505 | (fastforce simp: eventually_sequentially incseq_def subset_eq intro!: exI[of _ i]) } | 
| 61969 | 506 | then show "AE x in M. (\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Union>i. A i) x *\<^sub>R f x" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 507 | by (intro AE_I2 tendsto_intros) (auto split: split_indicator) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 508 | qed (auto split: split_indicator) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 509 | |
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 510 | (* Can the int0 hypothesis be dropped? *) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 511 | lemma set_integral_cont_down: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 512 |   fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 513 | assumes [measurable]: "\<And>i. A i \<in> sets M" and A: "decseq A" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 514 | and int0: "set_integrable M (A 0) f" | 
| 61969 | 515 | shows "(\<lambda>i::nat. LINT x:(A i)|M. f x) \<longlonglongrightarrow> LINT x:(\<Inter>i. A i)|M. f x" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 516 | unfolding set_lebesgue_integral_def | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 517 | proof (rule integral_dominated_convergence) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 518 | have int_A: "\<And>i. set_integrable M (A i) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 519 | using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def) | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 520 | have "integrable M (\<lambda>c. norm (indicat_real (A 0) c *\<^sub>R f c))" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 521 | by (metis (no_types) int0 integrable_norm set_integrable_def) | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 522 | then show "integrable M (\<lambda>x. indicator (A 0) x *\<^sub>R norm (f x))" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 523 | by force | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 524 | have "set_integrable M (\<Inter>i. A i) f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 525 | using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def) | 
| 69313 | 526 | with int_A show "(\<lambda>x. indicat_real (\<Inter>(A ` UNIV)) x *\<^sub>R f x) \<in> borel_measurable M" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 527 | "\<And>i. (\<lambda>x. indicat_real (A i) x *\<^sub>R f x) \<in> borel_measurable M" | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 528 | by (auto simp: set_integrable_def) | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 529 | show "\<And>i. AE x in M. norm (indicator (A i) x *\<^sub>R f x) \<le> indicator (A 0) x *\<^sub>R norm (f x)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 530 | using A by (auto split: split_indicator simp: decseq_def) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 531 |   { fix x i assume "x \<in> space M" "x \<notin> A i"
 | 
| 61969 | 532 | with A have "(\<lambda>i. indicator (A i) x::real) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<lambda>i. 0::real) \<longlonglongrightarrow> 0" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 533 | by (intro filterlim_cong refl) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 534 | (auto split: split_indicator simp: eventually_sequentially decseq_def intro!: exI[of _ i]) } | 
| 61969 | 535 | then show "AE x in M. (\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Inter>i. A i) x *\<^sub>R f x" | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 536 | by (intro AE_I2 tendsto_intros) (auto split: split_indicator) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 537 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 538 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 539 | lemma set_integral_at_point: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 540 | fixes a :: real | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 541 |   assumes "set_integrable M {a} f"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 542 |   and [simp]: "{a} \<in> sets M" and "(emeasure M) {a} \<noteq> \<infinity>"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 543 |   shows "(LINT x:{a} | M. f x) = f a * measure M {a}"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 544 | proof- | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 545 |   have "set_lebesgue_integral M {a} f = set_lebesgue_integral M {a} (%x. f a)"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 546 | by (intro set_lebesgue_integral_cong) simp_all | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 547 | then show ?thesis using assms | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 548 | unfolding set_lebesgue_integral_def by simp | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 549 | qed | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 550 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 551 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 552 | abbreviation complex_integrable :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 553 | "complex_integrable M f \<equiv> integrable M f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 554 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 555 | abbreviation complex_lebesgue_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> complex" ("integral\<^sup>C") where
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 556 | "integral\<^sup>C M f == integral\<^sup>L M f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 557 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 558 | syntax | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 559 | "_complex_lebesgue_integral" :: "pttrn \<Rightarrow> complex \<Rightarrow> 'a measure \<Rightarrow> complex" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 560 |  ("\<integral>\<^sup>C _. _ \<partial>_" [60,61] 110)
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 561 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 562 | translations | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 563 | "\<integral>\<^sup>Cx. f \<partial>M" == "CONST complex_lebesgue_integral M (\<lambda>x. f)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 564 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 565 | syntax | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 566 | "_ascii_complex_lebesgue_integral" :: "pttrn \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 567 |   ("(3CLINT _|_. _)" [0,110,60] 60)
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 568 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 569 | translations | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 570 | "CLINT x|M. f" == "CONST complex_lebesgue_integral M (\<lambda>x. f)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 571 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 572 | lemma complex_integrable_cnj [simp]: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 573 | "complex_integrable M (\<lambda>x. cnj (f x)) \<longleftrightarrow> complex_integrable M f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 574 | proof | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 575 | assume "complex_integrable M (\<lambda>x. cnj (f x))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 576 | then have "complex_integrable M (\<lambda>x. cnj (cnj (f x)))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 577 | by (rule integrable_cnj) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 578 | then show "complex_integrable M f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 579 | by simp | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 580 | qed simp | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 581 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 582 | lemma complex_of_real_integrable_eq: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 583 | "complex_integrable M (\<lambda>x. complex_of_real (f x)) \<longleftrightarrow> integrable M f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 584 | proof | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 585 | assume "complex_integrable M (\<lambda>x. complex_of_real (f x))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 586 | then have "integrable M (\<lambda>x. Re (complex_of_real (f x)))" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 587 | by (rule integrable_Re) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 588 | then show "integrable M f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 589 | by simp | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 590 | qed simp | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 591 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 592 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 593 | abbreviation complex_set_integrable :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 594 | "complex_set_integrable M A f \<equiv> set_integrable M A f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 595 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 596 | abbreviation complex_set_lebesgue_integral :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> complex" where
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 597 | "complex_set_lebesgue_integral M A f \<equiv> set_lebesgue_integral M A f" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 598 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 599 | syntax | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 600 | "_ascii_complex_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 601 | ("(4CLINT _:_|_. _)" [0,60,110,61] 60)
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 602 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 603 | translations | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 604 | "CLINT x:A|M. f" == "CONST complex_set_lebesgue_integral M A (\<lambda>x. f)" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 605 | |
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 606 | lemma set_measurable_continuous_on_ivl: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 607 |   assumes "continuous_on {a..b} (f :: real \<Rightarrow> real)"
 | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 608 |   shows "set_borel_measurable borel {a..b} f"
 | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 609 | unfolding set_borel_measurable_def | 
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
64911diff
changeset | 610 | by (rule borel_measurable_continuous_on_indicator[OF _ assms]) simp | 
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 611 | |
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 612 | |
| 64911 | 613 | text\<open>This notation is from Sébastien Gouëzel: His use is not directly in line with the | 
| 614 | notations in this file, they are more in line with sum, and more readable he thinks.\<close> | |
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 615 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 616 | abbreviation "set_nn_integral M A f \<equiv> nn_integral M (\<lambda>x. f x * indicator A x)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 617 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 618 | syntax | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 619 | "_set_nn_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 620 | ("(\<integral>\<^sup>+((_)\<in>(_)./ _)/\<partial>_)" [0,60,110,61] 60)
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 621 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 622 | "_set_lebesgue_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 623 | ("(\<integral>((_)\<in>(_)./ _)/\<partial>_)" [0,60,110,61] 60)
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 624 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 625 | translations | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 626 | "\<integral>\<^sup>+x \<in> A. f \<partial>M" == "CONST set_nn_integral M A (\<lambda>x. f)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 627 | "\<integral>x \<in> A. f \<partial>M" == "CONST set_lebesgue_integral M A (\<lambda>x. f)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 628 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 629 | lemma nn_integral_disjoint_pair: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 630 | assumes [measurable]: "f \<in> borel_measurable M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 631 | "B \<in> sets M" "C \<in> sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 632 |           "B \<inter> C = {}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 633 | shows "(\<integral>\<^sup>+x \<in> B \<union> C. f x \<partial>M) = (\<integral>\<^sup>+x \<in> B. f x \<partial>M) + (\<integral>\<^sup>+x \<in> C. f x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 634 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 635 | have mes: "\<And>D. D \<in> sets M \<Longrightarrow> (\<lambda>x. f x * indicator D x) \<in> borel_measurable M" by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 636 | have pos: "\<And>D. AE x in M. f x * indicator D x \<ge> 0" using assms(2) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 637 | have "\<And>x. f x * indicator (B \<union> C) x = f x * indicator B x + f x * indicator C x" using assms(4) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 638 | by (auto split: split_indicator) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 639 | then have "(\<integral>\<^sup>+x. f x * indicator (B \<union> C) x \<partial>M) = (\<integral>\<^sup>+x. f x * indicator B x + f x * indicator C x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 640 | by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 641 | also have "... = (\<integral>\<^sup>+x. f x * indicator B x \<partial>M) + (\<integral>\<^sup>+x. f x * indicator C x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 642 | by (rule nn_integral_add) (auto simp add: assms mes pos) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 643 | finally show ?thesis by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 644 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 645 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 646 | lemma nn_integral_disjoint_pair_countspace: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 647 |   assumes "B \<inter> C = {}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 648 | shows "(\<integral>\<^sup>+x \<in> B \<union> C. f x \<partial>count_space UNIV) = (\<integral>\<^sup>+x \<in> B. f x \<partial>count_space UNIV) + (\<integral>\<^sup>+x \<in> C. f x \<partial>count_space UNIV)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 649 | by (rule nn_integral_disjoint_pair) (simp_all add: assms) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 650 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 651 | lemma nn_integral_null_delta: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 652 | assumes "A \<in> sets M" "B \<in> sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 653 | "(A - B) \<union> (B - A) \<in> null_sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 654 | shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+x \<in> B. f x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 655 | proof (rule nn_integral_cong_AE, auto simp add: indicator_def) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 656 | have *: "AE a in M. a \<notin> (A - B) \<union> (B - A)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 657 | using assms(3) AE_not_in by blast | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 658 | then show "AE a in M. a \<notin> A \<longrightarrow> a \<in> B \<longrightarrow> f a = 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 659 | by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 660 | show "AE x\<in>A in M. x \<notin> B \<longrightarrow> f x = 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 661 | using * by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 662 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 663 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 664 | proposition nn_integral_disjoint_family: | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 665 | assumes [measurable]: "f \<in> borel_measurable M" "\<And>(n::nat). B n \<in> sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 666 | and "disjoint_family B" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 667 | shows "(\<integral>\<^sup>+x \<in> (\<Union>n. B n). f x \<partial>M) = (\<Sum>n. (\<integral>\<^sup>+x \<in> B n. f x \<partial>M))" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 668 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 669 | have "(\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (B n) x) \<partial>M) = (\<Sum>n. (\<integral>\<^sup>+ x. f x * indicator (B n) x \<partial>M))" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 670 | by (rule nn_integral_suminf) simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 671 | moreover have "(\<Sum>n. f x * indicator (B n) x) = f x * indicator (\<Union>n. B n) x" for x | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 672 | proof (cases) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 673 | assume "x \<in> (\<Union>n. B n)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 674 | then obtain n where "x \<in> B n" by blast | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 675 |     have a: "finite {n}" by simp
 | 
| 64911 | 676 | have "\<And>i. i \<noteq> n \<Longrightarrow> x \<notin> B i" using \<open>x \<in> B n\<close> assms(3) disjoint_family_on_def | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 677 | by (metis IntI UNIV_I empty_iff) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 678 |     then have "\<And>i. i \<notin> {n} \<Longrightarrow> indicator (B i) x = (0::ennreal)" using indicator_def by simp
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 679 |     then have b: "\<And>i. i \<notin> {n} \<Longrightarrow> f x * indicator (B i) x = (0::ennreal)" by simp
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 680 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 681 | define h where "h = (\<lambda>i. f x * indicator (B i) x)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 682 |     then have "\<And>i. i \<notin> {n} \<Longrightarrow> h i = 0" using b by simp
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 683 |     then have "(\<Sum>i. h i) = (\<Sum>i\<in>{n}. h i)"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 684 | by (metis sums_unique[OF sums_finite[OF a]]) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 685 | then have "(\<Sum>i. h i) = h n" by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 686 | then have "(\<Sum>n. f x * indicator (B n) x) = f x * indicator (B n) x" using h_def by simp | 
| 64911 | 687 | then have "(\<Sum>n. f x * indicator (B n) x) = f x" using \<open>x \<in> B n\<close> indicator_def by simp | 
| 688 | then show ?thesis using \<open>x \<in> (\<Union>n. B n)\<close> by auto | |
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 689 | next | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 690 | assume "x \<notin> (\<Union>n. B n)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 691 | then have "\<And>n. f x * indicator (B n) x = 0" by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 692 | have "(\<Sum>n. f x * indicator (B n) x) = 0" | 
| 64911 | 693 | by (simp add: \<open>\<And>n. f x * indicator (B n) x = 0\<close>) | 
| 694 | then show ?thesis using \<open>x \<notin> (\<Union>n. B n)\<close> by auto | |
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 695 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 696 | ultimately show ?thesis by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 697 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 698 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 699 | lemma nn_set_integral_add: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 700 | assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 701 | "A \<in> sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 702 | shows "(\<integral>\<^sup>+x \<in> A. (f x + g x) \<partial>M) = (\<integral>\<^sup>+x \<in> A. f x \<partial>M) + (\<integral>\<^sup>+x \<in> A. g x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 703 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 704 | have "(\<integral>\<^sup>+x \<in> A. (f x + g x) \<partial>M) = (\<integral>\<^sup>+x. (f x * indicator A x + g x * indicator A x) \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 705 | by (auto simp add: indicator_def intro!: nn_integral_cong) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 706 | also have "... = (\<integral>\<^sup>+x. f x * indicator A x \<partial>M) + (\<integral>\<^sup>+x. g x * indicator A x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 707 | apply (rule nn_integral_add) using assms(1) assms(2) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 708 | finally show ?thesis by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 709 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 710 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 711 | lemma nn_set_integral_cong: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 712 | assumes "AE x in M. f x = g x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 713 | shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+x \<in> A. g x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 714 | apply (rule nn_integral_cong_AE) using assms(1) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 715 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 716 | lemma nn_set_integral_set_mono: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 717 | "A \<subseteq> B \<Longrightarrow> (\<integral>\<^sup>+ x \<in> A. f x \<partial>M) \<le> (\<integral>\<^sup>+ x \<in> B. f x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 718 | by (auto intro!: nn_integral_mono split: split_indicator) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 719 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 720 | lemma nn_set_integral_mono: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 721 | assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 722 | "A \<in> sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 723 | and "AE x\<in>A in M. f x \<le> g x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 724 | shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) \<le> (\<integral>\<^sup>+x \<in> A. g x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 725 | by (auto intro!: nn_integral_mono_AE split: split_indicator simp: assms) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 726 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 727 | lemma nn_set_integral_space [simp]: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 728 | shows "(\<integral>\<^sup>+ x \<in> space M. f x \<partial>M) = (\<integral>\<^sup>+x. f x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 729 | by (metis (mono_tags, lifting) indicator_simps(1) mult.right_neutral nn_integral_cong) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 730 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 731 | lemma nn_integral_count_compose_inj: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 732 | assumes "inj_on g A" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 733 | shows "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 734 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 735 | have "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+x. f (g x) \<partial>count_space A)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 736 | by (auto simp add: nn_integral_count_space_indicator[symmetric]) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 737 | also have "... = (\<integral>\<^sup>+y. f y \<partial>count_space (g`A))" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 738 | by (simp add: assms nn_integral_bij_count_space inj_on_imp_bij_betw) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 739 | also have "... = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 740 | by (auto simp add: nn_integral_count_space_indicator[symmetric]) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 741 | finally show ?thesis by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 742 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 743 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 744 | lemma nn_integral_count_compose_bij: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 745 | assumes "bij_betw g A B" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 746 | shows "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> B. f y \<partial>count_space UNIV)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 747 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 748 | have "inj_on g A" using assms bij_betw_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 749 | then have "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 750 | by (rule nn_integral_count_compose_inj) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 751 | then show ?thesis using assms by (simp add: bij_betw_def) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 752 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 753 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 754 | lemma set_integral_null_delta: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 755 |   fixes f::"_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 756 | assumes [measurable]: "integrable M f" "A \<in> sets M" "B \<in> sets M" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 757 | and null: "(A - B) \<union> (B - A) \<in> null_sets M" | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 758 | shows "(\<integral>x \<in> A. f x \<partial>M) = (\<integral>x \<in> B. f x \<partial>M)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 759 | proof (rule set_integral_cong_set) | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 760 | have *: "AE a in M. a \<notin> (A - B) \<union> (B - A)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 761 | using null AE_not_in by blast | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 762 | then show "AE x in M. (x \<in> B) = (x \<in> A)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 763 | by auto | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 764 | qed (simp_all add: set_borel_measurable_def) | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 765 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 766 | lemma set_integral_space: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 767 | assumes "integrable M f" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 768 | shows "(\<integral>x \<in> space M. f x \<partial>M) = (\<integral>x. f x \<partial>M)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 769 | by (metis (no_types, lifting) indicator_simps(1) integral_cong scaleR_one set_lebesgue_integral_def) | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 770 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 771 | lemma null_if_pos_func_has_zero_nn_int: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 772 | fixes f::"'a \<Rightarrow> ennreal" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 773 | assumes [measurable]: "f \<in> borel_measurable M" "A \<in> sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 774 | and "AE x\<in>A in M. f x > 0" "(\<integral>\<^sup>+x\<in>A. f x \<partial>M) = 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 775 | shows "A \<in> null_sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 776 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 777 | have "AE x in M. f x * indicator A x = 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 778 | by (subst nn_integral_0_iff_AE[symmetric], auto simp add: assms(4)) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 779 | then have "AE x\<in>A in M. False" using assms(3) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 780 | then show "A \<in> null_sets M" using assms(2) by (simp add: AE_iff_null_sets) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 781 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 782 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 783 | lemma null_if_pos_func_has_zero_int: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 784 | assumes [measurable]: "integrable M f" "A \<in> sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 785 | and "AE x\<in>A in M. f x > 0" "(\<integral>x\<in>A. f x \<partial>M) = (0::real)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 786 | shows "A \<in> null_sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 787 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 788 | have "AE x in M. indicator A x * f x = 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 789 | apply (subst integral_nonneg_eq_0_iff_AE[symmetric]) | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 790 | using assms integrable_mult_indicator[OF \<open>A \<in> sets M\<close> assms(1)] | 
| 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 791 | by (auto simp: set_lebesgue_integral_def) | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 792 | then have "AE x\<in>A in M. f x = 0" by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 793 | then have "AE x\<in>A in M. False" using assms(3) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 794 | then show "A \<in> null_sets M" using assms(2) by (simp add: AE_iff_null_sets) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 795 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 796 | |
| 64911 | 797 | text\<open>The next lemma is a variant of \<open>density_unique\<close>. Note that it uses the notation | 
| 798 | for nonnegative set integrals introduced earlier.\<close> | |
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 799 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 800 | lemma (in sigma_finite_measure) density_unique2: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 801 | assumes [measurable]: "f \<in> borel_measurable M" "f' \<in> borel_measurable M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 802 | assumes density_eq: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+ x \<in> A. f' x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 803 | shows "AE x in M. f x = f' x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 804 | proof (rule density_unique) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 805 | show "density M f = density M f'" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 806 | by (intro measure_eqI) (auto simp: emeasure_density intro!: density_eq) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 807 | qed (auto simp add: assms) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 808 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 809 | |
| 64911 | 810 | text \<open>The next lemma implies the same statement for Banach-space valued functions | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 811 | using Hahn-Banach theorem and linear forms. Since they are not yet easily available, I | 
| 64911 | 812 | only formulate it for real-valued functions.\<close> | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 813 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 814 | lemma density_unique_real: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 815 | fixes f f'::"_ \<Rightarrow> real" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 816 | assumes M[measurable]: "integrable M f" "integrable M f'" | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 817 | assumes density_eq: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>x \<in> A. f x \<partial>M) = (\<integral>x \<in> A. f' x \<partial>M)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 818 | shows "AE x in M. f x = f' x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 819 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 820 |   define A where "A = {x \<in> space M. f x < f' x}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 821 | then have [measurable]: "A \<in> sets M" by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 822 | have "(\<integral>x \<in> A. (f' x - f x) \<partial>M) = (\<integral>x \<in> A. f' x \<partial>M) - (\<integral>x \<in> A. f x \<partial>M)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 823 | using \<open>A \<in> sets M\<close> M integrable_mult_indicator set_integrable_def by blast | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 824 | then have "(\<integral>x \<in> A. (f' x - f x) \<partial>M) = 0" using assms(3) by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 825 | then have "A \<in> null_sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 826 | using A_def null_if_pos_func_has_zero_int[where ?f = "\<lambda>x. f' x - f x" and ?A = A] assms by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 827 | then have "AE x in M. x \<notin> A" by (simp add: AE_not_in) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 828 | then have *: "AE x in M. f' x \<le> f x" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 829 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 830 |   define B where "B = {x \<in> space M. f' x < f x}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 831 | then have [measurable]: "B \<in> sets M" by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 832 | have "(\<integral>x \<in> B. (f x - f' x) \<partial>M) = (\<integral>x \<in> B. f x \<partial>M) - (\<integral>x \<in> B. f' x \<partial>M)" | 
| 67974 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 833 | using \<open>B \<in> sets M\<close> M integrable_mult_indicator set_integrable_def by blast | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 834 | then have "(\<integral>x \<in> B. (f x - f' x) \<partial>M) = 0" using assms(3) by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 835 | then have "B \<in> null_sets M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 836 | using B_def null_if_pos_func_has_zero_int[where ?f = "\<lambda>x. f x - f' x" and ?A = B] assms by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 837 | then have "AE x in M. x \<notin> B" by (simp add: AE_not_in) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 838 | then have "AE x in M. f' x \<ge> f x" unfolding B_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 839 | then show ?thesis using * by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 840 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
63958diff
changeset | 841 | |
| 69566 | 842 | text \<open>The next lemma shows that \<open>L\<^sup>1\<close> convergence of a sequence of functions follows from almost | 
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 843 | everywhere convergence and the weaker condition of the convergence of the integrated norms (or even | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 844 | just the nontrivial inequality about them). Useful in a lot of contexts! This statement (or its | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 845 | variations) are known as Scheffe lemma. | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 846 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 847 | The formalization is more painful as one should jump back and forth between reals and ereals and justify | 
| 64911 | 848 | all the time positivity or integrability (thankfully, measurability is handled more or less automatically).\<close> | 
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 849 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 850 | proposition Scheffe_lemma1: | 
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 851 | assumes "\<And>n. integrable M (F n)" "integrable M f" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 852 | "AE x in M. (\<lambda>n. F n x) \<longlonglongrightarrow> f x" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 853 | "limsup (\<lambda>n. \<integral>\<^sup>+ x. norm(F n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 854 | shows "(\<lambda>n. \<integral>\<^sup>+ x. norm(F n x - f x) \<partial>M) \<longlonglongrightarrow> 0" | 
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 855 | proof - | 
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 856 | have [measurable]: "\<And>n. F n \<in> borel_measurable M" "f \<in> borel_measurable M" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 857 | using assms(1) assms(2) by simp_all | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 858 | define G where "G = (\<lambda>n x. norm(f x) + norm(F n x) - norm(F n x - f x))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 859 | have [measurable]: "\<And>n. G n \<in> borel_measurable M" unfolding G_def by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 860 | have G_pos[simp]: "\<And>n x. G n x \<ge> 0" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 861 | unfolding G_def by (metis ge_iff_diff_ge_0 norm_minus_commute norm_triangle_ineq4) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 862 | have finint: "(\<integral>\<^sup>+ x. norm(f x) \<partial>M) \<noteq> \<infinity>" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 863 | using has_bochner_integral_implies_finite_norm[OF has_bochner_integral_integrable[OF \<open>integrable M f\<close>]] | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 864 | by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 865 | then have fin2: "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) \<noteq> \<infinity>" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 866 | by (auto simp: ennreal_mult_eq_top_iff) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 867 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 868 |   {
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 869 | fix x assume *: "(\<lambda>n. F n x) \<longlonglongrightarrow> f x" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 870 | then have "(\<lambda>n. norm(F n x)) \<longlonglongrightarrow> norm(f x)" using tendsto_norm by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 871 | moreover have "(\<lambda>n. norm(F n x - f x)) \<longlonglongrightarrow> 0" using * Lim_null tendsto_norm_zero_iff by fastforce | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 872 | ultimately have a: "(\<lambda>n. norm(F n x) - norm(F n x - f x)) \<longlonglongrightarrow> norm(f x)" using tendsto_diff by fastforce | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 873 | have "(\<lambda>n. norm(f x) + (norm(F n x) - norm(F n x - f x))) \<longlonglongrightarrow> norm(f x) + norm(f x)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 874 | by (rule tendsto_add) (auto simp add: a) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 875 | moreover have "\<And>n. G n x = norm(f x) + (norm(F n x) - norm(F n x - f x))" unfolding G_def by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 876 | ultimately have "(\<lambda>n. G n x) \<longlonglongrightarrow> 2 * norm(f x)" by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 877 | then have "(\<lambda>n. ennreal(G n x)) \<longlonglongrightarrow> ennreal(2 * norm(f x))" by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 878 | then have "liminf (\<lambda>n. ennreal(G n x)) = ennreal(2 * norm(f x))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 879 | using sequentially_bot tendsto_iff_Liminf_eq_Limsup by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 880 | } | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 881 | then have "AE x in M. liminf (\<lambda>n. ennreal(G n x)) = ennreal(2 * norm(f x))" using assms(3) by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 882 | then have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M) = (\<integral>\<^sup>+ x. 2 * ennreal(norm(f x)) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 883 | by (simp add: nn_integral_cong_AE ennreal_mult) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 884 | also have "... = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" by (rule nn_integral_cmult) auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 885 | finally have int_liminf: "(\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M) = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 886 | by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 887 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 888 | have "(\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) = (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(F n x) \<partial>M)" for n | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 889 | by (rule nn_integral_add) (auto simp add: assms) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 890 | then have "limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M)) = | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 891 | limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(F n x) \<partial>M))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 892 | by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 893 | also have "... = (\<integral>\<^sup>+x. norm(f x) \<partial>M) + limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x) \<partial>M))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 894 | by (rule Limsup_const_add, auto simp add: finint) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 895 | also have "... \<le> (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(f x) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 896 | using assms(4) by (simp add: add_left_mono) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 897 | also have "... = 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 898 | unfolding one_add_one[symmetric] distrib_right by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 899 | ultimately have a: "limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M)) \<le> | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 900 | 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 901 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 902 | have le: "ennreal (norm (F n x - f x)) \<le> ennreal (norm (f x)) + ennreal (norm (F n x))" for n x | 
| 68403 | 903 | by (simp add: norm_minus_commute norm_triangle_ineq4 ennreal_minus flip: ennreal_plus) | 
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 904 | then have le2: "(\<integral>\<^sup>+ x. ennreal (norm (F n x - f x)) \<partial>M) \<le> (\<integral>\<^sup>+ x. ennreal (norm (f x)) + ennreal (norm (F n x)) \<partial>M)" for n | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 905 | by (rule nn_integral_mono) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 906 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 907 | have "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) = (\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 908 | by (simp add: int_liminf) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 909 | also have "\<dots> \<le> liminf (\<lambda>n. (\<integral>\<^sup>+x. G n x \<partial>M))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 910 | by (rule nn_integral_liminf) auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 911 | also have "liminf (\<lambda>n. (\<integral>\<^sup>+x. G n x \<partial>M)) = | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 912 | liminf (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 913 | proof (intro arg_cong[where f=liminf] ext) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 914 | fix n | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 915 | have "\<And>x. ennreal(G n x) = ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x))" | 
| 68403 | 916 | unfolding G_def by (simp add: ennreal_minus flip: ennreal_plus) | 
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 917 | moreover have "(\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x)) \<partial>M) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 918 | = (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 919 | proof (rule nn_integral_diff) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 920 | from le show "AE x in M. ennreal (norm (F n x - f x)) \<le> ennreal (norm (f x)) + ennreal (norm (F n x))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 921 | by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 922 | from le2 have "(\<integral>\<^sup>+x. ennreal (norm (F n x - f x)) \<partial>M) < \<infinity>" using assms(1) assms(2) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 923 | by (metis has_bochner_integral_implies_finite_norm integrable.simps Bochner_Integration.integrable_diff) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 924 | then show "(\<integral>\<^sup>+x. ennreal (norm (F n x - f x)) \<partial>M) \<noteq> \<infinity>" by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 925 | qed (auto simp add: assms) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 926 | ultimately show "(\<integral>\<^sup>+x. G n x \<partial>M) = (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 927 | by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 928 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 929 | finally have "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) + limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) \<le> | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 930 | liminf (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) + | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 931 | limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 932 | by (intro add_mono) auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 933 | also have "\<dots> \<le> (limsup (\<lambda>n. \<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - limsup (\<lambda>n. \<integral>\<^sup>+x. norm (F n x - f x) \<partial>M)) + | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 934 | limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 935 | by (intro add_mono liminf_minus_ennreal le2) auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 936 | also have "\<dots> = limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M))" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 937 | by (intro diff_add_cancel_ennreal Limsup_mono always_eventually allI le2) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 938 | also have "\<dots> \<le> 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 939 | by fact | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 940 | finally have "limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) = 0" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 941 | using fin2 by simp | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 942 | then show ?thesis | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 943 | by (rule tendsto_0_if_Limsup_eq_0_ennreal) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 944 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 945 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 946 | proposition Scheffe_lemma2: | 
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 947 |   fixes F::"nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 948 | assumes "\<And> n::nat. F n \<in> borel_measurable M" "integrable M f" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 949 | "AE x in M. (\<lambda>n. F n x) \<longlonglongrightarrow> f x" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 950 | "\<And>n. (\<integral>\<^sup>+ x. norm(F n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 951 | shows "(\<lambda>n. \<integral>\<^sup>+ x. norm(F n x - f x) \<partial>M) \<longlonglongrightarrow> 0" | 
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 952 | proof (rule Scheffe_lemma1) | 
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 953 | fix n::nat | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 954 | have "(\<integral>\<^sup>+ x. norm(f x) \<partial>M) < \<infinity>" using assms(2) by (metis has_bochner_integral_implies_finite_norm integrable.cases) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 955 | then have "(\<integral>\<^sup>+ x. norm(F n x) \<partial>M) < \<infinity>" using assms(4)[of n] by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 956 | then show "integrable M (F n)" by (subst integrable_iff_bounded, simp add: assms(1)[of n]) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 957 | qed (auto simp add: assms Limsup_bounded) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 958 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 959 | lemma tendsto_set_lebesgue_integral_at_right: | 
| 68721 | 960 |   fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}"
 | 
| 961 |   assumes "a < b" and sets: "\<And>a'. a' \<in> {a<..b} \<Longrightarrow> {a'..b} \<in> sets M"
 | |
| 962 |       and "set_integrable M {a<..b} f"
 | |
| 963 |   shows   "((\<lambda>a'. set_lebesgue_integral M {a'..b} f) \<longlongrightarrow>
 | |
| 964 |              set_lebesgue_integral M {a<..b} f) (at_right a)"
 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 965 | proof (rule tendsto_at_right_sequentially[OF assms(1)], goal_cases) | 
| 68721 | 966 | case (1 S) | 
| 967 |   have eq: "(\<Union>n. {S n..b}) = {a<..b}"
 | |
| 968 | proof safe | |
| 969 |     fix x n assume "x \<in> {S n..b}"
 | |
| 970 |     with 1(1,2)[of n] show "x \<in> {a<..b}" by auto
 | |
| 971 | next | |
| 972 |     fix x assume "x \<in> {a<..b}"
 | |
| 973 |     with order_tendstoD[OF \<open>S \<longlonglongrightarrow> a\<close>, of x] show "x \<in> (\<Union>n. {S n..b})"
 | |
| 974 | by (force simp: eventually_at_top_linorder dest: less_imp_le) | |
| 975 | qed | |
| 976 |   have "(\<lambda>n. set_lebesgue_integral M {S n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M (\<Union>n. {S n..b}) f"
 | |
| 977 | by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le) | |
| 978 | with eq show ?case by simp | |
| 979 | qed | |
| 980 | ||
| 981 | ||
| 982 | text \<open> | |
| 983 | The next lemmas relate convergence of integrals over an interval to | |
| 984 | improper integrals. | |
| 985 | \<close> | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 986 | lemma tendsto_set_lebesgue_integral_at_left: | 
| 68721 | 987 |   fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}"
 | 
| 988 |   assumes "a < b" and sets: "\<And>b'. b' \<in> {a..<b} \<Longrightarrow> {a..b'} \<in> sets M"
 | |
| 989 |       and "set_integrable M {a..<b} f"
 | |
| 990 |   shows   "((\<lambda>b'. set_lebesgue_integral M {a..b'} f) \<longlongrightarrow>
 | |
| 991 |              set_lebesgue_integral M {a..<b} f) (at_left b)"
 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 992 | proof (rule tendsto_at_left_sequentially[OF assms(1)], goal_cases) | 
| 68721 | 993 | case (1 S) | 
| 994 |   have eq: "(\<Union>n. {a..S n}) = {a..<b}"
 | |
| 995 | proof safe | |
| 996 |     fix x n assume "x \<in> {a..S n}"
 | |
| 997 |     with 1(1,2)[of n] show "x \<in> {a..<b}" by auto
 | |
| 998 | next | |
| 999 |     fix x assume "x \<in> {a..<b}"
 | |
| 1000 |     with order_tendstoD[OF \<open>S \<longlonglongrightarrow> b\<close>, of x] show "x \<in> (\<Union>n. {a..S n})"
 | |
| 1001 | by (force simp: eventually_at_top_linorder dest: less_imp_le) | |
| 1002 | qed | |
| 1003 |   have "(\<lambda>n. set_lebesgue_integral M {a..S n} f) \<longlonglongrightarrow> set_lebesgue_integral M (\<Union>n. {a..S n}) f"
 | |
| 1004 | by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le) | |
| 1005 | with eq show ?case by simp | |
| 1006 | qed | |
| 1007 | ||
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 1008 | proposition tendsto_set_lebesgue_integral_at_top: | 
| 68721 | 1009 |   fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
 | 
| 1010 |   assumes sets: "\<And>b. b \<ge> a \<Longrightarrow> {a..b} \<in> sets M"
 | |
| 1011 |       and int: "set_integrable M {a..} f"
 | |
| 1012 |   shows "((\<lambda>b. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {a..} f) at_top"
 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 1013 | proof (rule tendsto_at_topI_sequentially) | 
| 68721 | 1014 | fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially" | 
| 1015 |   show "(\<lambda>n. set_lebesgue_integral M {a..X n} f) \<longlonglongrightarrow> set_lebesgue_integral M {a..} f"
 | |
| 1016 | unfolding set_lebesgue_integral_def | |
| 1017 | proof (rule integral_dominated_convergence) | |
| 1018 |     show "integrable M (\<lambda>x. indicat_real {a..} x *\<^sub>R norm (f x))"
 | |
| 1019 | using integrable_norm[OF int[unfolded set_integrable_def]] by simp | |
| 1020 |     show "AE x in M. (\<lambda>n. indicator {a..X n} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {a..} x *\<^sub>R f x"
 | |
| 1021 | proof | |
| 1022 | fix x | |
| 1023 | from \<open>filterlim X at_top sequentially\<close> | |
| 1024 | have "eventually (\<lambda>n. x \<le> X n) sequentially" | |
| 1025 | unfolding filterlim_at_top_ge[where c=x] by auto | |
| 1026 |       then show "(\<lambda>n. indicator {a..X n} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {a..} x *\<^sub>R f x"
 | |
| 70365 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70136diff
changeset | 1027 | by (intro tendsto_eventually) (auto split: split_indicator elim!: eventually_mono) | 
| 68721 | 1028 | qed | 
| 1029 |     fix n show "AE x in M. norm (indicator {a..X n} x *\<^sub>R f x) \<le> 
 | |
| 1030 |                              indicator {a..} x *\<^sub>R norm (f x)"
 | |
| 1031 | by (auto split: split_indicator) | |
| 1032 | next | |
| 1033 |     from int show "(\<lambda>x. indicat_real {a..} x *\<^sub>R f x) \<in> borel_measurable M"
 | |
| 1034 | by (simp add: set_integrable_def) | |
| 1035 | next | |
| 1036 | fix n :: nat | |
| 1037 |     from sets have "{a..X n} \<in> sets M" by (cases "X n \<ge> a") auto
 | |
| 1038 |     with int have "set_integrable M {a..X n} f"
 | |
| 1039 | by (rule set_integrable_subset) auto | |
| 1040 |     thus "(\<lambda>x. indicat_real {a..X n} x *\<^sub>R f x) \<in> borel_measurable M"
 | |
| 1041 | by (simp add: set_integrable_def) | |
| 1042 | qed | |
| 1043 | qed | |
| 1044 | ||
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 1045 | proposition tendsto_set_lebesgue_integral_at_bot: | 
| 68721 | 1046 |   fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
 | 
| 1047 |   assumes sets: "\<And>a. a \<le> b \<Longrightarrow> {a..b} \<in> sets M"
 | |
| 1048 |       and int: "set_integrable M {..b} f"
 | |
| 1049 |     shows "((\<lambda>a. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {..b} f) at_bot"
 | |
| 69737 
ec3cc98c38db
tagged 4 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69566diff
changeset | 1050 | proof (rule tendsto_at_botI_sequentially) | 
| 68721 | 1051 | fix X :: "nat \<Rightarrow> real" assume "filterlim X at_bot sequentially" | 
| 1052 |   show "(\<lambda>n. set_lebesgue_integral M {X n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M {..b} f"
 | |
| 1053 | unfolding set_lebesgue_integral_def | |
| 1054 | proof (rule integral_dominated_convergence) | |
| 1055 |     show "integrable M (\<lambda>x. indicat_real {..b} x *\<^sub>R norm (f x))"
 | |
| 1056 | using integrable_norm[OF int[unfolded set_integrable_def]] by simp | |
| 1057 |     show "AE x in M. (\<lambda>n. indicator {X n..b} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {..b} x *\<^sub>R f x"
 | |
| 1058 | proof | |
| 1059 | fix x | |
| 1060 | from \<open>filterlim X at_bot sequentially\<close> | |
| 1061 | have "eventually (\<lambda>n. x \<ge> X n) sequentially" | |
| 1062 | unfolding filterlim_at_bot_le[where c=x] by auto | |
| 1063 |       then show "(\<lambda>n. indicator {X n..b} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {..b} x *\<^sub>R f x"
 | |
| 70365 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70136diff
changeset | 1064 | by (intro tendsto_eventually) (auto split: split_indicator elim!: eventually_mono) | 
| 68721 | 1065 | qed | 
| 1066 |     fix n show "AE x in M. norm (indicator {X n..b} x *\<^sub>R f x) \<le> 
 | |
| 1067 |                              indicator {..b} x *\<^sub>R norm (f x)"
 | |
| 1068 | by (auto split: split_indicator) | |
| 1069 | next | |
| 1070 |     from int show "(\<lambda>x. indicat_real {..b} x *\<^sub>R f x) \<in> borel_measurable M"
 | |
| 1071 | by (simp add: set_integrable_def) | |
| 1072 | next | |
| 1073 | fix n :: nat | |
| 1074 |     from sets have "{X n..b} \<in> sets M" by (cases "X n \<le> b") auto
 | |
| 1075 |     with int have "set_integrable M {X n..b} f"
 | |
| 1076 | by (rule set_integrable_subset) auto | |
| 1077 |     thus "(\<lambda>x. indicat_real {X n..b} x *\<^sub>R f x) \<in> borel_measurable M"
 | |
| 1078 | by (simp add: set_integrable_def) | |
| 1079 | qed | |
| 1080 | qed | |
| 1081 | ||
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: diff
changeset | 1082 | end |