460
|
1 |
\begin{thebibliography}{10}
|
|
2 |
|
|
3 |
\bibitem{andrews86}
|
|
4 |
Andrews, P.~B.,
|
|
5 |
\newblock {\em An Introduction to Mathematical Logic and Type Theory: To Truth
|
|
6 |
Through Proof},
|
|
7 |
\newblock Academic Press, 1986
|
|
8 |
|
|
9 |
\bibitem{basin91}
|
|
10 |
Basin, D., Kaufmann, M.,
|
|
11 |
\newblock The {Boyer-Moore} prover and {Nuprl}: An experimental comparison,
|
|
12 |
\newblock In {\em Logical Frameworks}, G.~Huet, G.~Plotkin, Eds. Cambridge
|
|
13 |
Univ. Press, 1991, pp.~89--119
|
|
14 |
|
|
15 |
\bibitem{boyer86}
|
|
16 |
Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., Wos, L.,
|
|
17 |
\newblock Set theory in first-order logic: Clauses for {G\"odel's} axioms,
|
|
18 |
\newblock {\em J. Auto. Reas. {\bf 2}}, 3 (1986), 287--327
|
|
19 |
|
|
20 |
\bibitem{bm88book}
|
|
21 |
Boyer, R.~S., Moore, J.~S.,
|
|
22 |
\newblock {\em A Computational Logic Handbook},
|
|
23 |
\newblock Academic Press, 1988
|
|
24 |
|
|
25 |
\bibitem{camilleri92}
|
|
26 |
Camilleri, J., Melham, T.~F.,
|
|
27 |
\newblock Reasoning with inductively defined relations in the {HOL} theorem
|
|
28 |
prover,
|
|
29 |
\newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, Aug. 1992
|
|
30 |
|
|
31 |
\bibitem{charniak80}
|
|
32 |
Charniak, E., Riesbeck, C.~K., McDermott, D.~V.,
|
|
33 |
\newblock {\em Artificial Intelligence Programming},
|
|
34 |
\newblock Lawrence Erlbaum Associates, 1980
|
|
35 |
|
|
36 |
\bibitem{church40}
|
|
37 |
Church, A.,
|
|
38 |
\newblock A formulation of the simple theory of types,
|
|
39 |
\newblock {\em J. Symb. Logic {\bf 5}\/} (1940), 56--68
|
|
40 |
|
|
41 |
\bibitem{coen92}
|
|
42 |
Coen, M.~D.,
|
|
43 |
\newblock {\em Interactive Program Derivation},
|
|
44 |
\newblock PhD thesis, University of Cambridge, 1992,
|
|
45 |
\newblock Computer Laboratory Technical Report 272
|
|
46 |
|
|
47 |
\bibitem{constable86}
|
|
48 |
{Constable et al.}, R.~L.,
|
|
49 |
\newblock {\em Implementing Mathematics with the Nuprl Proof Development
|
|
50 |
System},
|
|
51 |
\newblock Prentice-Hall, 1986
|
|
52 |
|
|
53 |
\bibitem{davey&priestley}
|
|
54 |
Davey, B.~A., Priestley, H.~A.,
|
|
55 |
\newblock {\em Introduction to Lattices and Order},
|
|
56 |
\newblock Cambridge Univ. Press, 1990
|
|
57 |
|
|
58 |
\bibitem{dawson90}
|
|
59 |
Dawson, W.~M.,
|
|
60 |
\newblock {\em A Generic Logic Environment},
|
|
61 |
\newblock PhD thesis, Imperial College, London, 1990
|
|
62 |
|
|
63 |
\bibitem{debruijn72}
|
|
64 |
de~Bruijn, N.~G.,
|
|
65 |
\newblock Lambda calculus notation with nameless dummies, a tool for automatic
|
|
66 |
formula manipulation, with application to the {Church-Rosser Theorem},
|
|
67 |
\newblock {\em Indag. Math. {\bf 34}\/} (1972), 381--392
|
|
68 |
|
|
69 |
\bibitem{devlin79}
|
|
70 |
Devlin, K.~J.,
|
|
71 |
\newblock {\em Fundamentals of Contemporary Set Theory},
|
|
72 |
\newblock Springer, 1979
|
|
73 |
|
|
74 |
\bibitem{coq}
|
|
75 |
{Dowek et al.}, G.,
|
|
76 |
\newblock The {Coq} proof assistant user's guide,
|
|
77 |
\newblock Technical Report 134, INRIA-Rocquencourt, 1991
|
|
78 |
|
|
79 |
\bibitem{dummett}
|
|
80 |
Dummett, M.,
|
|
81 |
\newblock {\em Elements of Intuitionism},
|
|
82 |
\newblock Oxford University Press, 1977
|
|
83 |
|
|
84 |
\bibitem{dyckhoff}
|
|
85 |
Dyckhoff, R.,
|
|
86 |
\newblock Contraction-free sequent calculi for intuitionistic logic,
|
|
87 |
\newblock {\em J. Symb. Logic {\bf 57}}, 3 (1992), 795--807
|
|
88 |
|
|
89 |
\bibitem{felty91a}
|
|
90 |
Felty, A.,
|
|
91 |
\newblock A logic program for transforming sequent proofs to natural deduction
|
|
92 |
proofs,
|
|
93 |
\newblock In {\em Extensions of Logic Programming\/} (1991),
|
|
94 |
P.~Schroeder-Heister, Ed., Springer, pp.~157--178,
|
|
95 |
\newblock LNAI 475
|
|
96 |
|
|
97 |
\bibitem{felty93}
|
|
98 |
Felty, A.,
|
|
99 |
\newblock Implementing tactics and tacticals in a higher-order logic
|
|
100 |
programming language,
|
|
101 |
\newblock {\em J. Auto. Reas. {\bf 11}}, 1 (1993), 43--82
|
|
102 |
|
|
103 |
\bibitem{frost93}
|
|
104 |
Frost, J.,
|
|
105 |
\newblock A case study of co-induction in {Isabelle HOL},
|
|
106 |
\newblock Tech. Rep. 308, Comp. Lab., Univ. Cambridge, Aug. 1993
|
|
107 |
|
|
108 |
\bibitem{OBJ}
|
|
109 |
Futatsugi, K., Goguen, J., Jouannaud, J.-P., Meseguer, J.,
|
|
110 |
\newblock Principles of {OBJ2},
|
|
111 |
\newblock In {\em Princ. Prog. Lang.\/} (1985), pp.~52--66
|
|
112 |
|
|
113 |
\bibitem{gallier86}
|
|
114 |
Gallier, J.~H.,
|
|
115 |
\newblock {\em Logic for Computer Science: Foundations of Automatic Theorem
|
|
116 |
Proving},
|
|
117 |
\newblock Harper \& Row, 1986
|
|
118 |
|
|
119 |
\bibitem{mgordon-hol}
|
|
120 |
Gordon, M. J.~C., Melham, T.~F.,
|
|
121 |
\newblock {\em Introduction to {HOL}: A Theorem Proving Environment for Higher
|
|
122 |
Order Logic},
|
|
123 |
\newblock Cambridge Univ. Press, 1993
|
|
124 |
|
|
125 |
\bibitem{halmos60}
|
|
126 |
Halmos, P.~R.,
|
|
127 |
\newblock {\em Naive Set Theory},
|
|
128 |
\newblock Van Nostrand, 1960
|
|
129 |
|
|
130 |
\bibitem{harper-jacm}
|
|
131 |
Harper, R., Honsell, F., Plotkin, G.,
|
|
132 |
\newblock A framework for defining logics,
|
|
133 |
\newblock {\em J.~ACM {\bf 40}}, 1 (1993), 143--184
|
|
134 |
|
|
135 |
\bibitem{haskell-tutorial}
|
|
136 |
Hudak, P., Fasel, J.~H.,
|
|
137 |
\newblock A gentle introduction to {Haskell},
|
|
138 |
\newblock {\em {SIGPLAN} {\bf 27}}, 5 (May 1992)
|
|
139 |
|
|
140 |
\bibitem{haskell-report}
|
|
141 |
Hudak, P., Jones, S.~P., Wadler, P.,
|
|
142 |
\newblock Report on the programming language {Haskell}: A non-strict, purely
|
|
143 |
functional language,
|
|
144 |
\newblock {\em {SIGPLAN} {\bf 27}}, 5 (May 1992),
|
|
145 |
\newblock Version 1.2
|
|
146 |
|
|
147 |
\bibitem{huet75}
|
|
148 |
Huet, G.~P.,
|
|
149 |
\newblock A unification algorithm for typed $\lambda$-calculus,
|
|
150 |
\newblock {\em Theoretical Comput. Sci. {\bf 1}\/} (1975), 27--57
|
|
151 |
|
|
152 |
\bibitem{huet78}
|
|
153 |
Huet, G.~P., Lang, B.,
|
|
154 |
\newblock Proving and applying program transformations expressed with
|
|
155 |
second-order patterns,
|
|
156 |
\newblock {\em Acta Inf. {\bf 11}\/} (1978), 31--55
|
|
157 |
|
|
158 |
\bibitem{mural}
|
|
159 |
Jones, C.~B., Jones, K.~D., Lindsay, P.~A., Moore, R.,
|
|
160 |
\newblock {\em Mural: A Formal Development Support System},
|
|
161 |
\newblock Springer, 1991
|
|
162 |
|
|
163 |
\bibitem{alf}
|
|
164 |
Magnusson, L., {Nordstr\"om}, B.,
|
|
165 |
\newblock The {ALF} proof editor and its proof engine,
|
|
166 |
\newblock In {\em Types for Proofs and Programs: International Workshop {TYPES
|
|
167 |
'93}\/} (published 1994), Springer, pp.~213--237,
|
|
168 |
\newblock LNCS 806
|
|
169 |
|
|
170 |
\bibitem{mw81}
|
|
171 |
Manna, Z., Waldinger, R.,
|
|
172 |
\newblock Deductive synthesis of the unification algorithm,
|
|
173 |
\newblock {\em Sci. Comput. Programming {\bf 1}}, 1 (1981), 5--48
|
|
174 |
|
|
175 |
\bibitem{martin-nipkow}
|
|
176 |
Martin, U., Nipkow, T.,
|
|
177 |
\newblock Ordered rewriting and confluence,
|
|
178 |
\newblock In {\em 10th Conf. Auto. Deduct.\/} (1990), M.~E. Stickel, Ed.,
|
|
179 |
Springer, pp.~366--380,
|
|
180 |
\newblock LNCS 449
|
|
181 |
|
|
182 |
\bibitem{martinlof84}
|
|
183 |
Martin-L\"of, P.,
|
|
184 |
\newblock {\em Intuitionistic type theory},
|
|
185 |
\newblock Bibliopolis, 1984
|
|
186 |
|
|
187 |
\bibitem{melham89}
|
|
188 |
Melham, T.~F.,
|
|
189 |
\newblock Automating recursive type definitions in higher order logic,
|
|
190 |
\newblock In {\em Current Trends in Hardware Verification and Automated Theorem
|
|
191 |
Proving}, G.~Birtwistle, P.~A. Subrahmanyam, Eds. Springer, 1989,
|
|
192 |
pp.~341--386
|
|
193 |
|
|
194 |
\bibitem{miller-mixed}
|
|
195 |
Miller, D.,
|
|
196 |
\newblock Unification under a mixed prefix,
|
|
197 |
\newblock {\em J. Symb. Comput. {\bf 14}}, 4 (1992), 321--358
|
|
198 |
|
|
199 |
\bibitem{milner-coind}
|
|
200 |
Milner, R., Tofte, M.,
|
|
201 |
\newblock Co-induction in relational semantics,
|
|
202 |
\newblock {\em Theoretical Comput. Sci. {\bf 87}\/} (1991), 209--220
|
|
203 |
|
|
204 |
\bibitem{nipkow-prehofer}
|
|
205 |
Nipkow, T., Prehofer, C.,
|
|
206 |
\newblock Type checking type classes,
|
|
207 |
\newblock In {\em 20th Princ. Prog. Lang.\/} (1993), ACM Press, pp.~409--418,
|
|
208 |
\newblock Revised version to appear in \bgroup\em J. Func. Prog.\egroup
|
|
209 |
|
|
210 |
\bibitem{noel}
|
|
211 |
{No\"el}, P.,
|
|
212 |
\newblock Experimenting with {Isabelle} in {ZF} set theory,
|
|
213 |
\newblock {\em J. Auto. Reas. {\bf 10}}, 1 (1993), 15--58
|
|
214 |
|
|
215 |
\bibitem{nordstrom90}
|
|
216 |
{Nordstr\"om}, B., Petersson, K., Smith, J.,
|
|
217 |
\newblock {\em Programming in {Martin-L\"of}'s Type Theory. An Introduction},
|
|
218 |
\newblock Oxford University Press, 1990
|
|
219 |
|
|
220 |
\bibitem{paulin92}
|
|
221 |
Paulin-Mohring, C.,
|
|
222 |
\newblock Inductive definitions in the system {Coq}: Rules and properties,
|
|
223 |
\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon, Dec.
|
|
224 |
1992
|
|
225 |
|
|
226 |
\bibitem{paulson85}
|
|
227 |
Paulson, L.~C.,
|
|
228 |
\newblock Verifying the unification algorithm in {LCF},
|
|
229 |
\newblock {\em Sci. Comput. Programming {\bf 5}\/} (1985), 143--170
|
|
230 |
|
|
231 |
\bibitem{paulson87}
|
|
232 |
Paulson, L.~C.,
|
|
233 |
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
|
|
234 |
\newblock Cambridge Univ. Press, 1987
|
|
235 |
|
|
236 |
\bibitem{paulson89}
|
|
237 |
Paulson, L.~C.,
|
|
238 |
\newblock The foundation of a generic theorem prover,
|
|
239 |
\newblock {\em J. Auto. Reas. {\bf 5}}, 3 (1989), 363--397
|
|
240 |
|
|
241 |
\bibitem{paulson-COLOG}
|
|
242 |
Paulson, L.~C.,
|
|
243 |
\newblock A formulation of the simple theory of types (for {Isabelle}),
|
|
244 |
\newblock In {\em COLOG-88: International Conference on Computer Logic\/}
|
|
245 |
(Tallinn, 1990), P.~Martin-L\"of, G.~Mints, Eds., Estonian Academy of
|
|
246 |
Sciences, Springer,
|
|
247 |
\newblock LNCS 417
|
|
248 |
|
|
249 |
\bibitem{paulson700}
|
|
250 |
Paulson, L.~C.,
|
|
251 |
\newblock {Isabelle}: The next 700 theorem provers,
|
|
252 |
\newblock In {\em Logic and Computer Science}, P.~Odifreddi, Ed. Academic
|
|
253 |
Press, 1990, pp.~361--386
|
|
254 |
|
|
255 |
\bibitem{paulson91}
|
|
256 |
Paulson, L.~C.,
|
|
257 |
\newblock {\em {ML} for the Working Programmer},
|
|
258 |
\newblock Cambridge Univ. Press, 1991
|
|
259 |
|
|
260 |
\bibitem{paulson-coind}
|
|
261 |
Paulson, L.~C.,
|
|
262 |
\newblock Co-induction and co-recursion in higher-order logic,
|
|
263 |
\newblock Tech. Rep. 304, Comp. Lab., Univ. Cambridge, July 1993
|
|
264 |
|
|
265 |
\bibitem{paulson-fixedpt}
|
|
266 |
Paulson, L.~C.,
|
|
267 |
\newblock A fixedpoint approach to implementing (co)inductive definitions,
|
|
268 |
\newblock Tech. Rep. 320, Comp. Lab., Univ. Cambridge, Dec. 1993
|
|
269 |
|
|
270 |
\bibitem{paulson-set-I}
|
|
271 |
Paulson, L.~C.,
|
|
272 |
\newblock Set theory for verification: {I}. {From} foundations to functions,
|
|
273 |
\newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389
|
|
274 |
|
|
275 |
\bibitem{paulson-set-II}
|
|
276 |
Paulson, L.~C.,
|
|
277 |
\newblock Set theory for verification: {II}. {Induction} and recursion,
|
|
278 |
\newblock Tech. Rep. 312, Comp. Lab., Univ. Cambridge, 1993
|
|
279 |
|
|
280 |
\bibitem{paulson-final}
|
|
281 |
Paulson, L.~C.,
|
|
282 |
\newblock A concrete final coalgebra theorem for {ZF} set theory,
|
|
283 |
\newblock Tech. rep., Comp. Lab., Univ. Cambridge, 1994
|
|
284 |
|
|
285 |
\bibitem{pelletier86}
|
|
286 |
Pelletier, F.~J.,
|
|
287 |
\newblock Seventy-five problems for testing automatic theorem provers,
|
|
288 |
\newblock {\em J. Auto. Reas. {\bf 2}\/} (1986), 191--216,
|
|
289 |
\newblock Errata, JAR 4 (1988), 235--236
|
|
290 |
|
|
291 |
\bibitem{plaisted90}
|
|
292 |
Plaisted, D.~A.,
|
|
293 |
\newblock A sequent-style model elimination strategy and a positive refinement,
|
|
294 |
\newblock {\em J. Auto. Reas. {\bf 6}}, 4 (1990), 389--402
|
|
295 |
|
|
296 |
\bibitem{quaife92}
|
|
297 |
Quaife, A.,
|
|
298 |
\newblock Automated deduction in {von Neumann-Bernays-G\"odel} set theory,
|
|
299 |
\newblock {\em J. Auto. Reas. {\bf 8}}, 1 (1992), 91--147
|
|
300 |
|
|
301 |
\bibitem{sawamura92}
|
|
302 |
Sawamura, H., Minami, T., Ohashi, K.,
|
|
303 |
\newblock Proof methods based on sheet of thought in {EUODHILOS},
|
|
304 |
\newblock Research Report IIAS-RR-92-6E, International Institute for Advanced
|
|
305 |
Study of Social Information Science, Fujitsu Laboratories, 1992
|
|
306 |
|
|
307 |
\bibitem{suppes72}
|
|
308 |
Suppes, P.,
|
|
309 |
\newblock {\em Axiomatic Set Theory},
|
|
310 |
\newblock Dover, 1972
|
|
311 |
|
|
312 |
\bibitem{takeuti87}
|
|
313 |
Takeuti, G.,
|
|
314 |
\newblock {\em Proof Theory}, 2nd~ed.,
|
|
315 |
\newblock North Holland, 1987
|
|
316 |
|
|
317 |
\bibitem{thompson91}
|
|
318 |
Thompson, S.,
|
|
319 |
\newblock {\em Type Theory and Functional Programming},
|
|
320 |
\newblock Addison-Wesley, 1991
|
|
321 |
|
|
322 |
\bibitem{principia}
|
|
323 |
Whitehead, A.~N., Russell, B.,
|
|
324 |
\newblock {\em Principia Mathematica},
|
|
325 |
\newblock Cambridge Univ. Press, 1962,
|
|
326 |
\newblock Paperback edition to *56, abridged from the 2nd edition (1927)
|
|
327 |
|
|
328 |
\bibitem{wos-bledsoe}
|
|
329 |
Wos, L.,
|
|
330 |
\newblock Automated reasoning and {Bledsoe's} dream for the field,
|
|
331 |
\newblock In {\em Automated Reasoning: Essays in Honor of {Woody Bledsoe}},
|
|
332 |
R.~S. Boyer, Ed. Kluwer Academic Publishers, 1991, pp.~297--342
|
|
333 |
|
|
334 |
\end{thebibliography}
|