src/HOL/Analysis/Interval_Integral.thy
author wenzelm
Sun, 25 Aug 2024 22:54:56 +0200
changeset 80771 fd01ef524169
parent 80768 c7723cc15de8
child 80914 d97fdabd9e2b
permissions -rw-r--r--
use nicer notation, following 783406dd051e;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63626
diff changeset
     1
(*  Title:      HOL/Analysis/Interval_Integral.thy
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
     2
    Author:     Jeremy Avigad (CMU), Johannes Hölzl (TUM), Luke Serafin (CMU)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     3
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     4
Lebesgue integral over an interval (with endpoints possibly +-\<infinity>)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     5
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     6
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
     7
theory Interval_Integral (*FIX ME rename? Lebesgue  *)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
     8
  imports Equivalence_Lebesgue_Henstock_Integration
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     9
begin
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    10
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
    11
definition "einterval a b = {x. a < ereal x \<and> ereal x < b}"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    12
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    13
lemma einterval_eq[simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    14
  shows einterval_eq_Icc: "einterval (ereal a) (ereal b) = {a <..< b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    15
    and einterval_eq_Ici: "einterval (ereal a) \<infinity> = {a <..}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    16
    and einterval_eq_Iic: "einterval (- \<infinity>) (ereal b) = {..< b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    17
    and einterval_eq_UNIV: "einterval (- \<infinity>) \<infinity> = UNIV"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    18
  by (auto simp: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    19
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    20
lemma einterval_same: "einterval a a = {}"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
    21
  by (auto simp: einterval_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    22
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    23
lemma einterval_iff: "x \<in> einterval a b \<longleftrightarrow> a < ereal x \<and> ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    24
  by (simp add: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    25
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    26
lemma einterval_nonempty: "a < b \<Longrightarrow> \<exists>c. c \<in> einterval a b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    27
  by (cases a b rule: ereal2_cases, auto simp: einterval_def intro!: dense gt_ex lt_ex)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    28
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    29
lemma open_einterval[simp]: "open (einterval a b)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    30
  by (cases a b rule: ereal2_cases)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    31
     (auto simp: einterval_def intro!: open_Collect_conj open_Collect_less continuous_intros)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    32
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    33
lemma borel_einterval[measurable]: "einterval a b \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    34
  unfolding einterval_def by measurable
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    35
69683
8b3458ca0762 subsection is always %important
immler
parents: 69681
diff changeset
    36
subsection \<open>Approximating a (possibly infinite) interval\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    37
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    38
lemma filterlim_sup1: "(LIM x F. f x :> G1) \<Longrightarrow> (LIM x F. f x :> (sup G1 G2))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    39
 unfolding filterlim_def by (auto intro: le_supI1)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    40
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
    41
lemma ereal_incseq_approx:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    42
  fixes a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    43
  assumes "a < b"
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
    44
  obtains X :: "nat \<Rightarrow> real" where "incseq X" "\<And>i. a < X i" "\<And>i. X i < b" "X \<longlonglongrightarrow> b"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
    45
proof (cases b)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    46
  case PInf
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    47
  with \<open>a < b\<close> have "a = -\<infinity> \<or> (\<exists>r. a = ereal r)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    48
    by (cases a) auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
    49
  moreover have "(\<lambda>x. ereal (real (Suc x))) \<longlonglongrightarrow> \<infinity>"
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 70613
diff changeset
    50
    by (simp add: Lim_PInfty filterlim_sequentially_Suc) (metis le_SucI of_nat_Suc of_nat_mono order_trans real_arch_simple)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
    51
  moreover have "\<And>r. (\<lambda>x. ereal (r + real (Suc x))) \<longlonglongrightarrow> \<infinity>"
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 70613
diff changeset
    52
    by (simp add: filterlim_sequentially_Suc Lim_PInfty) (metis add.commute diff_le_eq nat_ceiling_le_eq)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    53
  ultimately show thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
    54
    by (intro that[of "\<lambda>i. real_of_ereal a + Suc i"])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    55
       (auto simp: incseq_def PInf)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    56
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    57
  case (real b')
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62390
diff changeset
    58
  define d where "d = b' - (if a = -\<infinity> then b' - 1 else real_of_ereal a)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    59
  with \<open>a < b\<close> have a': "0 < d"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    60
    by (cases a) (auto simp: real)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    61
  moreover
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    62
  have "\<And>i r. r < b' \<Longrightarrow> (b' - r) * 1 < (b' - r) * real (Suc (Suc i))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    63
    by (intro mult_strict_left_mono) auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    64
  with \<open>a < b\<close> a' have "\<And>i. a < ereal (b' - d / real (Suc (Suc i)))"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    65
    by (cases a) (auto simp: real d_def field_simps)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
    66
  moreover
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
    67
  have "(\<lambda>i. b' - d / real i) \<longlonglongrightarrow> b'"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
    68
    by (force intro: tendsto_eq_intros tendsto_divide_0[OF tendsto_const] filterlim_sup1
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
    69
              simp: at_infinity_eq_at_top_bot filterlim_real_sequentially)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
    70
  then have "(\<lambda>i. b' - d / Suc (Suc i)) \<longlonglongrightarrow> b'"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
    71
    by (blast intro: dest: filterlim_sequentially_Suc [THEN iffD2])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    72
  ultimately show thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    73
    by (intro that[of "\<lambda>i. b' - d / Suc (Suc i)"])
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
    74
       (auto simp: real incseq_def intro!: divide_left_mono)
74362
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
    75
qed (use \<open>a < b\<close> in auto)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    76
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
    77
lemma ereal_decseq_approx:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    78
  fixes a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    79
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
    80
  obtains X :: "nat \<Rightarrow> real" where
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
    81
    "decseq X" "\<And>i. a < X i" "\<And>i. X i < b" "X \<longlonglongrightarrow> a"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
    82
proof -
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    83
  have "-b < -a" using \<open>a < b\<close> by simp
74362
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
    84
  from ereal_incseq_approx[OF this] obtain X where
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
    85
    "incseq X"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
    86
    "\<And>i. - b < ereal (X i)"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
    87
    "\<And>i. ereal (X i) < - a"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
    88
    "(\<lambda>x. ereal (X x)) \<longlonglongrightarrow> - a"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
    89
    by auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    90
  then show thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    91
    apply (intro that[of "\<lambda>i. - X i"])
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68096
diff changeset
    92
    apply (auto simp: decseq_def incseq_def simp flip: uminus_ereal.simps)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    93
    apply (metis ereal_minus_less_minus ereal_uminus_uminus ereal_Lim_uminus)+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    94
    done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    95
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    96
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
    97
proposition einterval_Icc_approximation:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    98
  fixes a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    99
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   100
  obtains u l :: "nat \<Rightarrow> real" where
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   101
    "einterval a b = (\<Union>i. {l i .. u i})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   102
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   103
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   104
proof -
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   105
  from dense[OF \<open>a < b\<close>] obtain c where "a < c" "c < b" by safe
74362
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   106
  from ereal_incseq_approx[OF \<open>c < b\<close>] obtain u where u:
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   107
    "incseq u"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   108
    "\<And>i. c < ereal (u i)"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   109
    "\<And>i. ereal (u i) < b"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   110
    "(\<lambda>x. ereal (u x)) \<longlonglongrightarrow> b"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   111
    by auto
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   112
  from ereal_decseq_approx[OF \<open>a < c\<close>] obtain l where l:
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   113
    "decseq l"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   114
    "\<And>i. a < ereal (l i)"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   115
    "\<And>i. ereal (l i) < c"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   116
    "(\<lambda>x. ereal (l x)) \<longlonglongrightarrow> a"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   117
    by auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   118
  have "einterval a b = (\<Union>i. {l i .. u i})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   119
  proof (auto simp: einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   120
    fix x assume "a < ereal x" "ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   121
    have "eventually (\<lambda>i. ereal (l i) < ereal x) sequentially"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   122
      using l(4) \<open>a < ereal x\<close> by (rule order_tendstoD)
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   123
    moreover
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   124
    have "eventually (\<lambda>i. ereal x < ereal (u i)) sequentially"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   125
      using u(4) \<open>ereal x< b\<close> by (rule order_tendstoD)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   126
    ultimately have "eventually (\<lambda>i. l i < x \<and> x < u i) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   127
      by eventually_elim auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   128
    then show "\<exists>i. l i \<le> x \<and> x \<le> u i"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   129
      by (auto intro: less_imp_le simp: eventually_sequentially)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   130
  next
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   131
    fix x i assume "l i \<le> x" "x \<le> u i"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   132
    with \<open>a < ereal (l i)\<close> \<open>ereal (u i) < b\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   133
    show "a < ereal x" "ereal x < b"
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68096
diff changeset
   134
      by (auto simp flip: ereal_less_eq(3))
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   135
  qed
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   136
  moreover { fix i from less_trans[OF \<open>l i < c\<close> \<open>c < u i\<close>] have "l i < u i" by simp }
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   137
  ultimately show thesis
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   138
    by (simp add: l that u)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   139
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   140
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   141
(* TODO: in this definition, it would be more natural if einterval a b included a and b when
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   142
   they are real. *)
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   143
definition\<^marker>\<open>tag important\<close> interval_lebesgue_integral :: "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> 'a::{banach, second_countable_topology}" where
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   144
  "interval_lebesgue_integral M a b f =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   145
    (if a \<le> b then (LINT x:einterval a b|M. f x) else - (LINT x:einterval b a|M. f x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   146
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   147
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   148
  "_ascii_interval_lebesgue_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real measure \<Rightarrow> real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   149
  ("(5LINT _=_.._|_. _)" [0,60,60,61,100] 60)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   150
80768
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
   151
syntax_consts
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
   152
  "_ascii_interval_lebesgue_integral" == interval_lebesgue_integral
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
   153
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   154
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   155
  "LINT x=a..b|M. f" == "CONST interval_lebesgue_integral M a b (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   156
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   157
definition\<^marker>\<open>tag important\<close> interval_lebesgue_integrable :: "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> 'a::{banach, second_countable_topology}) \<Rightarrow> bool" where
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   158
  "interval_lebesgue_integrable M a b f =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   159
    (if a \<le> b then set_integrable M (einterval a b) f else set_integrable M (einterval b a) f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   160
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   161
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   162
  "_ascii_interval_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   163
  ("(4LBINT _=_.._. _)" [0,60,60,61] 60)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   164
80768
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
   165
syntax_consts
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
   166
  "_ascii_interval_lebesgue_borel_integral" == interval_lebesgue_integral
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
   167
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   168
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   169
  "LBINT x=a..b. f" == "CONST interval_lebesgue_integral CONST lborel a b (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   170
69683
8b3458ca0762 subsection is always %important
immler
parents: 69681
diff changeset
   171
subsection\<open>Basic properties of integration over an interval\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   172
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   173
lemma interval_lebesgue_integral_cong:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   174
  "a \<le> b \<Longrightarrow> (\<And>x. x \<in> einterval a b \<Longrightarrow> f x = g x) \<Longrightarrow> einterval a b \<in> sets M \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   175
    interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   176
  by (auto intro: set_lebesgue_integral_cong simp: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   177
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   178
lemma interval_lebesgue_integral_cong_AE:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   179
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   180
    a \<le> b \<Longrightarrow> AE x \<in> einterval a b in M. f x = g x \<Longrightarrow> einterval a b \<in> sets M \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   181
    interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   182
  by (auto intro: set_lebesgue_integral_cong_AE simp: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   183
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   184
lemma interval_integrable_mirror:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   185
  shows "interval_lebesgue_integrable lborel a b (\<lambda>x. f (-x)) \<longleftrightarrow>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   186
    interval_lebesgue_integrable lborel (-b) (-a) f"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   187
proof -
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   188
  have *: "indicator (einterval a b) (- x) = (indicator (einterval (-b) (-a)) x :: real)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   189
    for a b :: ereal and x :: real
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   190
    by (cases a b rule: ereal2_cases) (auto simp: einterval_def split: split_indicator)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   191
  show ?thesis
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   192
    unfolding interval_lebesgue_integrable_def
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   193
    using lborel_integrable_real_affine_iff[symmetric, of "-1" "\<lambda>x. indicator (einterval _ _) x *\<^sub>R f x" 0]
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   194
    by (simp add: * set_integrable_def)
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   195
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   196
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   197
lemma interval_lebesgue_integral_add [intro, simp]:
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   198
  fixes M a b f
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   199
  assumes "interval_lebesgue_integrable M a b f" "interval_lebesgue_integrable M a b g"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   200
  shows "interval_lebesgue_integrable M a b (\<lambda>x. f x + g x)"
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   201
    and "interval_lebesgue_integral M a b (\<lambda>x. f x + g x) =
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   202
         interval_lebesgue_integral M a b f + interval_lebesgue_integral M a b g"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   203
using assms by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   204
    field_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   205
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   206
lemma interval_lebesgue_integral_diff [intro, simp]:
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   207
  fixes M a b f
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   208
  assumes "interval_lebesgue_integrable M a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   209
    "interval_lebesgue_integrable M a b g"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   210
  shows "interval_lebesgue_integrable M a b (\<lambda>x. f x - g x)" and
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   211
    "interval_lebesgue_integral M a b (\<lambda>x. f x - g x) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   212
   interval_lebesgue_integral M a b f - interval_lebesgue_integral M a b g"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   213
using assms by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   214
    field_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   215
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   216
lemma interval_lebesgue_integrable_mult_right [intro, simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   217
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   218
  shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   219
    interval_lebesgue_integrable M a b (\<lambda>x. c * f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   220
  by (simp add: interval_lebesgue_integrable_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   221
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   222
lemma interval_lebesgue_integrable_mult_left [intro, simp]:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   223
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   224
  shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   225
    interval_lebesgue_integrable M a b (\<lambda>x. f x * c)"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   226
  by (simp add: interval_lebesgue_integrable_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   227
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   228
lemma interval_lebesgue_integrable_divide [intro, simp]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59587
diff changeset
   229
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, field, second_countable_topology}"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   230
  shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   231
    interval_lebesgue_integrable M a b (\<lambda>x. f x / c)"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   232
  by (simp add: interval_lebesgue_integrable_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   233
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   234
lemma interval_lebesgue_integral_mult_right [simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   235
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   236
  shows "interval_lebesgue_integral M a b (\<lambda>x. c * f x) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   237
    c * interval_lebesgue_integral M a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   238
  by (simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   239
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   240
lemma interval_lebesgue_integral_mult_left [simp]:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   241
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   242
  shows "interval_lebesgue_integral M a b (\<lambda>x. f x * c) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   243
    interval_lebesgue_integral M a b f * c"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   244
  by (simp add: interval_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   245
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   246
lemma interval_lebesgue_integral_divide [simp]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59587
diff changeset
   247
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, field, second_countable_topology}"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   248
  shows "interval_lebesgue_integral M a b (\<lambda>x. f x / c) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   249
    interval_lebesgue_integral M a b f / c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   250
  by (simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   251
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   252
lemma interval_lebesgue_integral_uminus:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   253
  "interval_lebesgue_integral M a b (\<lambda>x. - f x) = - interval_lebesgue_integral M a b f"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   254
  by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   255
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   256
lemma interval_lebesgue_integral_of_real:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   257
  "interval_lebesgue_integral M a b (\<lambda>x. complex_of_real (f x)) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   258
    of_real (interval_lebesgue_integral M a b f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   259
  unfolding interval_lebesgue_integral_def
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   260
  by (auto simp: interval_lebesgue_integral_def set_integral_complex_of_real)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   261
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   262
lemma interval_lebesgue_integral_le_eq:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   263
  fixes a b f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   264
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   265
  shows "interval_lebesgue_integral M a b f = (LINT x : einterval a b | M. f x)"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   266
  using assms by (auto simp: interval_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   267
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   268
lemma interval_lebesgue_integral_gt_eq:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   269
  fixes a b f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   270
  assumes "a > b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   271
  shows "interval_lebesgue_integral M a b f = -(LINT x : einterval b a | M. f x)"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   272
using assms by (auto simp: interval_lebesgue_integral_def less_imp_le einterval_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   273
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   274
lemma interval_lebesgue_integral_gt_eq':
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   275
  fixes a b f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   276
  assumes "a > b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   277
  shows "interval_lebesgue_integral M a b f = - interval_lebesgue_integral M b a f"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   278
using assms by (auto simp: interval_lebesgue_integral_def less_imp_le einterval_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   279
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   280
lemma interval_integral_endpoints_same [simp]: "(LBINT x=a..a. f x) = 0"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   281
  by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_def einterval_same)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   282
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   283
lemma interval_integral_endpoints_reverse: "(LBINT x=a..b. f x) = -(LBINT x=b..a. f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   284
  by (cases a b rule: linorder_cases) (auto simp: interval_lebesgue_integral_def set_lebesgue_integral_def einterval_same)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   285
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   286
lemma interval_integrable_endpoints_reverse:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   287
  "interval_lebesgue_integrable lborel a b f \<longleftrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   288
    interval_lebesgue_integrable lborel b a f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   289
  by (cases a b rule: linorder_cases) (auto simp: interval_lebesgue_integrable_def einterval_same)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   290
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   291
lemma interval_integral_reflect:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   292
  "(LBINT x=a..b. f x) = (LBINT x=-b..-a. f (-x))"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   293
proof (induct a b rule: linorder_wlog)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   294
  case (sym a b) then show ?case
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   295
    by (auto simp: interval_lebesgue_integral_def interval_integrable_endpoints_reverse
62390
842917225d56 more canonical names
nipkow
parents: 62083
diff changeset
   296
             split: if_split_asm)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   297
next
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   298
  case (le a b) 
79599
2c18ac57e92e the syntax of Lebesgue integrals (LINT, LBINT, ∫, etc.) now requires parentheses
paulson <lp15@cam.ac.uk>
parents: 78480
diff changeset
   299
  have "(LBINT x:{x. - x \<in> einterval a b}. f (- x)) = (LBINT x:einterval (- b) (- a). f (- x))"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   300
    unfolding interval_lebesgue_integrable_def set_lebesgue_integral_def einterval_def
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   301
    by (metis (lifting) ereal_less_uminus_reorder ereal_uminus_less_reorder indicator_simps mem_Collect_eq uminus_ereal.simps(1))
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   302
  then show ?case
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   303
    unfolding interval_lebesgue_integral_def 
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   304
    by (subst set_integral_reflect) (simp add: le)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   305
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   306
61897
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   307
lemma interval_lebesgue_integral_0_infty:
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   308
  "interval_lebesgue_integrable M 0 \<infinity> f \<longleftrightarrow> set_integrable M {0<..} f"
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   309
  "interval_lebesgue_integral M 0 \<infinity> f = (LINT x:{0<..}|M. f x)"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   310
  unfolding zero_ereal_def
61897
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   311
  by (auto simp: interval_lebesgue_integral_le_eq interval_lebesgue_integrable_def)
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   312
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   313
lemma interval_integral_to_infinity_eq: "(LINT x=ereal a..\<infinity> | M. f x) = (LINT x : {a<..} | M. f x)"
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   314
  unfolding interval_lebesgue_integral_def by auto
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   315
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   316
proposition interval_integrable_to_infinity_eq: "(interval_lebesgue_integrable M a \<infinity> f) =
61897
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   317
  (set_integrable M {a<..} f)"
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   318
  unfolding interval_lebesgue_integrable_def by auto
61897
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   319
69683
8b3458ca0762 subsection is always %important
immler
parents: 69681
diff changeset
   320
subsection\<open>Basic properties of integration over an interval wrt lebesgue measure\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   321
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   322
lemma interval_integral_zero [simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   323
  fixes a b :: ereal
79599
2c18ac57e92e the syntax of Lebesgue integrals (LINT, LBINT, ∫, etc.) now requires parentheses
paulson <lp15@cam.ac.uk>
parents: 78480
diff changeset
   324
  shows "(LBINT x=a..b. 0) = 0"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   325
unfolding interval_lebesgue_integral_def set_lebesgue_integral_def einterval_eq
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   326
by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   327
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   328
lemma interval_integral_const [intro, simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   329
  fixes a b c :: real
79599
2c18ac57e92e the syntax of Lebesgue integrals (LINT, LBINT, ∫, etc.) now requires parentheses
paulson <lp15@cam.ac.uk>
parents: 78480
diff changeset
   330
  shows "interval_lebesgue_integrable lborel a b (\<lambda>x. c)" and "(LBINT x=a..b. c) = c * (b - a)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   331
  unfolding interval_lebesgue_integral_def interval_lebesgue_integrable_def einterval_eq
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   332
  by (auto simp: less_imp_le field_simps measure_def set_integrable_def set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   333
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   334
lemma interval_integral_cong_AE:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   335
  assumes [measurable]: "f \<in> borel_measurable borel" "g \<in> borel_measurable borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   336
  assumes "AE x \<in> einterval (min a b) (max a b) in lborel. f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   337
  shows "interval_lebesgue_integral lborel a b f = interval_lebesgue_integral lborel a b g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   338
  using assms
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   339
  by (auto simp: interval_lebesgue_integral_def max_def min_def intro!: set_lebesgue_integral_cong_AE)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   340
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   341
lemma interval_integral_cong:
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   342
  assumes "\<And>x. x \<in> einterval (min a b) (max a b) \<Longrightarrow> f x = g x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   343
  shows "interval_lebesgue_integral lborel a b f = interval_lebesgue_integral lborel a b g"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   344
  using assms by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_cong)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   345
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   346
lemma interval_lebesgue_integrable_cong_AE:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   347
    "f \<in> borel_measurable lborel \<Longrightarrow> g \<in> borel_measurable lborel \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   348
    AE x \<in> einterval (min a b) (max a b) in lborel. f x = g x \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   349
    interval_lebesgue_integrable lborel a b f = interval_lebesgue_integrable lborel a b g"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   350
  apply (simp add: interval_lebesgue_integrable_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   351
  apply (intro conjI impI set_integrable_cong_AE)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   352
  apply (auto simp: min_def max_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   353
  done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   354
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   355
lemma interval_integrable_abs_iff:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   356
  fixes f :: "real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   357
  shows  "f \<in> borel_measurable lborel \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   358
    interval_lebesgue_integrable lborel a b (\<lambda>x. \<bar>f x\<bar>) = interval_lebesgue_integrable lborel a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   359
  unfolding interval_lebesgue_integrable_def
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   360
  by (simp add: set_integrable_abs_iff')
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   361
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   362
lemma interval_integral_Icc:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   363
  fixes a b :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   364
  shows "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a..b}. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   365
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   366
           simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   367
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   368
lemma interval_integral_Icc':
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   369
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {x. a \<le> ereal x \<and> ereal x \<le> b}. f x)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   370
  by (auto intro!: set_integral_discrete_difference[where X="{real_of_ereal a, real_of_ereal b}"]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   371
           simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   372
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   373
lemma interval_integral_Ioc:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   374
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a<..b}. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   375
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   376
           simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   377
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   378
(* TODO: other versions as well? *) (* Yes: I need the Icc' version. *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   379
lemma interval_integral_Ioc':
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   380
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {x. a < ereal x \<and> ereal x \<le> b}. f x)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   381
  by (auto intro!: set_integral_discrete_difference[where X="{real_of_ereal a, real_of_ereal b}"]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   382
           simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   383
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   384
lemma interval_integral_Ico:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   385
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a..<b}. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   386
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   387
           simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   388
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   389
lemma interval_integral_Ioi:
61882
8b4b5d74c587 Probability: fix coercions (real ~> real_of_enat)
hoelzl
parents: 61808
diff changeset
   390
  "\<bar>a\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..\<infinity>. f x) = (LBINT x : {real_of_ereal a <..}. f x)"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   391
  by (auto simp: interval_lebesgue_integral_def einterval_iff)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   392
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   393
lemma interval_integral_Ioo:
61882
8b4b5d74c587 Probability: fix coercions (real ~> real_of_enat)
hoelzl
parents: 61808
diff changeset
   394
  "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real_of_ereal a <..< real_of_ereal b}. f x)"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   395
  by (auto simp: interval_lebesgue_integral_def einterval_iff)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   396
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   397
lemma interval_integral_discrete_difference:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   398
  fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   399
  assumes "countable X"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   400
  and eq: "\<And>x. a \<le> b \<Longrightarrow> a < x \<Longrightarrow> x < b \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   401
  and anti_eq: "\<And>x. b \<le> a \<Longrightarrow> b < x \<Longrightarrow> x < a \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   402
  assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   403
  shows "interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   404
  unfolding interval_lebesgue_integral_def set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   405
  apply (intro if_cong refl arg_cong[where f="\<lambda>x. - x"] integral_discrete_difference[of X] assms)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   406
  apply (auto simp: eq anti_eq einterval_iff split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   407
  done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   408
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   409
lemma interval_integral_sum:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   410
  fixes a b c :: ereal
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   411
  assumes integrable: "interval_lebesgue_integrable lborel (min a (min b c)) (max a (max b c)) f"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   412
  shows "(LBINT x=a..b. f x) + (LBINT x=b..c. f x) = (LBINT x=a..c. f x)"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   413
proof -
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   414
  let ?I = "\<lambda>a b. LBINT x=a..b. f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   415
  { fix a b c :: ereal assume "interval_lebesgue_integrable lborel a c f" "a \<le> b" "b \<le> c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   416
    then have ord: "a \<le> b" "b \<le> c" "a \<le> c" and f': "set_integrable lborel (einterval a c) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   417
      by (auto simp: interval_lebesgue_integrable_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   418
    then have f: "set_borel_measurable borel (einterval a c) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   419
      unfolding set_integrable_def set_borel_measurable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   420
      by (drule_tac borel_measurable_integrable) simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   421
    have "(LBINT x:einterval a c. f x) = (LBINT x:einterval a b \<union> einterval b c. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   422
    proof (rule set_integral_cong_set)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   423
      show "AE x in lborel. (x \<in> einterval a b \<union> einterval b c) = (x \<in> einterval a c)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   424
        using AE_lborel_singleton[of "real_of_ereal b"] ord
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   425
        by (cases a b c rule: ereal3_cases) (auto simp: einterval_iff)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   426
      show "set_borel_measurable lborel (einterval a c) f" "set_borel_measurable lborel (einterval a b \<union> einterval b c) f"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   427
        unfolding set_borel_measurable_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   428
        using ord by (auto simp: einterval_iff intro!: set_borel_measurable_subset[OF f, unfolded set_borel_measurable_def])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   429
    qed
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   430
    also have "\<dots> = (LBINT x:einterval a b. f x) + (LBINT x:einterval b c. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   431
      using ord
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   432
      by (intro set_integral_Un_AE) (auto intro!: set_integrable_subset[OF f'] simp: einterval_iff not_less)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   433
    finally have "?I a b + ?I b c = ?I a c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   434
      using ord by (simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   435
  } note 1 = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   436
  { fix a b c :: ereal assume "interval_lebesgue_integrable lborel a c f" "a \<le> b" "b \<le> c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   437
    from 1[OF this] have "?I b c + ?I a b = ?I a c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   438
      by (metis add.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   439
  } note 2 = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   440
  have 3: "\<And>a b. b \<le> a \<Longrightarrow> (LBINT x=a..b. f x) = - (LBINT x=b..a. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   441
    by (rule interval_integral_endpoints_reverse)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   442
  show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   443
    using integrable
73526
a3cc9fa1295d new automatic order prover: stateless, complete, verified
nipkow
parents: 71827
diff changeset
   444
    apply (cases a b b c a c rule: linorder_le_cases[case_product linorder_le_cases linorder_cases])
a3cc9fa1295d new automatic order prover: stateless, complete, verified
nipkow
parents: 71827
diff changeset
   445
    apply simp_all (* remove some looping cases *)
a3cc9fa1295d new automatic order prover: stateless, complete, verified
nipkow
parents: 71827
diff changeset
   446
    by (simp_all add: min_absorb1 min_absorb2 max_absorb1 max_absorb2 field_simps 1 2 3)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   447
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   448
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   449
lemma interval_integrable_isCont:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   450
  fixes a b and f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   451
  shows "(\<And>x. min a b \<le> x \<Longrightarrow> x \<le> max a b \<Longrightarrow> isCont f x) \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   452
    interval_lebesgue_integrable lborel a b f"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   453
proof (induct a b rule: linorder_wlog)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   454
  case (le a b) then show ?case
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   455
    unfolding interval_lebesgue_integrable_def set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   456
    by (auto simp: interval_lebesgue_integrable_def
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   457
        intro!: set_integrable_subset[unfolded set_integrable_def, OF borel_integrable_compact[of "{a .. b}"]]
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   458
        continuous_at_imp_continuous_on)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   459
qed (auto intro: interval_integrable_endpoints_reverse[THEN iffD1])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   460
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   461
lemma interval_integrable_continuous_on:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   462
  fixes a b :: real and f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   463
  assumes "a \<le> b" and "continuous_on {a..b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   464
  shows "interval_lebesgue_integrable lborel a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   465
using assms unfolding interval_lebesgue_integrable_def apply simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   466
  by (rule set_integrable_subset, rule borel_integrable_atLeastAtMost' [of a b], auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   467
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   468
lemma interval_integral_eq_integral:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   469
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   470
  shows "a \<le> b \<Longrightarrow> set_integrable lborel {a..b} f \<Longrightarrow> LBINT x=a..b. f x = integral {a..b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   471
  by (subst interval_integral_Icc, simp) (rule set_borel_integral_eq_integral)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   472
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   473
lemma interval_integral_eq_integral':
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   474
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   475
  shows "a \<le> b \<Longrightarrow> set_integrable lborel (einterval a b) f \<Longrightarrow> LBINT x=a..b. f x = integral (einterval a b) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   476
  by (subst interval_lebesgue_integral_le_eq, simp) (rule set_borel_integral_eq_integral)
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   477
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   478
69683
8b3458ca0762 subsection is always %important
immler
parents: 69681
diff changeset
   479
subsection\<open>General limit approximation arguments\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   480
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   481
proposition interval_integral_Icc_approx_nonneg:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   482
  fixes a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   483
  assumes "a < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   484
  fixes u l :: "nat \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   485
  assumes  approx: "einterval a b = (\<Union>i. {l i .. u i})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   486
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   487
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   488
  fixes f :: "real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   489
  assumes f_integrable: "\<And>i. set_integrable lborel {l i..u i} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   490
  assumes f_nonneg: "AE x in lborel. a < ereal x \<longrightarrow> ereal x < b \<longrightarrow> 0 \<le> f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   491
  assumes f_measurable: "set_borel_measurable lborel (einterval a b) f"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   492
  assumes lbint_lim: "(\<lambda>i. LBINT x=l i.. u i. f x) \<longlonglongrightarrow> C"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   493
  shows
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   494
    "set_integrable lborel (einterval a b) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   495
    "(LBINT x=a..b. f x) = C"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   496
proof -
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   497
  have 1 [unfolded set_integrable_def]: "\<And>i. set_integrable lborel {l i..u i} f" by (rule f_integrable)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   498
  have 2: "AE x in lborel. mono (\<lambda>n. indicator {l n..u n} x *\<^sub>R f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   499
  proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   500
     from f_nonneg have "AE x in lborel. \<forall>i. l i \<le> x \<longrightarrow> x \<le> u i \<longrightarrow> 0 \<le> f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   501
      by eventually_elim
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   502
         (metis approx(5) approx(6) dual_order.strict_trans1 ereal_less_eq(3) le_less_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   503
    then show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   504
      apply eventually_elim
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   505
      apply (auto simp: mono_def split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   506
      apply (metis approx(3) decseqD order_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   507
      apply (metis approx(2) incseqD order_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   508
      done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   509
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   510
  have 3: "AE x in lborel. (\<lambda>i. indicator {l i..u i} x *\<^sub>R f x) \<longlonglongrightarrow> indicator (einterval a b) x *\<^sub>R f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   511
  proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   512
    { fix x i assume "l i \<le> x" "x \<le> u i"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   513
      then have "eventually (\<lambda>i. l i \<le> x \<and> x \<le> u i) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   514
        apply (auto simp: eventually_sequentially intro!: exI[of _ i])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   515
        apply (metis approx(3) decseqD order_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   516
        apply (metis approx(2) incseqD order_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   517
        done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   518
      then have "eventually (\<lambda>i. f x * indicator {l i..u i} x = f x) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   519
        by eventually_elim auto }
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   520
    then show ?thesis
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
   521
      unfolding approx(1) by (auto intro!: AE_I2 tendsto_eventually split: split_indicator)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   522
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   523
  have 4: "(\<lambda>i. \<integral> x. indicator {l i..u i} x *\<^sub>R f x \<partial>lborel) \<longlonglongrightarrow> C"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   524
    using lbint_lim by (simp add: interval_integral_Icc [unfolded set_lebesgue_integral_def] approx less_imp_le)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   525
  have 5: "(\<lambda>x. indicat_real (einterval a b) x *\<^sub>R f x) \<in> borel_measurable lborel"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   526
    using f_measurable set_borel_measurable_def by blast
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   527
  have "(LBINT x=a..b. f x) = lebesgue_integral lborel (\<lambda>x. indicator (einterval a b) x *\<^sub>R f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   528
    using assms by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_def less_imp_le)
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   529
  also have "\<dots> = C"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   530
    by (rule integral_monotone_convergence [OF 1 2 3 4 5])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   531
  finally show "(LBINT x=a..b. f x) = C" .
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   532
  show "set_integrable lborel (einterval a b) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   533
    unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   534
    by (rule integrable_monotone_convergence[OF 1 2 3 4 5])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   535
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   536
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   537
proposition interval_integral_Icc_approx_integrable:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   538
  fixes u l :: "nat \<Rightarrow> real" and a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   539
  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   540
  assumes "a < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   541
  assumes  approx: "einterval a b = (\<Union>i. {l i .. u i})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   542
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   543
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   544
  assumes f_integrable: "set_integrable lborel (einterval a b) f"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   545
  shows "(\<lambda>i. LBINT x=l i.. u i. f x) \<longlonglongrightarrow> (LBINT x=a..b. f x)"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   546
proof -
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   547
  have "(\<lambda>i. LBINT x:{l i.. u i}. f x) \<longlonglongrightarrow> (LBINT x:einterval a b. f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   548
    unfolding set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   549
  proof (rule integral_dominated_convergence)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   550
    show "integrable lborel (\<lambda>x. norm (indicator (einterval a b) x *\<^sub>R f x))"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   551
      using f_integrable integrable_norm set_integrable_def by blast
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   552
    show "(\<lambda>x. indicat_real (einterval a b) x *\<^sub>R f x) \<in> borel_measurable lborel"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   553
      using f_integrable by (simp add: set_integrable_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   554
    then show "\<And>i. (\<lambda>x. indicat_real {l i..u i} x *\<^sub>R f x) \<in> borel_measurable lborel"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   555
      by (rule set_borel_measurable_subset [unfolded set_borel_measurable_def]) (auto simp: approx)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   556
    show "\<And>i. AE x in lborel. norm (indicator {l i..u i} x *\<^sub>R f x) \<le> norm (indicator (einterval a b) x *\<^sub>R f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   557
      by (intro AE_I2) (auto simp: approx split: split_indicator)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   558
    show "AE x in lborel. (\<lambda>i. indicator {l i..u i} x *\<^sub>R f x) \<longlonglongrightarrow> indicator (einterval a b) x *\<^sub>R f x"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
   559
    proof (intro AE_I2 tendsto_intros tendsto_eventually)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   560
      fix x
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   561
      { fix i assume "l i \<le> x" "x \<le> u i"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   562
        with \<open>incseq u\<close>[THEN incseqD, of i] \<open>decseq l\<close>[THEN decseqD, of i]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   563
        have "eventually (\<lambda>i. l i \<le> x \<and> x \<le> u i) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   564
          by (auto simp: eventually_sequentially decseq_def incseq_def intro: order_trans) }
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   565
      then show "eventually (\<lambda>xa. indicator {l xa..u xa} x = (indicator (einterval a b) x::real)) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   566
        using approx order_tendstoD(2)[OF \<open>l \<longlonglongrightarrow> a\<close>, of x] order_tendstoD(1)[OF \<open>u \<longlonglongrightarrow> b\<close>, of x]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   567
        by (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   568
    qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   569
  qed
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   570
  with \<open>a < b\<close> \<open>\<And>i. l i < u i\<close> show ?thesis
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   571
    by (simp add: interval_lebesgue_integral_le_eq[symmetric] interval_integral_Icc less_imp_le)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   572
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   573
69683
8b3458ca0762 subsection is always %important
immler
parents: 69681
diff changeset
   574
subsection\<open>A slightly stronger Fundamental Theorem of Calculus\<close>
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   575
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   576
text\<open>Three versions: first, for finite intervals, and then two versions for
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   577
    arbitrary intervals.\<close>
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   578
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   579
(*
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   580
  TODO: make the older versions corollaries of these (using continuous_at_imp_continuous_on, etc.)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   581
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   582
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   583
lemma interval_integral_FTC_finite:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   584
  fixes f F :: "real \<Rightarrow> 'a::euclidean_space" and a b :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   585
  assumes f: "continuous_on {min a b..max a b} f"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   586
  assumes F: "\<And>x. min a b \<le> x \<Longrightarrow> x \<le> max a b \<Longrightarrow> (F has_vector_derivative (f x)) (at x within
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   587
    {min a b..max a b})"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   588
  shows "(LBINT x=a..b. f x) = F b - F a"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   589
proof (cases "a \<le> b")
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   590
  case True
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   591
  have "(LBINT x=a..b. f x) = (LBINT x. indicat_real {a..b} x *\<^sub>R f x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   592
    by (simp add: True interval_integral_Icc set_lebesgue_integral_def)
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   593
  also have "\<dots> = F b - F a"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   594
  proof (rule integral_FTC_atLeastAtMost [OF True])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   595
    show "continuous_on {a..b} f"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   596
      using True f by linarith
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   597
    show "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> (F has_vector_derivative f x) (at x within {a..b})"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   598
      by (metis F True max.commute max_absorb1 min_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   599
  qed
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   600
  finally show ?thesis .
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   601
next
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   602
  case False
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   603
  then have "b \<le> a"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   604
    by simp
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   605
  have "- interval_lebesgue_integral lborel (ereal b) (ereal a) f = - (LBINT x. indicat_real {b..a} x *\<^sub>R f x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   606
    by (simp add: \<open>b \<le> a\<close> interval_integral_Icc set_lebesgue_integral_def)
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   607
  also have "\<dots> = F b - F a"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   608
  proof (subst integral_FTC_atLeastAtMost [OF \<open>b \<le> a\<close>])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   609
    show "continuous_on {b..a} f"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   610
      using False f by linarith
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   611
    show "\<And>x. \<lbrakk>b \<le> x; x \<le> a\<rbrakk>
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   612
         \<Longrightarrow> (F has_vector_derivative f x) (at x within {b..a})"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   613
      by (metis F False max_def min_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   614
  qed auto
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   615
  finally show ?thesis
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   616
    by (metis interval_integral_endpoints_reverse)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   617
qed
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   618
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   619
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   620
lemma interval_integral_FTC_nonneg:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   621
  fixes f F :: "real \<Rightarrow> real" and a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   622
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   623
  assumes F: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV F x :> f x"
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   624
  assumes f: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   625
  assumes f_nonneg: "AE x in lborel. a < ereal x \<longrightarrow> ereal x < b \<longrightarrow> 0 \<le> f x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   626
  assumes A: "((F \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   627
  assumes B: "((F \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   628
  shows
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   629
    "set_integrable lborel (einterval a b) f"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   630
    "(LBINT x=a..b. f x) = B - A"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   631
proof -
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   632
  obtain u l where approx:
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   633
    "einterval a b = (\<Union>i. {l i .. u i})"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   634
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   635
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b" 
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   636
    by (blast intro: einterval_Icc_approximation[OF \<open>a < b\<close>])
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   637
  have aless[simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   638
    by (rule order_less_le_trans, rule approx, force)
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   639
  have lessb[simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   640
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   641
  have cf: "\<And>i. continuous_on {min (l i) (u i)..max (l i) (u i)} f"
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   642
    using approx f by (intro continuous_at_imp_continuous_on strip) auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   643
  have FTCi: "\<And>i. (LBINT x=l i..u i. f x) = F (u i) - F (l i)"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   644
    apply (intro interval_integral_FTC_finite cf DERIV_subset [OF F])
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   645
    by (smt (verit) F aless approx(4) has_real_derivative_iff_has_vector_derivative has_vector_derivative_at_within lessb)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   646
  have 1: "\<And>i. set_integrable lborel {l i..u i} f"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   647
    by (meson aless lessb assms(3) atLeastAtMost_iff borel_integrable_atLeastAtMost' continuous_at_imp_continuous_on)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   648
  have 2: "set_borel_measurable lborel (einterval a b) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   649
    unfolding set_borel_measurable_def
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 63941
diff changeset
   650
    by (auto simp del: real_scaleR_def intro!: borel_measurable_continuous_on_indicator
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   651
             simp: continuous_on_eq_continuous_at einterval_iff f)
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   652
  have "(\<lambda>x. F (l x)) \<longlonglongrightarrow> A"
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   653
    using A approx unfolding tendsto_at_iff_sequentially comp_def
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   654
    by (force elim!: allE[of _ "\<lambda>i. ereal (l i)"])
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   655
  moreover have "(\<lambda>x. F (u x)) \<longlonglongrightarrow> B"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   656
    using B approx unfolding tendsto_at_iff_sequentially comp_def
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   657
    by (force elim!: allE[of _ "\<lambda>i. ereal (u i)"])
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   658
  ultimately have 3: "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> B - A"
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   659
    by (simp add: FTCi tendsto_diff)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   660
  show "(LBINT x=a..b. f x) = B - A"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   661
    by (rule interval_integral_Icc_approx_nonneg [OF \<open>a < b\<close> approx 1 f_nonneg 2 3])
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   662
  show "set_integrable lborel (einterval a b) f"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   663
    by (rule interval_integral_Icc_approx_nonneg [OF \<open>a < b\<close> approx 1 f_nonneg 2 3])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   664
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   665
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   666
theorem interval_integral_FTC_integrable:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   667
  fixes f F :: "real \<Rightarrow> 'a::euclidean_space" and a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   668
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   669
  assumes F: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> (F has_vector_derivative f x) (at x)"
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   670
  assumes f: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   671
  assumes f_integrable: "set_integrable lborel (einterval a b) f"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   672
  assumes A: "((F \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   673
  assumes B: "((F \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   674
  shows "(LBINT x=a..b. f x) = B - A"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   675
proof -
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   676
  obtain u l where approx:
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   677
    "einterval a b = (\<Union>i. {l i .. u i})"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   678
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   679
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b" 
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   680
    by (blast intro: einterval_Icc_approximation[OF \<open>a < b\<close>])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   681
  have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   682
    by (rule order_less_le_trans, rule approx, force)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   683
  have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   684
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   685
  have FTCi: "\<And>i. (LBINT x=l i..u i. f x) = F (u i) - F (l i)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   686
    using assms approx
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   687
    by (auto simp: less_imp_le min_def max_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   688
             intro!: f continuous_at_imp_continuous_on interval_integral_FTC_finite
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   689
             intro: has_vector_derivative_at_within)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   690
  have "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> B - A"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   691
    unfolding FTCi
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   692
  proof (intro tendsto_intros)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   693
    show "(\<lambda>x. F (l x)) \<longlonglongrightarrow> A"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   694
      using A approx unfolding tendsto_at_iff_sequentially comp_def
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   695
      by (elim allE[of _ "\<lambda>i. ereal (l i)"], auto)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   696
    show "(\<lambda>x. F (u x)) \<longlonglongrightarrow> B"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   697
      using B approx unfolding tendsto_at_iff_sequentially comp_def
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   698
      by (elim allE[of _ "\<lambda>i. ereal (u i)"], auto)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   699
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   700
  moreover have "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> (LBINT x=a..b. f x)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   701
    by (rule interval_integral_Icc_approx_integrable [OF \<open>a < b\<close> approx f_integrable])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   702
  ultimately show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   703
    by (elim LIMSEQ_unique)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   704
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   705
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   706
(*
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   707
  The second Fundamental Theorem of Calculus and existence of antiderivatives on an
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   708
  einterval.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   709
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   710
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   711
theorem interval_integral_FTC2:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   712
  fixes a b c :: real and f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   713
  assumes "a \<le> c" "c \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   714
  and contf: "continuous_on {a..b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   715
  fixes x :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   716
  assumes "a \<le> x" and "x \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   717
  shows "((\<lambda>u. LBINT y=c..u. f y) has_vector_derivative (f x)) (at x within {a..b})"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   718
proof -
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   719
  let ?F = "(\<lambda>u. LBINT y=a..u. f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   720
  have intf: "set_integrable lborel {a..b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   721
    by (rule borel_integrable_atLeastAtMost', rule contf)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   722
  have "((\<lambda>u. integral {a..u} f) has_vector_derivative f x) (at x within {a..b})"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   723
    using \<open>a \<le> x\<close> \<open>x \<le> b\<close> 
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   724
    by (auto intro: integral_has_vector_derivative continuous_on_subset [OF contf])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   725
  then have "((\<lambda>u. integral {a..u} f) has_vector_derivative (f x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   726
    by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   727
  then have "(?F has_vector_derivative (f x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   728
    by (rule has_vector_derivative_weaken)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   729
       (auto intro!: assms interval_integral_eq_integral[symmetric] set_integrable_subset [OF intf])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   730
  then have "((\<lambda>x. (LBINT y=c..a. f y) + ?F x) has_vector_derivative (f x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   731
    by (auto intro!: derivative_eq_intros)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   732
  then show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   733
  proof (rule has_vector_derivative_weaken)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   734
    fix u assume "u \<in> {a .. b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   735
    then show "(LBINT y=c..a. f y) + (LBINT y=a..u. f y) = (LBINT y=c..u. f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   736
      using assms
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   737
      apply (intro interval_integral_sum)
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   738
      apply (auto simp: interval_lebesgue_integrable_def simp del: real_scaleR_def)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   739
      by (rule set_integrable_subset [OF intf], auto simp: min_def max_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   740
  qed (insert assms, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   741
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   742
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   743
proposition einterval_antiderivative:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   744
  fixes a b :: ereal and f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   745
  assumes "a < b" and contf: "\<And>x :: real. a < x \<Longrightarrow> x < b \<Longrightarrow> isCont f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   746
  shows "\<exists>F. \<forall>x :: real. a < x \<longrightarrow> x < b \<longrightarrow> (F has_vector_derivative f x) (at x)"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   747
proof -
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   748
  from einterval_nonempty [OF \<open>a < b\<close>] obtain c :: real where [simp]: "a < c" "c < b"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   749
    by (auto simp: einterval_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   750
  let ?F = "(\<lambda>u. LBINT y=c..u. f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   751
  show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   752
  proof (rule exI, clarsimp)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   753
    fix x :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   754
    assume [simp]: "a < x" "x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   755
    have 1: "a < min c x" by simp
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   756
    from einterval_nonempty [OF 1] obtain d :: real where [simp]: "a < d" "d < c" "d < x"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   757
      by (auto simp: einterval_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   758
    have 2: "max c x < b" by simp
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   759
    from einterval_nonempty [OF 2] obtain e :: real where [simp]: "c < e" "x < e" "e < b"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   760
      by (auto simp: einterval_def)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   761
    have "(?F has_vector_derivative f x) (at x within {d<..<e})"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   762
    proof (rule has_vector_derivative_within_subset [of _ _ _ "{d..e}"])
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   763
      have "continuous_on {d..e} f"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   764
      proof (intro continuous_at_imp_continuous_on ballI contf; clarsimp)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   765
        show "\<And>x. \<lbrakk>d \<le> x; x \<le> e\<rbrakk> \<Longrightarrow> a < ereal x"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   766
          using \<open>a < ereal d\<close> ereal_less_ereal_Ex by auto
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   767
        show "\<And>x. \<lbrakk>d \<le> x; x \<le> e\<rbrakk> \<Longrightarrow> ereal x < b"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   768
          using \<open>ereal e < b\<close> ereal_less_eq(3) le_less_trans by blast
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   769
      qed
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   770
      then show "(?F has_vector_derivative f x) (at x within {d..e})"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   771
        by (intro interval_integral_FTC2) (use \<open>d < c\<close> \<open>c < e\<close> \<open>d < x\<close> \<open>x < e\<close> in \<open>linarith+\<close>)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   772
    qed auto
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   773
    then show "(?F has_vector_derivative f x) (at x)"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   774
      by (force simp: has_vector_derivative_within_open [of _ "{d<..<e}"])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   775
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   776
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   777
69683
8b3458ca0762 subsection is always %important
immler
parents: 69681
diff changeset
   778
subsection\<open>The substitution theorem\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   779
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   780
text\<open>Once again, three versions: first, for finite intervals, and then two versions for
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   781
    arbitrary intervals.\<close>
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   782
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   783
theorem interval_integral_substitution_finite:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   784
  fixes a b :: real and f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   785
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   786
  and derivg: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (g has_real_derivative (g' x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   787
  and contf : "continuous_on (g ` {a..b}) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   788
  and contg': "continuous_on {a..b} g'"
79599
2c18ac57e92e the syntax of Lebesgue integrals (LINT, LBINT, ∫, etc.) now requires parentheses
paulson <lp15@cam.ac.uk>
parents: 78480
diff changeset
   789
  shows "(LBINT x=a..b. g' x *\<^sub>R f (g x)) = (LBINT y=g a..g b. f y)"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   790
proof-
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   791
  have v_derivg: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (g has_vector_derivative (g' x)) (at x within {a..b})"
75462
7448423e5dba Renamed the misleading has_field_derivative_iff_has_vector_derivative. Inserted a number of minor lemmas
paulson <lp15@cam.ac.uk>
parents: 74362
diff changeset
   792
    using derivg unfolding has_real_derivative_iff_has_vector_derivative .
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   793
  then have contg [simp]: "continuous_on {a..b} g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   794
    by (rule continuous_on_vector_derivative) auto
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   795
  have 1: "\<exists>x\<in>{a..b}. u = g x" if "min (g a) (g b) \<le> u" "u \<le> max (g a) (g b)" for u
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   796
    by (cases "g a \<le> g b") (use that assms IVT' [of g a u b]  IVT2' [of g b u a]  in \<open>auto simp: min_def max_def\<close>)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   797
  obtain c d where g_im: "g ` {a..b} = {c..d}" and "c \<le> d"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   798
    by (metis continuous_image_closed_interval contg \<open>a \<le> b\<close>)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   799
  obtain F where derivF:
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   800
         "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> (F has_vector_derivative (f (g x))) (at (g x) within (g ` {a..b}))" 
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   801
    using continuous_on_subset [OF contf] g_im
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   802
      by (metis antiderivative_continuous atLeastAtMost_iff image_subset_iff set_eq_subset)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   803
  have contfg: "continuous_on {a..b} (\<lambda>x. f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   804
    by (blast intro: continuous_on_compose2 contf contg)
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   805
  have "continuous_on {a..b} (\<lambda>x. g' x *\<^sub>R f (g x))"
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   806
    by (auto intro!: continuous_on_scaleR contg' contfg)
79599
2c18ac57e92e the syntax of Lebesgue integrals (LINT, LBINT, ∫, etc.) now requires parentheses
paulson <lp15@cam.ac.uk>
parents: 78480
diff changeset
   807
  then have "(LBINT x. indicat_real {a..b} x *\<^sub>R g' x *\<^sub>R f (g x)) = F (g b) - F (g a)"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   808
    using integral_FTC_atLeastAtMost [OF \<open>a \<le> b\<close> vector_diff_chain_within[OF v_derivg derivF]]
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   809
    by force
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   810
  then have "LBINT x=a..b. g' x *\<^sub>R f (g x) = F (g b) - F (g a)"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   811
    by (simp add: assms interval_integral_Icc set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   812
  moreover have "LBINT y=(g a)..(g b). f y = F (g b) - F (g a)"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   813
  proof (rule interval_integral_FTC_finite)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   814
    show "continuous_on {min (g a) (g b)..max (g a) (g b)} f"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   815
      by (rule continuous_on_subset [OF contf]) (auto simp: image_def 1)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   816
    show "(F has_vector_derivative f y) (at y within {min (g a) (g b)..max (g a) (g b)})" 
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   817
      if y: "min (g a) (g b) \<le> y" "y \<le> max (g a) (g b)" for y
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   818
    proof -
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   819
      obtain x where "a \<le> x" "x \<le> b" "y = g x"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   820
        using 1 y by force
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   821
      then show ?thesis
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   822
        by (auto simp: image_def intro!: 1  has_vector_derivative_within_subset [OF derivF])
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   823
    qed
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   824
  qed
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   825
  ultimately show ?thesis by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   826
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   827
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   828
(* TODO: is it possible to lift the assumption here that g' is nonnegative? *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   829
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   830
theorem interval_integral_substitution_integrable:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   831
  fixes f :: "real \<Rightarrow> 'a::euclidean_space" and a b u v :: ereal
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   832
  assumes "a < b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   833
  and deriv_g: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV g x :> g' x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   834
  and contf: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f (g x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   835
  and contg': "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont g' x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   836
  and g'_nonneg: "\<And>x. a \<le> ereal x \<Longrightarrow> ereal x \<le> b \<Longrightarrow> 0 \<le> g' x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   837
  and A: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   838
  and B: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   839
  and integrable: "set_integrable lborel (einterval a b) (\<lambda>x. g' x *\<^sub>R f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   840
  and integrable2: "set_integrable lborel (einterval A B) (\<lambda>x. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   841
  shows "(LBINT x=A..B. f x) = (LBINT x=a..b. g' x *\<^sub>R f (g x))"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   842
proof -
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   843
  obtain u l where approx [simp]:
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   844
    "einterval a b = (\<Union>i. {l i .. u i})"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   845
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   846
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b" 
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   847
    by (blast intro: einterval_Icc_approximation[OF \<open>a < b\<close>])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   848
  note less_imp_le [simp]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   849
  have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   850
    by (rule order_less_le_trans, rule approx, force)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   851
  have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   852
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   853
  then have lessb[simp]: "\<And>i. l i < b"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   854
    using approx(4) less_eq_real_def by blast
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   855
  have [simp]: "\<And>i. a < u i"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   856
    by (rule order_less_trans, rule approx, auto, rule approx)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   857
  have lle[simp]: "\<And>i j. i \<le> j \<Longrightarrow> l j \<le> l i" by (rule decseqD, rule approx)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   858
  have [simp]: "\<And>i j. i \<le> j \<Longrightarrow> u i \<le> u j" by (rule incseqD, rule approx)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   859
  have g_nondec [simp]: "g x \<le> g y" if "a < x" "x \<le> y" "y < b" for x y
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
   860
  proof (rule DERIV_nonneg_imp_nondecreasing [OF \<open>x \<le> y\<close>], intro exI conjI)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
   861
    show "\<And>u. x \<le> u \<Longrightarrow> u \<le> y \<Longrightarrow> (g has_real_derivative g' u) (at u)"
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   862
      by (meson deriv_g ereal_less_eq(3) le_less_trans less_le_trans that)
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
   863
    show "\<And>u. x \<le> u \<Longrightarrow> u \<le> y \<Longrightarrow> 0 \<le> g' u"
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   864
      by (meson assms(5) dual_order.trans le_ereal_le less_imp_le order_refl that)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   865
  qed
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   866
  have "A \<le> B" and un: "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   867
  proof -
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   868
    have A2: "(\<lambda>i. g (l i)) \<longlonglongrightarrow> A"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   869
      using A apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   870
      by (drule_tac x = "\<lambda>i. ereal (l i)" in spec, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   871
    hence A3: "\<And>i. g (l i) \<ge> A"
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68403
diff changeset
   872
      by (intro decseq_ge, auto simp: decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   873
    have B2: "(\<lambda>i. g (u i)) \<longlonglongrightarrow> B"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   874
      using B apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   875
      by (drule_tac x = "\<lambda>i. ereal (u i)" in spec, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   876
    hence B3: "\<And>i. g (u i) \<le> B"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   877
      by (intro incseq_le, auto simp: incseq_def)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   878
    have "ereal (g (l 0)) \<le> ereal (g (u 0))"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   879
      by auto
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   880
    then show "A \<le> B"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   881
      by (meson A3 B3 order.trans)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   882
    { fix x :: real
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   883
      assume "A < x" and "x < B"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   884
      then have "eventually (\<lambda>i. ereal (g (l i)) < x \<and> x < ereal (g (u i))) sequentially"
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   885
        by (fast intro: eventually_conj order_tendstoD A2 B2)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   886
      hence "\<exists>i. g (l i) < x \<and> x < g (u i)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   887
        by (simp add: eventually_sequentially, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   888
    } note AB = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   889
    show "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   890
    proof
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   891
      show "einterval A B \<subseteq> (\<Union>i. {g(l i)<..<g(u i)})"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   892
        by (auto simp: einterval_def AB)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   893
      show "(\<Union>i. {g(l i)<..<g(u i)}) \<subseteq> einterval A B"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   894
      proof (clarsimp simp add: einterval_def, intro conjI)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   895
        show "\<And>x i. \<lbrakk>g (l i) < x; x < g (u i)\<rbrakk> \<Longrightarrow> A < ereal x"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   896
          using A3 le_ereal_less by blast
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   897
        show "\<And>x i. \<lbrakk>g (l i) < x; x < g (u i)\<rbrakk> \<Longrightarrow> ereal x < B"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   898
          using B3 ereal_le_less by blast
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   899
      qed
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   900
    qed
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   901
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   902
  (* finally, the main argument *)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   903
  have eq1: "(LBINT x=l i.. u i. g' x *\<^sub>R f (g x)) = (LBINT y=g (l i)..g (u i). f y)" for i
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   904
    apply (rule interval_integral_substitution_finite [OF _ DERIV_subset [OF deriv_g]])
75462
7448423e5dba Renamed the misleading has_field_derivative_iff_has_vector_derivative. Inserted a number of minor lemmas
paulson <lp15@cam.ac.uk>
parents: 74362
diff changeset
   905
    unfolding has_real_derivative_iff_has_vector_derivative[symmetric]
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   906
         apply (auto intro!: continuous_at_imp_continuous_on contf contg')
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   907
    done
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   908
  have "(\<lambda>i. LBINT x=l i..u i. g' x *\<^sub>R f (g x)) \<longlonglongrightarrow> (LBINT x=a..b. g' x *\<^sub>R f (g x))"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   909
    using approx(4) \<open>a < b\<close> integrable interval_integral_Icc_approx_integrable by fastforce
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   910
  hence 2: "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> (LBINT x=a..b. g' x *\<^sub>R f (g x))"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   911
    by (simp add: eq1)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   912
  have incseq: "incseq (\<lambda>i. {g (l i)<..<g (u i)})"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   913
    apply (clarsimp simp: incseq_def, intro conjI)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   914
    using lessb lle approx(5) g_nondec le_less_trans apply blast
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   915
    by (force intro: less_le_trans)
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   916
  have "(\<lambda>i. set_lebesgue_integral lborel {g (l i)<..<g (u i)} f)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   917
        \<longlonglongrightarrow> set_lebesgue_integral lborel (einterval A B) f"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   918
    unfolding un  by (rule set_integral_cont_up) (use incseq  integrable2 un in auto)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   919
  then have "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> (LBINT x = A..B. f x)"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   920
    by (simp add: interval_lebesgue_integral_le_eq \<open>A \<le> B\<close>)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   921
  thus ?thesis by (intro LIMSEQ_unique [OF _ 2])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   922
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   923
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   924
(* TODO: the last two proofs are only slightly different. Factor out common part?
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   925
   An alternative: make the second one the main one, and then have another lemma
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   926
   that says that if f is nonnegative and all the other hypotheses hold, then it is integrable. *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   927
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   928
theorem interval_integral_substitution_nonneg:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   929
  fixes f g g':: "real \<Rightarrow> real" and a b u v :: ereal
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   930
  assumes "a < b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   931
  and deriv_g: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV g x :> g' x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   932
  and contf: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f (g x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   933
  and contg': "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont g' x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   934
  and f_nonneg: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> 0 \<le> f (g x)" (* TODO: make this AE? *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   935
  and g'_nonneg: "\<And>x. a \<le> ereal x \<Longrightarrow> ereal x \<le> b \<Longrightarrow> 0 \<le> g' x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   936
  and A: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   937
  and B: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   938
  and integrable_fg: "set_integrable lborel (einterval a b) (\<lambda>x. f (g x) * g' x)"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   939
  shows
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   940
    "set_integrable lborel (einterval A B) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   941
    "(LBINT x=A..B. f x) = (LBINT x=a..b. (f (g x) * g' x))"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
   942
proof -
74362
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   943
  from einterval_Icc_approximation[OF \<open>a < b\<close>] obtain u l where approx [simp]:
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   944
    "einterval a b = (\<Union>i. {l i..u i})"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   945
    "incseq u"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   946
    "decseq l"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   947
    "\<And>i. l i < u i"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   948
    "\<And>i. a < ereal (l i)"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   949
    "\<And>i. ereal (u i) < b"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   950
    "(\<lambda>x. ereal (l x)) \<longlonglongrightarrow> a"
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   951
    "(\<lambda>x. ereal (u x)) \<longlonglongrightarrow> b" by this auto
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   952
  have aless[simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   953
    by (rule order_less_le_trans, rule approx, force)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   954
  have lessb[simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   955
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   956
  have llb[simp]: "\<And>i. l i < b"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   957
    using lessb approx(4) less_eq_real_def by blast
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   958
  have alu[simp]: "\<And>i. a < u i"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   959
    by (rule order_less_trans, rule approx, auto, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   960
  have [simp]: "\<And>i j. i \<le> j \<Longrightarrow> l j \<le> l i" by (rule decseqD, rule approx)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   961
  have uleu[simp]: "\<And>i j. i \<le> j \<Longrightarrow> u i \<le> u j" by (rule incseqD, rule approx)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   962
  have g_nondec [simp]: "g x \<le> g y" if "a < x" "x \<le> y" "y < b" for x y
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
   963
  proof (rule DERIV_nonneg_imp_nondecreasing [OF \<open>x \<le> y\<close>], intro exI conjI)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
   964
    show "\<And>u. x \<le> u \<Longrightarrow> u \<le> y \<Longrightarrow> (g has_real_derivative g' u) (at u)"
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   965
      by (meson deriv_g ereal_less_eq(3) le_less_trans less_le_trans that)
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
   966
    show "\<And>u. x \<le> u \<Longrightarrow> u \<le> y \<Longrightarrow> 0 \<le> g' u"
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   967
      by (meson g'_nonneg less_ereal.simps(1) less_trans not_less that)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   968
  qed
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   969
  have "A \<le> B" and un: "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   970
  proof -
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   971
    have A2: "(\<lambda>i. g (l i)) \<longlonglongrightarrow> A"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   972
      using A by (force simp: einterval_def tendsto_at_iff_sequentially comp_def elim!: allE[where x = "\<lambda>i. ereal (l i)"])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   973
    hence A3: "\<And>i. g (l i) \<ge> A"
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68403
diff changeset
   974
      by (intro decseq_ge, auto simp: decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   975
    have B2: "(\<lambda>i. g (u i)) \<longlonglongrightarrow> B"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   976
      using B by (force simp: einterval_def tendsto_at_iff_sequentially comp_def elim!: allE[where x = "\<lambda>i. ereal (u i)"])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   977
    hence B3: "\<And>i. g (u i) \<le> B"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   978
      by (intro incseq_le, auto simp: incseq_def)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   979
    have "ereal (g (l 0)) \<le> ereal (g (u 0))"
74362
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
   980
      by (auto simp: less_imp_le)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   981
    then show "A \<le> B"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   982
      by (meson A3 B3 order.trans)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   983
    { fix x :: real
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   984
      assume "A < x" and "x < B"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   985
      then have "eventually (\<lambda>i. ereal (g (l i)) < x \<and> x < ereal (g (u i))) sequentially"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   986
        by (fast intro: eventually_conj order_tendstoD A2 B2)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   987
      hence "\<exists>i. g (l i) < x \<and> x < g (u i)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   988
        by (simp add: eventually_sequentially, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   989
    } note AB = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   990
    show "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   991
    proof
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   992
      show "einterval A B \<subseteq> (\<Union>i. {g (l i)<..<g (u i)})"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
   993
        by (auto simp: einterval_def AB)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   994
      show "(\<Union>i. {g (l i)<..<g (u i)}) \<subseteq> einterval A B"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
   995
        using A3 B3 by (force simp: einterval_def intro: le_ereal_less ereal_le_less)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   996
    qed
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   997
  qed
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   998
    (* finally, the main argument *)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
   999
  have eq1: "(LBINT x=l i.. u i. (f (g x) * g' x)) = (LBINT y=g (l i)..g (u i). f y)" for i
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1000
  proof -
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1001
    have "(LBINT x=l i.. u i. g' x *\<^sub>R f (g x)) = (LBINT y=g (l i)..g (u i). f y)"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1002
      apply (rule interval_integral_substitution_finite [OF _ DERIV_subset [OF deriv_g]])
75462
7448423e5dba Renamed the misleading has_field_derivative_iff_has_vector_derivative. Inserted a number of minor lemmas
paulson <lp15@cam.ac.uk>
parents: 74362
diff changeset
  1003
      unfolding has_real_derivative_iff_has_vector_derivative[symmetric]
74362
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
  1004
           apply (auto simp: less_imp_le intro!: continuous_at_imp_continuous_on contf contg')
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1005
      done
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1006
    then show ?thesis
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1007
      by (simp add: ac_simps)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1008
  qed
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1009
  have incseq: "incseq (\<lambda>i. {g (l i)<..<g (u i)})"
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
  1010
    apply (clarsimp simp: incseq_def, intro conjI)
68095
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1011
    apply (meson llb antimono_def approx(3) approx(5) g_nondec le_less_trans)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1012
    using alu uleu approx(6) g_nondec less_le_trans by blast
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1013
  have img: "\<exists>c \<ge> l i. c \<le> u i \<and> x = g c" if "g (l i) \<le> x" "x \<le> g (u i)" for x i
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1014
  proof -
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1015
    have "continuous_on {l i..u i} g"
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1016
      by (force intro!: DERIV_isCont deriv_g continuous_at_imp_continuous_on)
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1017
    with that show ?thesis
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1018
      using IVT' [of g] approx(4) dual_order.strict_implies_order by blast
4fa3e63ecc7e starting to tidy up Interval_Integral.thy
paulson <lp15@cam.ac.uk>
parents: 68046
diff changeset
  1019
  qed
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1020
  have "continuous_on {g (l i)..g (u i)} f" for i
78480
b22f39c54e8c Tidied up more messy proofs
paulson <lp15@cam.ac.uk>
parents: 75462
diff changeset
  1021
    using contf img by (force simp add: intro!: continuous_at_imp_continuous_on)
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1022
  then have int_f: "\<And>i. set_integrable lborel {g (l i)<..<g (u i)} f"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1023
    by (rule set_integrable_subset [OF borel_integrable_atLeastAtMost']) (auto intro: less_imp_le)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1024
  have integrable: "set_integrable lborel (\<Union>i. {g (l i)<..<g (u i)}) f"
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1025
  proof (intro pos_integrable_to_top incseq int_f)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1026
    let ?l = "(LBINT x=a..b. f (g x) * g' x)"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1027
    have "(\<lambda>i. LBINT x=l i..u i. f (g x) * g' x) \<longlonglongrightarrow> ?l"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1028
      by (intro assms interval_integral_Icc_approx_integrable [OF \<open>a < b\<close> approx])
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1029
    hence "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> ?l"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1030
      by (simp add: eq1)
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1031
    then show "(\<lambda>i. set_lebesgue_integral lborel {g (l i)<..<g (u i)} f) \<longlonglongrightarrow> ?l"
74362
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73526
diff changeset
  1032
      unfolding interval_lebesgue_integral_def by (auto simp: less_imp_le)
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1033
    have "\<And>x i. g (l i) \<le> x \<Longrightarrow> x \<le> g (u i) \<Longrightarrow> 0 \<le> f x"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1034
      using aless f_nonneg img lessb by blast
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1035
    then show "\<And>x i. x \<in> {g (l i)<..<g (u i)} \<Longrightarrow> 0 \<le> f x"
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1036
      using less_eq_real_def by auto
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1037
  qed (auto simp: greaterThanLessThan_borel)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1038
  thus "set_integrable lborel (einterval A B) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1039
    by (simp add: un)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1040
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1041
  have "(LBINT x=A..B. f x) = (LBINT x=a..b. g' x *\<^sub>R f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1042
  proof (rule interval_integral_substitution_integrable)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1043
    show "set_integrable lborel (einterval a b) (\<lambda>x. g' x *\<^sub>R f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1044
      using integrable_fg by (simp add: ac_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1045
  qed fact+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1046
  then show "(LBINT x=A..B. f x) = (LBINT x=a..b. (f (g x) * g' x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1047
    by (simp add: ac_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1048
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1049
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1050
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1051
syntax "_complex_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> complex"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1052
  ("(2CLBINT _. _)" [0,60] 60)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1053
80768
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1054
syntax_consts
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1055
  "_complex_lebesgue_borel_integral" == complex_lebesgue_integral
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1056
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1057
translations "CLBINT x. f" == "CONST complex_lebesgue_integral CONST lborel (\<lambda>x. f)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1058
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1059
syntax "_complex_set_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> complex"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1060
  ("(3CLBINT _:_. _)" [0,60,61] 60)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1061
80768
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1062
syntax_consts
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1063
  "_complex_set_lebesgue_borel_integral" == complex_set_lebesgue_integral
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1064
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1065
translations
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1066
  "CLBINT x:A. f" == "CONST complex_set_lebesgue_integral CONST lborel A (\<lambda>x. f)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1067
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1068
abbreviation complex_interval_lebesgue_integral ::
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1069
    "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> complex" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1070
  "complex_interval_lebesgue_integral M a b f \<equiv> interval_lebesgue_integral M a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1071
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1072
abbreviation complex_interval_lebesgue_integrable ::
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1073
  "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> bool" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1074
  "complex_interval_lebesgue_integrable M a b f \<equiv> interval_lebesgue_integrable M a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1075
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1076
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1077
  "_ascii_complex_interval_lebesgue_borel_integral" :: "pttrn \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> real \<Rightarrow> complex"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1078
  ("(4CLBINT _=_.._. _)" [0,60,60,61] 60)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1079
80768
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1080
syntax_consts
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1081
  "_ascii_complex_interval_lebesgue_borel_integral" == complex_interval_lebesgue_integral
c7723cc15de8 more markup for syntax consts;
wenzelm
parents: 79599
diff changeset
  1082
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1083
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1084
  "CLBINT x=a..b. f" == "CONST complex_interval_lebesgue_integral CONST lborel a b (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1085
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
  1086
proposition interval_integral_norm:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1087
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1088
  shows "interval_lebesgue_integrable lborel a b f \<Longrightarrow> a \<le> b \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1089
    norm (LBINT t=a..b. f t) \<le> LBINT t=a..b. norm (f t)"
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
  1090
  using integral_norm_bound[of lborel "\<lambda>x. indicator (einterval a b) x *\<^sub>R f x"]
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
  1091
  by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1092
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
  1093
proposition interval_integral_norm2:
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1094
  "interval_lebesgue_integrable lborel a b f \<Longrightarrow>
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61897
diff changeset
  1095
    norm (LBINT t=a..b. f t) \<le> \<bar>LBINT t=a..b. norm (f t)\<bar>"
69681
689997a8a582 redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
immler
parents: 69680
diff changeset
  1096
proof (induct a b rule: linorder_wlog)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1097
  case (sym a b) then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1098
    by (simp add: interval_integral_endpoints_reverse[of a b] interval_integrable_endpoints_reverse[of a b])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1099
next
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1100
  case (le a b)
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1101
  then have "\<bar>LBINT t=a..b. norm (f t)\<bar> = LBINT t=a..b. norm (f t)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1102
    using integrable_norm[of lborel "\<lambda>x. indicator (einterval a b) x *\<^sub>R f x"]
68096
e58c9ac761cb more tidying
paulson <lp15@cam.ac.uk>
parents: 68095
diff changeset
  1103
    by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1104
             intro!: integral_nonneg_AE abs_of_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1105
  then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1106
    using le by (simp add: interval_integral_norm)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1107
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1108
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1109
(* TODO: should we have a library of facts like these? *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1110
lemma integral_cos: "t \<noteq> 0 \<Longrightarrow> LBINT x=a..b. cos (t * x) = sin (t * b) / t - sin (t * a) / t"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1111
  apply (intro interval_integral_FTC_finite continuous_intros)
75462
7448423e5dba Renamed the misleading has_field_derivative_iff_has_vector_derivative. Inserted a number of minor lemmas
paulson <lp15@cam.ac.uk>
parents: 74362
diff changeset
  1112
  by (auto intro!: derivative_eq_intros simp: has_real_derivative_iff_has_vector_derivative[symmetric])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1113
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1114
end