author | haftmann |
Thu, 29 Apr 2010 15:00:41 +0200 | |
changeset 36532 | fdfc37254090 |
parent 35492 | 5d200f2d7a4f |
child 39199 | 720112792ba0 |
permissions | -rw-r--r-- |
2640 | 1 |
(* Title: HOLCF/Pcpo.thy |
2 |
Author: Franz Regensburger |
|
3 |
*) |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
15563
diff
changeset
|
4 |
|
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
15563
diff
changeset
|
5 |
header {* Classes cpo and pcpo *} |
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
15563
diff
changeset
|
6 |
|
15577 | 7 |
theory Pcpo |
8 |
imports Porder |
|
9 |
begin |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
11 |
subsection {* Complete partial orders *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
12 |
|
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
13 |
text {* The class cpo of chain complete partial orders *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
14 |
|
29614
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
15 |
class cpo = po + |
31071 | 16 |
assumes cpo: "chain S \<Longrightarrow> \<exists>x. range S <<| x" |
17 |
begin |
|
2394 | 18 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
19 |
text {* in cpo's everthing equal to THE lub has lub properties for every chain *} |
15563 | 20 |
|
31071 | 21 |
lemma cpo_lubI: "chain S \<Longrightarrow> range S <<| (\<Squnion>i. S i)" |
22 |
by (fast dest: cpo elim: lubI) |
|
26026 | 23 |
|
31071 | 24 |
lemma thelubE: "\<lbrakk>chain S; (\<Squnion>i. S i) = l\<rbrakk> \<Longrightarrow> range S <<| l" |
25 |
by (blast dest: cpo intro: lubI) |
|
15563 | 26 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
27 |
text {* Properties of the lub *} |
15563 | 28 |
|
31071 | 29 |
lemma is_ub_thelub: "chain S \<Longrightarrow> S x \<sqsubseteq> (\<Squnion>i. S i)" |
30 |
by (blast dest: cpo intro: lubI [THEN is_ub_lub]) |
|
15563 | 31 |
|
16626 | 32 |
lemma is_lub_thelub: |
31071 | 33 |
"\<lbrakk>chain S; range S <| x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x" |
34 |
by (blast dest: cpo intro: lubI [THEN is_lub_lub]) |
|
15563 | 35 |
|
16626 | 36 |
lemma lub_range_mono: |
31071 | 37 |
"\<lbrakk>range X \<subseteq> range Y; chain Y; chain X\<rbrakk> |
16626 | 38 |
\<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)" |
15563 | 39 |
apply (erule is_lub_thelub) |
40 |
apply (rule ub_rangeI) |
|
16626 | 41 |
apply (subgoal_tac "\<exists>j. X i = Y j") |
15563 | 42 |
apply clarsimp |
43 |
apply (erule is_ub_thelub) |
|
44 |
apply auto |
|
45 |
done |
|
46 |
||
16626 | 47 |
lemma lub_range_shift: |
31071 | 48 |
"chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
49 |
apply (rule below_antisym) |
15563 | 50 |
apply (rule lub_range_mono) |
51 |
apply fast |
|
52 |
apply assumption |
|
53 |
apply (erule chain_shift) |
|
54 |
apply (rule is_lub_thelub) |
|
55 |
apply assumption |
|
56 |
apply (rule ub_rangeI) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
57 |
apply (rule_tac y="Y (i + j)" in below_trans) |
25922
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
58 |
apply (erule chain_mono) |
15563 | 59 |
apply (rule le_add1) |
17813 | 60 |
apply (rule is_ub_thelub) |
61 |
apply (erule chain_shift) |
|
15563 | 62 |
done |
63 |
||
16626 | 64 |
lemma maxinch_is_thelub: |
31071 | 65 |
"chain Y \<Longrightarrow> max_in_chain i Y = ((\<Squnion>i. Y i) = Y i)" |
15563 | 66 |
apply (rule iffI) |
67 |
apply (fast intro!: thelubI lub_finch1) |
|
68 |
apply (unfold max_in_chain_def) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
69 |
apply (safe intro!: below_antisym) |
25922
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
70 |
apply (fast elim!: chain_mono) |
15563 | 71 |
apply (drule sym) |
72 |
apply (force elim!: is_ub_thelub) |
|
73 |
done |
|
74 |
||
16626 | 75 |
text {* the @{text "\<sqsubseteq>"} relation between two chains is preserved by their lubs *} |
15563 | 76 |
|
16626 | 77 |
lemma lub_mono: |
31071 | 78 |
"\<lbrakk>chain X; chain Y; \<And>i. X i \<sqsubseteq> Y i\<rbrakk> |
16626 | 79 |
\<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)" |
15563 | 80 |
apply (erule is_lub_thelub) |
81 |
apply (rule ub_rangeI) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
82 |
apply (rule below_trans) |
25923 | 83 |
apply (erule meta_spec) |
15563 | 84 |
apply (erule is_ub_thelub) |
85 |
done |
|
86 |
||
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
87 |
text {* the = relation between two chains is preserved by their lubs *} |
15563 | 88 |
|
16626 | 89 |
lemma lub_equal: |
31071 | 90 |
"\<lbrakk>chain X; chain Y; \<forall>k. X k = Y k\<rbrakk> |
16626 | 91 |
\<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)" |
31071 | 92 |
by (simp only: expand_fun_eq [symmetric]) |
15563 | 93 |
|
35492 | 94 |
lemma lub_eq: |
95 |
"(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)" |
|
96 |
by simp |
|
97 |
||
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
98 |
text {* more results about mono and = of lubs of chains *} |
3326 | 99 |
|
16626 | 100 |
lemma lub_mono2: |
31071 | 101 |
"\<lbrakk>\<exists>j. \<forall>i>j. X i = Y i; chain X; chain Y\<rbrakk> |
16626 | 102 |
\<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)" |
15563 | 103 |
apply (erule exE) |
17813 | 104 |
apply (subgoal_tac "(\<Squnion>i. X (i + Suc j)) \<sqsubseteq> (\<Squnion>i. Y (i + Suc j))") |
105 |
apply (thin_tac "\<forall>i>j. X i = Y i") |
|
106 |
apply (simp only: lub_range_shift) |
|
16626 | 107 |
apply simp |
15563 | 108 |
done |
109 |
||
16626 | 110 |
lemma lub_equal2: |
31071 | 111 |
"\<lbrakk>\<exists>j. \<forall>i>j. X i = Y i; chain X; chain Y\<rbrakk> |
16626 | 112 |
\<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
113 |
by (blast intro: below_antisym lub_mono2 sym) |
15563 | 114 |
|
16626 | 115 |
lemma lub_mono3: |
31071 | 116 |
"\<lbrakk>chain Y; chain X; \<forall>i. \<exists>j. Y i \<sqsubseteq> X j\<rbrakk> |
16626 | 117 |
\<Longrightarrow> (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. X i)" |
17813 | 118 |
apply (erule is_lub_thelub) |
15563 | 119 |
apply (rule ub_rangeI) |
120 |
apply (erule allE) |
|
121 |
apply (erule exE) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
122 |
apply (erule below_trans) |
16626 | 123 |
apply (erule is_ub_thelub) |
15563 | 124 |
done |
125 |
||
16203 | 126 |
lemma ch2ch_lub: |
127 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)" |
|
128 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)" |
|
129 |
shows "chain (\<lambda>i. \<Squnion>j. Y i j)" |
|
130 |
apply (rule chainI) |
|
25923 | 131 |
apply (rule lub_mono [OF 2 2]) |
16203 | 132 |
apply (rule chainE [OF 1]) |
133 |
done |
|
134 |
||
16201 | 135 |
lemma diag_lub: |
136 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)" |
|
137 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)" |
|
138 |
shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>i. Y i i)" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
139 |
proof (rule below_antisym) |
16201 | 140 |
have 3: "chain (\<lambda>i. Y i i)" |
141 |
apply (rule chainI) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
142 |
apply (rule below_trans) |
16201 | 143 |
apply (rule chainE [OF 1]) |
144 |
apply (rule chainE [OF 2]) |
|
145 |
done |
|
146 |
have 4: "chain (\<lambda>i. \<Squnion>j. Y i j)" |
|
16203 | 147 |
by (rule ch2ch_lub [OF 1 2]) |
16201 | 148 |
show "(\<Squnion>i. \<Squnion>j. Y i j) \<sqsubseteq> (\<Squnion>i. Y i i)" |
149 |
apply (rule is_lub_thelub [OF 4]) |
|
150 |
apply (rule ub_rangeI) |
|
16203 | 151 |
apply (rule lub_mono3 [rule_format, OF 2 3]) |
16201 | 152 |
apply (rule exI) |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
153 |
apply (rule below_trans) |
25922
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
154 |
apply (rule chain_mono [OF 1 le_maxI1]) |
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
155 |
apply (rule chain_mono [OF 2 le_maxI2]) |
16201 | 156 |
done |
157 |
show "(\<Squnion>i. Y i i) \<sqsubseteq> (\<Squnion>i. \<Squnion>j. Y i j)" |
|
25923 | 158 |
apply (rule lub_mono [OF 3 4]) |
16201 | 159 |
apply (rule is_ub_thelub [OF 2]) |
160 |
done |
|
161 |
qed |
|
162 |
||
163 |
lemma ex_lub: |
|
164 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)" |
|
165 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)" |
|
166 |
shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>j. \<Squnion>i. Y i j)" |
|
31071 | 167 |
by (simp add: diag_lub 1 2) |
16201 | 168 |
|
31071 | 169 |
end |
16201 | 170 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
171 |
subsection {* Pointed cpos *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
172 |
|
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
173 |
text {* The class pcpo of pointed cpos *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
174 |
|
29614
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
175 |
class pcpo = cpo + |
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
176 |
assumes least: "\<exists>x. \<forall>y. x \<sqsubseteq> y" |
31071 | 177 |
begin |
25723 | 178 |
|
31071 | 179 |
definition UU :: 'a where |
25723 | 180 |
"UU = (THE x. \<forall>y. x \<sqsubseteq> y)" |
181 |
||
182 |
notation (xsymbols) |
|
183 |
UU ("\<bottom>") |
|
184 |
||
185 |
text {* derive the old rule minimal *} |
|
186 |
||
187 |
lemma UU_least: "\<forall>z. \<bottom> \<sqsubseteq> z" |
|
188 |
apply (unfold UU_def) |
|
189 |
apply (rule theI') |
|
190 |
apply (rule ex_ex1I) |
|
191 |
apply (rule least) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
192 |
apply (blast intro: below_antisym) |
25723 | 193 |
done |
194 |
||
195 |
lemma minimal [iff]: "\<bottom> \<sqsubseteq> x" |
|
196 |
by (rule UU_least [THEN spec]) |
|
197 |
||
31071 | 198 |
end |
199 |
||
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
29634
diff
changeset
|
200 |
text {* Simproc to rewrite @{term "\<bottom> = x"} to @{term "x = \<bottom>"}. *} |
16739 | 201 |
|
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
29634
diff
changeset
|
202 |
setup {* |
33523 | 203 |
Reorient_Proc.add |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
29634
diff
changeset
|
204 |
(fn Const(@{const_name UU}, _) => true | _ => false) |
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
29634
diff
changeset
|
205 |
*} |
25723 | 206 |
|
33523 | 207 |
simproc_setup reorient_bottom ("\<bottom> = x") = Reorient_Proc.proc |
25723 | 208 |
|
31071 | 209 |
context pcpo |
210 |
begin |
|
211 |
||
25723 | 212 |
text {* useful lemmas about @{term \<bottom>} *} |
213 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
214 |
lemma below_UU_iff [simp]: "(x \<sqsubseteq> \<bottom>) = (x = \<bottom>)" |
25723 | 215 |
by (simp add: po_eq_conv) |
216 |
||
217 |
lemma eq_UU_iff: "(x = \<bottom>) = (x \<sqsubseteq> \<bottom>)" |
|
218 |
by simp |
|
219 |
||
220 |
lemma UU_I: "x \<sqsubseteq> \<bottom> \<Longrightarrow> x = \<bottom>" |
|
221 |
by (subst eq_UU_iff) |
|
222 |
||
223 |
lemma chain_UU_I: "\<lbrakk>chain Y; (\<Squnion>i. Y i) = \<bottom>\<rbrakk> \<Longrightarrow> \<forall>i. Y i = \<bottom>" |
|
15563 | 224 |
apply (rule allI) |
16626 | 225 |
apply (rule UU_I) |
15563 | 226 |
apply (erule subst) |
227 |
apply (erule is_ub_thelub) |
|
228 |
done |
|
229 |
||
16626 | 230 |
lemma chain_UU_I_inverse: "\<forall>i::nat. Y i = \<bottom> \<Longrightarrow> (\<Squnion>i. Y i) = \<bottom>" |
15563 | 231 |
apply (rule lub_chain_maxelem) |
232 |
apply (erule spec) |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
233 |
apply simp |
15563 | 234 |
done |
235 |
||
16626 | 236 |
lemma chain_UU_I_inverse2: "(\<Squnion>i. Y i) \<noteq> \<bottom> \<Longrightarrow> \<exists>i::nat. Y i \<noteq> \<bottom>" |
31071 | 237 |
by (blast intro: chain_UU_I_inverse) |
15563 | 238 |
|
16626 | 239 |
lemma notUU_I: "\<lbrakk>x \<sqsubseteq> y; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> y \<noteq> \<bottom>" |
31071 | 240 |
by (blast intro: UU_I) |
15563 | 241 |
|
16627 | 242 |
lemma chain_mono2: "\<lbrakk>\<exists>j. Y j \<noteq> \<bottom>; chain Y\<rbrakk> \<Longrightarrow> \<exists>j. \<forall>i>j. Y i \<noteq> \<bottom>" |
31071 | 243 |
by (blast dest: notUU_I chain_mono_less) |
244 |
||
245 |
end |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
246 |
|
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
247 |
subsection {* Chain-finite and flat cpos *} |
15563 | 248 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
249 |
text {* further useful classes for HOLCF domains *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
250 |
|
31071 | 251 |
class chfin = po + |
252 |
assumes chfin: "chain Y \<Longrightarrow> \<exists>n. max_in_chain n Y" |
|
253 |
begin |
|
25814 | 254 |
|
31071 | 255 |
subclass cpo |
256 |
apply default |
|
257 |
apply (frule chfin) |
|
258 |
apply (blast intro: lub_finch1) |
|
259 |
done |
|
15563 | 260 |
|
31071 | 261 |
lemma chfin2finch: "chain Y \<Longrightarrow> finite_chain Y" |
262 |
by (simp add: chfin finite_chain_def) |
|
263 |
||
264 |
end |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
265 |
|
31071 | 266 |
class finite_po = finite + po |
267 |
begin |
|
25814 | 268 |
|
31071 | 269 |
subclass chfin |
270 |
apply default |
|
25814 | 271 |
apply (drule finite_range_imp_finch) |
272 |
apply (rule finite) |
|
273 |
apply (simp add: finite_chain_def) |
|
274 |
done |
|
275 |
||
31071 | 276 |
end |
15640
2d1d6ea579a1
chfin now a subclass of po, proved instance chfin < cpo
huffman
parents:
15588
diff
changeset
|
277 |
|
31071 | 278 |
class flat = pcpo + |
279 |
assumes ax_flat: "x \<sqsubseteq> y \<Longrightarrow> x = \<bottom> \<or> x = y" |
|
280 |
begin |
|
15640
2d1d6ea579a1
chfin now a subclass of po, proved instance chfin < cpo
huffman
parents:
15588
diff
changeset
|
281 |
|
31071 | 282 |
subclass chfin |
283 |
apply default |
|
15563 | 284 |
apply (unfold max_in_chain_def) |
16626 | 285 |
apply (case_tac "\<forall>i. Y i = \<bottom>") |
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
286 |
apply simp |
15563 | 287 |
apply simp |
288 |
apply (erule exE) |
|
16626 | 289 |
apply (rule_tac x="i" in exI) |
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
290 |
apply clarify |
25922
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
291 |
apply (blast dest: chain_mono ax_flat) |
15563 | 292 |
done |
293 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
294 |
lemma flat_below_iff: |
25826 | 295 |
shows "(x \<sqsubseteq> y) = (x = \<bottom> \<or> x = y)" |
31071 | 296 |
by (safe dest!: ax_flat) |
25826 | 297 |
|
31071 | 298 |
lemma flat_eq: "a \<noteq> \<bottom> \<Longrightarrow> a \<sqsubseteq> b = (a = b)" |
299 |
by (safe dest!: ax_flat) |
|
15563 | 300 |
|
31071 | 301 |
end |
15563 | 302 |
|
26023 | 303 |
text {* Discrete cpos *} |
304 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
305 |
class discrete_cpo = below + |
29614
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
306 |
assumes discrete_cpo [simp]: "x \<sqsubseteq> y \<longleftrightarrow> x = y" |
31071 | 307 |
begin |
26023 | 308 |
|
31071 | 309 |
subclass po |
29614
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
310 |
proof qed simp_all |
26023 | 311 |
|
312 |
text {* In a discrete cpo, every chain is constant *} |
|
313 |
||
314 |
lemma discrete_chain_const: |
|
31071 | 315 |
assumes S: "chain S" |
26023 | 316 |
shows "\<exists>x. S = (\<lambda>i. x)" |
317 |
proof (intro exI ext) |
|
318 |
fix i :: nat |
|
319 |
have "S 0 \<sqsubseteq> S i" using S le0 by (rule chain_mono) |
|
320 |
hence "S 0 = S i" by simp |
|
321 |
thus "S i = S 0" by (rule sym) |
|
322 |
qed |
|
323 |
||
31071 | 324 |
subclass cpo |
26023 | 325 |
proof |
326 |
fix S :: "nat \<Rightarrow> 'a" |
|
327 |
assume S: "chain S" |
|
328 |
hence "\<exists>x. S = (\<lambda>i. x)" |
|
329 |
by (rule discrete_chain_const) |
|
330 |
thus "\<exists>x. range S <<| x" |
|
331 |
by (fast intro: lub_const) |
|
332 |
qed |
|
333 |
||
31071 | 334 |
end |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
15563
diff
changeset
|
335 |
|
16626 | 336 |
end |