| author | haftmann | 
| Mon, 16 Oct 2006 14:07:31 +0200 | |
| changeset 21046 | fe1db2f991a7 | 
| parent 20713 | 823967ef47f1 | 
| child 21738 | ec8a18be3f61 | 
| permissions | -rw-r--r-- | 
| 8557 | 1 | (* Title: HOL/ex/mesontest2 | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 2000 University of Cambridge | |
| 5 | ||
| 14220 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 6 | Test data for the MESON proof procedure | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 7 | (Excludes the equality problems 51, 52, 56, 58) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 8 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 9 | NOTE: most of the old file "mesontest.ML" has been converted to Isar and moved | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 10 | to Classical.thy | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 11 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 12 | Use the "mesonlog" shell script to process logs. | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 13 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 14 | show_hyps := false; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 15 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 16 | proofs := 0; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 17 | by (rtac ccontr 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 18 | val [prem] = gethyps 1; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 19 | val nnf = make_nnf prem; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 20 | val xsko = skolemize nnf; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 21 | by (cut_facts_tac [xsko] 1 THEN REPEAT (etac exE 1)); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 22 | val [_,sko] = gethyps 1; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 23 | val clauses = make_clauses [sko]; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 24 | val horns = make_horns clauses; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 25 | val goes = gocls clauses; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 26 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 27 | Goal "False"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 28 | by (resolve_tac goes 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 29 | proofs := 2; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 30 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 31 | by (prolog_step_tac horns 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 32 | by (iter_deepen_prolog_tac horns); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 33 | by (depth_prolog_tac horns); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 34 | by (best_prolog_tac size_of_subgoals horns); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 35 | *) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 36 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 37 | writeln"File HOL/ex/meson-test."; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 38 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 39 | (**** Interactive examples ****) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 40 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 41 | (*Generate nice names for Skolem functions*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 42 | Logic.auto_rename := true; Logic.set_rename_prefix "a"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 43 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 44 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 45 | writeln"Problem 25"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 46 | Goal "(\\<exists>x. P x) & \ | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 47 | \ (\\<forall>x. L x --> ~ (M x & R x)) & \ | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 48 | \ (\\<forall>x. P x --> (M x & L x)) & \ | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 49 | \ ((\\<forall>x. P x --> Q x) | (\\<exists>x. P x & R x)) \ | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 50 | \ --> (\\<exists>x. Q x & P x)"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 51 | by (rtac ccontr 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 52 | val [prem25] = gethyps 1; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 53 | val nnf25 = make_nnf prem25; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 54 | val xsko25 = skolemize nnf25; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 55 | by (cut_facts_tac [xsko25] 1 THEN REPEAT (etac exE 1)); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 56 | val [_,sko25] = gethyps 1; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 57 | val clauses25 = make_clauses [sko25]; (*7 clauses*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 58 | val horns25 = make_horns clauses25; (*16 Horn clauses*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 59 | val go25::_ = gocls clauses25; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 60 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 61 | Goal "False"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 62 | by (rtac go25 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 63 | by (depth_prolog_tac horns25); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 64 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 65 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 66 | writeln"Problem 26"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 67 | Goal "((\\<exists>x. p x) = (\\<exists>x. q x)) & \ | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 68 | \ (\\<forall>x. \\<forall>y. p x & q y --> (r x = s y)) \ | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 69 | \ --> ((\\<forall>x. p x --> r x) = (\\<forall>x. q x --> s x))"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 70 | by (rtac ccontr 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 71 | val [prem26] = gethyps 1; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 72 | val nnf26 = make_nnf prem26; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 73 | val xsko26 = skolemize nnf26; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 74 | by (cut_facts_tac [xsko26] 1 THEN REPEAT (etac exE 1)); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 75 | val [_,sko26] = gethyps 1; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 76 | val clauses26 = make_clauses [sko26]; (*9 clauses*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 77 | val horns26 = make_horns clauses26; (*24 Horn clauses*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 78 | val go26::_ = gocls clauses26; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 79 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 80 | Goal "False"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 81 | by (rtac go26 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 82 | by (depth_prolog_tac horns26); (*1.4 secs*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 83 | (*Proof is of length 107!!*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 84 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 85 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 86 | writeln"Problem 43 NOW PROVED AUTOMATICALLY!!"; (*16 Horn clauses*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 87 | Goal "(\\<forall>x. \\<forall>y. q x y = (\\<forall>z. p z x = (p z y::bool))) \ | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 88 | \ --> (\\<forall>x. (\\<forall>y. q x y = (q y x::bool)))"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 89 | by (rtac ccontr 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 90 | val [prem43] = gethyps 1; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 91 | val nnf43 = make_nnf prem43; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 92 | val xsko43 = skolemize nnf43; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 93 | by (cut_facts_tac [xsko43] 1 THEN REPEAT (etac exE 1)); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 94 | val [_,sko43] = gethyps 1; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 95 | val clauses43 = make_clauses [sko43]; (*6*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 96 | val horns43 = make_horns clauses43; (*16*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 97 | val go43::_ = gocls clauses43; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 98 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 99 | Goal "False"; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 100 | by (rtac go43 1); | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 101 | by (best_prolog_tac size_of_subgoals horns43); (*1.6 secs*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 102 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 103 | (* | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 104 | #1 (q x xa ==> ~ q x xa) ==> q xa x | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 105 | #2 (q xa x ==> ~ q xa x) ==> q x xa | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 106 | #3 (~ q x xa ==> q x xa) ==> ~ q xa x | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 107 | #4 (~ q xa x ==> q xa x) ==> ~ q x xa | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 108 | #5 [| ~ q ?U ?V ==> q ?U ?V; ~ p ?W ?U ==> p ?W ?U |] ==> p ?W ?V | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 109 | #6 [| ~ p ?W ?U ==> p ?W ?U; p ?W ?V ==> ~ p ?W ?V |] ==> ~ q ?U ?V | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 110 | #7 [| p ?W ?V ==> ~ p ?W ?V; ~ q ?U ?V ==> q ?U ?V |] ==> ~ p ?W ?U | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 111 | #8 [| ~ q ?U ?V ==> q ?U ?V; ~ p ?W ?V ==> p ?W ?V |] ==> p ?W ?U | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 112 | #9 [| ~ p ?W ?V ==> p ?W ?V; p ?W ?U ==> ~ p ?W ?U |] ==> ~ q ?U ?V | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 113 | #10 [| p ?W ?U ==> ~ p ?W ?U; ~ q ?U ?V ==> q ?U ?V |] ==> ~ p ?W ?V | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 114 | #11 [| p (xb ?U ?V) ?U ==> ~ p (xb ?U ?V) ?U; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 115 | p (xb ?U ?V) ?V ==> ~ p (xb ?U ?V) ?V |] ==> q ?U ?V | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 116 | #12 [| p (xb ?U ?V) ?V ==> ~ p (xb ?U ?V) ?V; q ?U ?V ==> ~ q ?U ?V |] ==> | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 117 | p (xb ?U ?V) ?U | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 118 | #13 [| q ?U ?V ==> ~ q ?U ?V; p (xb ?U ?V) ?U ==> ~ p (xb ?U ?V) ?U |] ==> | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 119 | p (xb ?U ?V) ?V | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 120 | #14 [| ~ p (xb ?U ?V) ?U ==> p (xb ?U ?V) ?U; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 121 | ~ p (xb ?U ?V) ?V ==> p (xb ?U ?V) ?V |] ==> q ?U ?V | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 122 | #15 [| ~ p (xb ?U ?V) ?V ==> p (xb ?U ?V) ?V; q ?U ?V ==> ~ q ?U ?V |] ==> | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 123 | ~ p (xb ?U ?V) ?U | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 124 | #16 [| q ?U ?V ==> ~ q ?U ?V; ~ p (xb ?U ?V) ?U ==> p (xb ?U ?V) ?U |] ==> | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 125 | ~ p (xb ?U ?V) ?V | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 126 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 127 | And here is the proof! (Unkn is the start state after use of goal clause) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 128 | [Unkn, Res ([Thm "#14"], false, 1), Res ([Thm "#5"], false, 1), | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 129 | Res ([Thm "#1"], false, 1), Asm 1, Res ([Thm "#13"], false, 1), Asm 2, | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 130 | Asm 1, Res ([Thm "#13"], false, 1), Asm 1, Res ([Thm "#10"], false, 1), | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 131 | Res ([Thm "#16"], false, 1), Asm 2, Asm 1, Res ([Thm "#1"], false, 1), | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 132 | Asm 1, Res ([Thm "#14"], false, 1), Res ([Thm "#5"], false, 1), | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 133 | Res ([Thm "#2"], false, 1), Asm 1, Res ([Thm "#13"], false, 1), Asm 2, | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 134 | Asm 1, Res ([Thm "#8"], false, 1), Res ([Thm "#2"], false, 1), Asm 1, | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 135 | Res ([Thm "#12"], false, 1), Asm 2, Asm 1] : lderiv list | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 136 | *) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 137 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 138 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 139 | (*Restore variable name preservation*) | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 140 | Logic.auto_rename := false; | 
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 141 | |
| 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 142 | (*MORE and MUCH HARDER test data for the MESON proof procedure | 
| 8557 | 143 | |
| 144 | Courtesy John Harrison | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 145 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 146 | WARNING: there are many potential conflicts between variables used below | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 147 | and constants declared in HOL! | 
| 8557 | 148 | *) | 
| 149 | ||
| 150 | (*All but the fastest are ignored to reduce build time*) | |
| 151 | val even_hard_ones = false; | |
| 152 | ||
| 10440 | 153 | fun prove (s,tac) = prove_goal (the_context ()) s (fn [] => [tac]); | 
| 8557 | 154 | |
| 155 | fun prove_hard arg = if even_hard_ones then prove arg else TrueI; | |
| 156 | ||
| 9000 | 157 | set timing; | 
| 8557 | 158 | |
| 159 | (* ========================================================================= *) | |
| 160 | (* 100 problems selected from the TPTP library *) | |
| 161 | (* ========================================================================= *) | |
| 162 | ||
| 163 | (* | |
| 164 | * Original timings for John Harrison's MESON_TAC. | |
| 165 | * Timings below on a 600MHz Pentium III (perch) | |
| 15661 
9ef583b08647
reverted renaming of Some/None in comments and strings;
 wenzelm parents: 
15531diff
changeset | 166 | * Some timings below refer to griffon, which is a dual 2.5GHz Power Mac G5. | 
| 8557 | 167 | * | 
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 168 | * A few variable names have been changed to avoid clashing with constants. | 
| 8557 | 169 | * | 
| 170 | * Changed numeric constants e.g. 0, 1, 2... to num0, num1, num2... | |
| 171 | * | |
| 172 | * Here's a list giving typical CPU times, as well as common names and | |
| 173 | * literature references. | |
| 174 | * | |
| 175 | * BOO003-1 34.6 B2 part 1 [McCharen, et al., 1976]; Lemma proved [Overbeek, et al., 1976]; prob2_part1.ver1.in [ANL] | |
| 176 | * BOO004-1 36.7 B2 part 2 [McCharen, et al., 1976]; Lemma proved [Overbeek, et al., 1976]; prob2_part2.ver1 [ANL] | |
| 177 | * BOO005-1 47.4 B3 part 1 [McCharen, et al., 1976]; B5 [McCharen, et al., 1976]; Lemma proved [Overbeek, et al., 1976]; prob3_part1.ver1.in [ANL] | |
| 178 | * BOO006-1 48.4 B3 part 2 [McCharen, et al., 1976]; B6 [McCharen, et al., 1976]; Lemma proved [Overbeek, et al., 1976]; prob3_part2.ver1 [ANL] | |
| 179 | * BOO011-1 19.0 B7 [McCharen, et al., 1976]; prob7.ver1 [ANL] | |
| 180 | * CAT001-3 45.2 C1 [McCharen, et al., 1976]; p1.ver3.in [ANL] | |
| 181 | * CAT003-3 10.5 C3 [McCharen, et al., 1976]; p3.ver3.in [ANL] | |
| 182 | * CAT005-1 480.1 C5 [McCharen, et al., 1976]; p5.ver1.in [ANL] | |
| 183 | * CAT007-1 11.9 C7 [McCharen, et al., 1976]; p7.ver1.in [ANL] | |
| 184 | * CAT018-1 81.3 p18.ver1.in [ANL] | |
| 185 | * COL001-2 16.0 C1 [Wos & McCune, 1988] | |
| 186 | * COL023-1 5.1 [McCune & Wos, 1988] | |
| 187 | * COL032-1 15.8 [McCune & Wos, 1988] | |
| 188 | * COL052-2 13.2 bird4.ver2.in [ANL] | |
| 189 | * COL075-2 116.9 [Jech, 1994] | |
| 190 | * COM001-1 1.7 shortburst [Wilson & Minker, 1976] | |
| 191 | * COM002-1 4.4 burstall [Wilson & Minker, 1976] | |
| 192 | * COM002-2 7.4 | |
| 193 | * COM003-2 22.1 [Brushi, 1991] | |
| 194 | * COM004-1 45.1 | |
| 195 | * GEO003-1 71.7 T3 [McCharen, et al., 1976]; t3.ver1.in [ANL] | |
| 196 | * GEO017-2 78.8 D4.1 [Quaife, 1989] | |
| 197 | * GEO027-3 181.5 D10.1 [Quaife, 1989] | |
| 198 | * GEO058-2 104.0 R4 [Quaife, 1989] | |
| 199 | * GEO079-1 2.4 GEOMETRY THEOREM [Slagle, 1967] | |
| 200 | * GRP001-1 47.8 CADE-11 Competition 1 [Overbeek, 1990]; G1 [McCharen, et al., 1976]; THEOREM 1 [Lusk & McCune, 1993]; wos10 [Wilson & Minker, 1976]; xsquared.ver1.in [ANL]; [Robinson, 1963] | |
| 201 | * GRP008-1 50.4 Problem 4 [Wos, 1965]; wos4 [Wilson & Minker, 1976] | |
| 202 | * GRP013-1 40.2 Problem 11 [Wos, 1965]; wos11 [Wilson & Minker, 1976] | |
| 203 | * GRP037-3 43.8 Problem 17 [Wos, 1965]; wos17 [Wilson & Minker, 1976] | |
| 204 | * GRP031-2 3.2 ls23 [Lawrence & Starkey, 1974]; ls23 [Wilson & Minker, 1976] | |
| 205 | * GRP034-4 2.5 ls26 [Lawrence & Starkey, 1974]; ls26 [Wilson & Minker, 1976] | |
| 206 | * GRP047-2 11.7 [Veroff, 1992] | |
| 207 | * GRP130-1 170.6 Bennett QG8 [TPTP]; QG8 [Slaney, 1993] | |
| 208 | * GRP156-1 48.7 ax_mono1c [Schulz, 1995] | |
| 209 | * GRP168-1 159.1 p01a [Schulz, 1995] | |
| 210 | * HEN003-3 39.9 HP3 [McCharen, et al., 1976] | |
| 211 | * HEN007-2 125.7 H7 [McCharen, et al., 1976] | |
| 212 | * HEN008-4 62.0 H8 [McCharen, et al., 1976] | |
| 213 | * HEN009-5 136.3 H9 [McCharen, et al., 1976]; hp9.ver3.in [ANL] | |
| 214 | * HEN012-3 48.5 new.ver2.in [ANL] | |
| 215 | * LCL010-1 370.9 EC-73 [McCune & Wos, 1992]; ec_yq.in [OTTER] | |
| 216 | * LCL077-2 51.6 morgan.two.ver1.in [ANL] | |
| 217 | * LCL082-1 14.6 IC-1.1 [Wos, et al., 1990]; IC-65 [McCune & Wos, 1992]; ls2 [SETHEO]; S1 [Pfenning, 1988] | |
| 218 | * LCL111-1 585.6 CADE-11 Competition 6 [Overbeek, 1990]; mv25.in [OTTER]; MV-57 [McCune & Wos, 1992]; mv.in part 2 [OTTER]; ovb6 [SETHEO]; THEOREM 6 [Lusk & McCune, 1993] | |
| 219 | * LCL143-1 10.9 Lattice structure theorem 2 [Bonacina, 1991] | |
| 220 | * LCL182-1 271.6 Problem 2.16 [Whitehead & Russell, 1927] | |
| 221 | * LCL200-1 12.0 Problem 2.46 [Whitehead & Russell, 1927] | |
| 222 | * LCL215-1 214.4 Problem 2.62 [Whitehead & Russell, 1927]; Problem 2.63 [Whitehead & Russell, 1927] | |
| 223 | * LCL230-2 0.2 Pelletier 5 [Pelletier, 1986] | |
| 224 | * LDA003-1 68.5 Problem 3 [Jech, 1993] | |
| 225 | * MSC002-1 9.2 DBABHP [Michie, et al., 1972]; DBABHP [Wilson & Minker, 1976] | |
| 226 | * MSC003-1 3.2 HASPARTS-T1 [Wilson & Minker, 1976] | |
| 227 | * MSC004-1 9.3 HASPARTS-T2 [Wilson & Minker, 1976] | |
| 228 | * MSC005-1 1.8 Problem 5.1 [Plaisted, 1982] | |
| 229 | * MSC006-1 39.0 nonob.lop [SETHEO] | |
| 230 | * NUM001-1 14.0 Chang-Lee-10a [Chang, 1970]; ls28 [Lawrence & Starkey, 1974]; ls28 [Wilson & Minker, 1976] | |
| 231 | * NUM021-1 52.3 ls65 [Lawrence & Starkey, 1974]; ls65 [Wilson & Minker, 1976] | |
| 232 | * NUM024-1 64.6 ls75 [Lawrence & Starkey, 1974]; ls75 [Wilson & Minker, 1976] | |
| 233 | * NUM180-1 621.2 LIM2.1 [Quaife] | |
| 234 | * NUM228-1 575.9 TRECDEF4 cor. [Quaife] | |
| 235 | * PLA002-1 37.4 Problem 5.7 [Plaisted, 1982] | |
| 236 | * PLA006-1 7.2 [Segre & Elkan, 1994] | |
| 237 | * PLA017-1 484.8 [Segre & Elkan, 1994] | |
| 238 | * PLA022-1 19.1 [Segre & Elkan, 1994] | |
| 239 | * PLA022-2 19.7 [Segre & Elkan, 1994] | |
| 240 | * PRV001-1 10.3 PV1 [McCharen, et al., 1976] | |
| 241 | * PRV003-1 3.9 E2 [McCharen, et al., 1976]; v2.lop [SETHEO] | |
| 242 | * PRV005-1 4.3 E4 [McCharen, et al., 1976]; v4.lop [SETHEO] | |
| 243 | * PRV006-1 6.0 E5 [McCharen, et al., 1976]; v5.lop [SETHEO] | |
| 244 | * PRV009-1 2.2 Hoares FIND [Bledsoe, 1977]; Problem 5.5 [Plaisted, 1982] | |
| 245 | * PUZ012-1 3.5 Boxes-of-fruit [Wos, 1988]; Boxes-of-fruit [Wos, et al., 1992]; boxes.ver1.in [ANL] | |
| 246 | * PUZ020-1 56.6 knightknave.in [ANL] | |
| 247 | * PUZ025-1 58.4 Problem 35 [Smullyan, 1978]; tandl35.ver1.in [ANL] | |
| 248 | * PUZ029-1 5.1 pigs.ver1.in [ANL] | |
| 249 | * RNG001-3 82.4 EX6-T? [Wilson & Minker, 1976]; ex6.lop [SETHEO]; Example 6a [Fleisig, et al., 1974]; FEX6T1 [SPRFN]; FEX6T2 [SPRFN] | |
| 250 | * RNG001-5 399.8 Problem 21 [Wos, 1965]; wos21 [Wilson & Minker, 1976] | |
| 251 | * RNG011-5 8.4 CADE-11 Competition Eq-10 [Overbeek, 1990]; PROBLEM 10 [Zhang, 1993]; THEOREM EQ-10 [Lusk & McCune, 1993] | |
| 252 | * RNG023-6 9.1 [Stevens, 1987] | |
| 253 | * RNG028-2 9.3 PROOF III [Anantharaman & Hsiang, 1990] | |
| 254 | * RNG038-2 16.2 Problem 27 [Wos, 1965]; wos27 [Wilson & Minker, 1976] | |
| 255 | * RNG040-2 180.5 Problem 29 [Wos, 1965]; wos29 [Wilson & Minker, 1976] | |
| 256 | * RNG041-1 35.8 Problem 30 [Wos, 1965]; wos30 [Wilson & Minker, 1976] | |
| 257 | * ROB010-1 205.0 Lemma 3.3 [Winker, 1990]; RA2 [Lusk & Wos, 1992] | |
| 258 | * ROB013-1 23.6 Lemma 3.5 [Winker, 1990] | |
| 259 | * ROB016-1 15.2 Corollary 3.7 [Winker, 1990] | |
| 260 | * ROB021-1 230.4 [McCune, 1992] | |
| 261 | * SET005-1 192.2 ls108 [Lawrence & Starkey, 1974]; ls108 [Wilson & Minker, 1976] | |
| 262 | * SET009-1 10.5 ls116 [Lawrence & Starkey, 1974]; ls116 [Wilson & Minker, 1976] | |
| 263 | * SET025-4 694.7 Lemma 10 [Boyer, et al, 1986] | |
| 264 | * SET046-5 2.3 p42.in [ANL]; Pelletier 42 [Pelletier, 1986] | |
| 265 | * SET047-5 3.7 p43.in [ANL]; Pelletier 43 [Pelletier, 1986] | |
| 266 | * SYN034-1 2.8 QW [Michie, et al., 1972]; QW [Wilson & Minker, 1976] | |
| 267 | * SYN071-1 1.9 Pelletier 48 [Pelletier, 1986] | |
| 268 | * SYN349-1 61.7 Ch17N5 [Tammet, 1994] | |
| 269 | * SYN352-1 5.5 Ch18N4 [Tammet, 1994] | |
| 270 | * TOP001-2 61.1 Lemma 1a [Wick & McCune, 1989] | |
| 271 | * TOP002-2 0.4 Lemma 1b [Wick & McCune, 1989] | |
| 272 | * TOP004-1 181.6 Lemma 1d [Wick & McCune, 1989] | |
| 273 | * TOP004-2 9.0 Lemma 1d [Wick & McCune, 1989] | |
| 274 | * TOP005-2 139.8 Lemma 1e [Wick & McCune, 1989] | |
| 275 | *) | |
| 276 | ||
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 277 | val EQU001_0_ax = "(\\<forall>X. equal(X::'a,X)) & \ | 
| 14183 | 278 | \ (\\<forall>Y X. equal(X::'a,Y) --> equal(Y::'a,X)) & \ | 
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 279 | \ (\\<forall>Y X Z. equal(X::'a,Y) & equal(Y::'a,Z) --> equal(X::'a,Z))"; | 
| 8557 | 280 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 281 | val BOO002_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 282 | "(\\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & \ | 
| 14183 | 283 | \ (\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & \ | 
| 284 | \ (\\<forall>Y X Z. sum(X::'a,Y,Z) --> sum(Y::'a,X,Z)) & \ | |
| 285 | \ (\\<forall>Y X Z. product(X::'a,Y,Z) --> product(Y::'a,X,Z)) & \ | |
| 286 | \ (\\<forall>X. sum(additive_identity::'a,X,X)) & \ | |
| 287 | \ (\\<forall>X. sum(X::'a,additive_identity,X)) & \ | |
| 288 | \ (\\<forall>X. product(multiplicative_identity::'a,X,X)) & \ | |
| 289 | \ (\\<forall>X. product(X::'a,multiplicative_identity,X)) & \ | |
| 290 | \ (\\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & \ | |
| 291 | \ (\\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & \ | |
| 292 | \ (\\<forall>Y Z V3 X V1 V2 V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & product(V3::'a,X,V4) --> sum(V1::'a,V2,V4)) & \ | |
| 293 | \ (\\<forall>Y Z V1 V2 V3 X V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(V3::'a,X,V4)) & \ | |
| 294 | \ (\\<forall>Y Z X V3 V1 V2 V4. sum(X::'a,Y,V1) & sum(X::'a,Z,V2) & product(Y::'a,Z,V3) & sum(X::'a,V3,V4) --> product(V1::'a,V2,V4)) & \ | |
| 295 | \ (\\<forall>Y Z V1 V2 X V3 V4. sum(X::'a,Y,V1) & sum(X::'a,Z,V2) & product(Y::'a,Z,V3) & product(V1::'a,V2,V4) --> sum(X::'a,V3,V4)) & \ | |
| 296 | \ (\\<forall>Y Z V3 X V1 V2 V4. sum(Y::'a,X,V1) & sum(Z::'a,X,V2) & product(Y::'a,Z,V3) & sum(V3::'a,X,V4) --> product(V1::'a,V2,V4)) & \ | |
| 297 | \ (\\<forall>Y Z V1 V2 V3 X V4. sum(Y::'a,X,V1) & sum(Z::'a,X,V2) & product(Y::'a,Z,V3) & product(V1::'a,V2,V4) --> sum(V3::'a,X,V4)) & \ | |
| 298 | \ (\\<forall>X. sum(INVERSE(X),X,multiplicative_identity)) & \ | |
| 299 | \ (\\<forall>X. sum(X::'a,INVERSE(X),multiplicative_identity)) & \ | |
| 300 | \ (\\<forall>X. product(INVERSE(X),X,additive_identity)) & \ | |
| 301 | \ (\\<forall>X. product(X::'a,INVERSE(X),additive_identity)) & \ | |
| 302 | \ (\\<forall>X Y U V. sum(X::'a,Y,U) & sum(X::'a,Y,V) --> equal(U::'a,V)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 303 | \ (\\<forall>X Y U V. product(X::'a,Y,U) & product(X::'a,Y,V) --> equal(U::'a,V))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 304 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 305 | val BOO002_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 306 | " (\\<forall>X Y W Z. equal(X::'a,Y) & sum(X::'a,W,Z) --> sum(Y::'a,W,Z)) & \ | 
| 14183 | 307 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & sum(W::'a,X,Z) --> sum(W::'a,Y,Z)) & \ | 
| 308 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & sum(W::'a,Z,X) --> sum(W::'a,Z,Y)) & \ | |
| 309 | \ (\\<forall>X Y W Z. equal(X::'a,Y) & product(X::'a,W,Z) --> product(Y::'a,W,Z)) & \ | |
| 310 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & \ | |
| 311 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y)) & \ | |
| 312 | \ (\\<forall>X Y W. equal(X::'a,Y) --> equal(add(X::'a,W),add(Y::'a,W))) & \ | |
| 313 | \ (\\<forall>X W Y. equal(X::'a,Y) --> equal(add(W::'a,X),add(W::'a,Y))) & \ | |
| 314 | \ (\\<forall>X Y W. equal(X::'a,Y) --> equal(multiply(X::'a,W),multiply(Y::'a,W))) & \ | |
| 315 | \ (\\<forall>X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 316 | \ (\\<forall>X Y. equal(X::'a,Y) --> equal(INVERSE(X),INVERSE(Y)))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 317 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 318 | (*51194 inferences so far. Searching to depth 13. 232.9 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 319 | val BOO003_1 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 320 | (EQU001_0_ax ^ "&" ^ BOO002_0_ax ^ "&" ^ BOO002_0_eq ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 321 | " & (~product(x::'a,x,x)) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 322 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 323 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 324 | (*51194 inferences so far. Searching to depth 13. 204.6 secs | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 325 | Strange! The previous problem also has 51194 inferences at depth 13. They | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 326 | must be very similar!*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 327 | val BOO004_1 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 328 | (EQU001_0_ax ^ "&" ^ BOO002_0_ax ^ "&" ^ BOO002_0_eq ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 329 | " & (~sum(x::'a,x,x)) --> False", | 
| 9841 | 330 | meson_tac 1); | 
| 8557 | 331 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 332 | (*74799 inferences so far. Searching to depth 13. 290.0 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 333 | val BOO005_1 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 334 | (EQU001_0_ax ^ "&" ^ BOO002_0_ax ^ "&" ^ BOO002_0_eq ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 335 | " & (~sum(x::'a,multiplicative_identity,multiplicative_identity)) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 336 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 337 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 338 | (*74799 inferences so far. Searching to depth 13. 314.6 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 339 | val BOO006_1 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 340 | (EQU001_0_ax ^ "&" ^ BOO002_0_ax ^ "&" ^ BOO002_0_eq ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 341 | " & (~product(x::'a,additive_identity,additive_identity)) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 342 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 343 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 344 | (*5 inferences so far. Searching to depth 5. 1.3 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 345 | val BOO011_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 346 | (EQU001_0_ax ^ "&" ^ BOO002_0_ax ^ "&" ^ BOO002_0_eq ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 347 | " & (~equal(INVERSE(additive_identity),multiplicative_identity)) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 348 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 349 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 350 | val CAT003_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 351 | "(\\<forall>Y X. equivalent(X::'a,Y) --> there_exists(X)) & \ | 
| 14183 | 352 | \ (\\<forall>X Y. equivalent(X::'a,Y) --> equal(X::'a,Y)) & \ | 
| 353 | \ (\\<forall>X Y. there_exists(X) & equal(X::'a,Y) --> equivalent(X::'a,Y)) & \ | |
| 354 | \ (\\<forall>X. there_exists(domain(X)) --> there_exists(X)) & \ | |
| 355 | \ (\\<forall>X. there_exists(codomain(X)) --> there_exists(X)) & \ | |
| 356 | \ (\\<forall>Y X. there_exists(compos(X::'a,Y)) --> there_exists(domain(X))) & \ | |
| 357 | \ (\\<forall>X Y. there_exists(compos(X::'a,Y)) --> equal(domain(X),codomain(Y))) & \ | |
| 358 | \ (\\<forall>X Y. there_exists(domain(X)) & equal(domain(X),codomain(Y)) --> there_exists(compos(X::'a,Y))) & \ | |
| 359 | \ (\\<forall>X Y Z. equal(compos(X::'a,compos(Y::'a,Z)),compos(compos(X::'a,Y),Z))) & \ | |
| 360 | \ (\\<forall>X. equal(compos(X::'a,domain(X)),X)) & \ | |
| 361 | \ (\\<forall>X. equal(compos(codomain(X),X),X)) & \ | |
| 362 | \ (\\<forall>X Y. equivalent(X::'a,Y) --> there_exists(Y)) & \ | |
| 363 | \ (\\<forall>X Y. there_exists(X) & there_exists(Y) & equal(X::'a,Y) --> equivalent(X::'a,Y)) & \ | |
| 364 | \ (\\<forall>Y X. there_exists(compos(X::'a,Y)) --> there_exists(codomain(X))) & \ | |
| 365 | \ (\\<forall>X Y. there_exists(f1(X::'a,Y)) | equal(X::'a,Y)) & \ | |
| 366 | \ (\\<forall>X Y. equal(X::'a,f1(X::'a,Y)) | equal(Y::'a,f1(X::'a,Y)) | equal(X::'a,Y)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 367 | \ (\\<forall>X Y. equal(X::'a,f1(X::'a,Y)) & equal(Y::'a,f1(X::'a,Y)) --> equal(X::'a,Y))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 368 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 369 | val CAT003_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 370 | "(\\<forall>X Y. equal(X::'a,Y) & there_exists(X) --> there_exists(Y)) & \ | 
| 14183 | 371 | \ (\\<forall>X Y Z. equal(X::'a,Y) & equivalent(X::'a,Z) --> equivalent(Y::'a,Z)) & \ | 
| 372 | \ (\\<forall>X Z Y. equal(X::'a,Y) & equivalent(Z::'a,X) --> equivalent(Z::'a,Y)) & \ | |
| 373 | \ (\\<forall>X Y. equal(X::'a,Y) --> equal(domain(X),domain(Y))) & \ | |
| 374 | \ (\\<forall>X Y. equal(X::'a,Y) --> equal(codomain(X),codomain(Y))) & \ | |
| 375 | \ (\\<forall>X Y Z. equal(X::'a,Y) --> equal(compos(X::'a,Z),compos(Y::'a,Z))) & \ | |
| 376 | \ (\\<forall>X Z Y. equal(X::'a,Y) --> equal(compos(Z::'a,X),compos(Z::'a,Y))) & \ | |
| 377 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(f1(A::'a,C),f1(B::'a,C))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 378 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(f1(F'::'a,D),f1(F'::'a,E)))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 379 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 380 | (*4007 inferences so far. Searching to depth 9. 13 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 381 | val CAT001_3 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 382 | (EQU001_0_ax ^ "&" ^ CAT003_0_ax ^ "&" ^ CAT003_0_eq ^ " & \ | 
| 8557 | 383 | \ (there_exists(compos(a::'a,b))) & \ | 
| 14183 | 384 | \ (\\<forall>Y X Z. equal(compos(compos(a::'a,b),X),Y) & equal(compos(compos(a::'a,b),Z),Y) --> equal(X::'a,Z)) & \ | 
| 8557 | 385 | \ (there_exists(compos(b::'a,h))) & \ | 
| 386 | \ (equal(compos(b::'a,h),compos(b::'a,g))) & \ | |
| 387 | \ (~equal(h::'a,g)) --> False", | |
| 9841 | 388 | meson_tac 1); | 
| 8557 | 389 | |
| 390 | (*245 inferences so far. Searching to depth 7. 1.0 secs*) | |
| 391 | val CAT003_3 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 392 | (EQU001_0_ax ^ "&" ^ CAT003_0_ax ^ "&" ^ CAT003_0_eq ^ " & \ | 
| 8557 | 393 | \ (there_exists(compos(a::'a,b))) & \ | 
| 14183 | 394 | \ (\\<forall>Y X Z. equal(compos(X::'a,compos(a::'a,b)),Y) & equal(compos(Z::'a,compos(a::'a,b)),Y) --> equal(X::'a,Z)) & \ | 
| 8557 | 395 | \ (there_exists(h)) & \ | 
| 396 | \ (equal(compos(h::'a,a),compos(g::'a,a))) & \ | |
| 397 | \ (~equal(g::'a,h)) --> False", | |
| 9841 | 398 | meson_tac 1); | 
| 8557 | 399 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 400 | val CAT001_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 401 | "(\\<forall>X Y. defined(X::'a,Y) --> product(X::'a,Y,compos(X::'a,Y))) & \ | 
| 14183 | 402 | \ (\\<forall>Z X Y. product(X::'a,Y,Z) --> defined(X::'a,Y)) & \ | 
| 403 | \ (\\<forall>X Xy Y Z. product(X::'a,Y,Xy) & defined(Xy::'a,Z) --> defined(Y::'a,Z)) & \ | |
| 404 | \ (\\<forall>Y Xy Z X Yz. product(X::'a,Y,Xy) & product(Y::'a,Z,Yz) & defined(Xy::'a,Z) --> defined(X::'a,Yz)) & \ | |
| 405 | \ (\\<forall>Xy Y Z X Yz Xyz. product(X::'a,Y,Xy) & product(Xy::'a,Z,Xyz) & product(Y::'a,Z,Yz) --> product(X::'a,Yz,Xyz)) & \ | |
| 406 | \ (\\<forall>Z Yz X Y. product(Y::'a,Z,Yz) & defined(X::'a,Yz) --> defined(X::'a,Y)) & \ | |
| 407 | \ (\\<forall>Y X Yz Xy Z. product(Y::'a,Z,Yz) & product(X::'a,Y,Xy) & defined(X::'a,Yz) --> defined(Xy::'a,Z)) & \ | |
| 408 | \ (\\<forall>Yz X Y Xy Z Xyz. product(Y::'a,Z,Yz) & product(X::'a,Yz,Xyz) & product(X::'a,Y,Xy) --> product(Xy::'a,Z,Xyz)) & \ | |
| 409 | \ (\\<forall>Y X Z. defined(X::'a,Y) & defined(Y::'a,Z) & identity_map(Y) --> defined(X::'a,Z)) & \ | |
| 410 | \ (\\<forall>X. identity_map(domain(X))) & \ | |
| 411 | \ (\\<forall>X. identity_map(codomain(X))) & \ | |
| 412 | \ (\\<forall>X. defined(X::'a,domain(X))) & \ | |
| 413 | \ (\\<forall>X. defined(codomain(X),X)) & \ | |
| 414 | \ (\\<forall>X. product(X::'a,domain(X),X)) & \ | |
| 415 | \ (\\<forall>X. product(codomain(X),X,X)) & \ | |
| 416 | \ (\\<forall>X Y. defined(X::'a,Y) & identity_map(X) --> product(X::'a,Y,Y)) & \ | |
| 417 | \ (\\<forall>Y X. defined(X::'a,Y) & identity_map(Y) --> product(X::'a,Y,X)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 418 | \ (\\<forall>X Y Z W. product(X::'a,Y,Z) & product(X::'a,Y,W) --> equal(Z::'a,W))"; | 
| 8557 | 419 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 420 | val CAT001_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 421 | "(\\<forall>X Y Z W. equal(X::'a,Y) & product(X::'a,Z,W) --> product(Y::'a,Z,W)) & \ | 
| 14183 | 422 | \ (\\<forall>X Z Y W. equal(X::'a,Y) & product(Z::'a,X,W) --> product(Z::'a,Y,W)) & \ | 
| 423 | \ (\\<forall>X Z W Y. equal(X::'a,Y) & product(Z::'a,W,X) --> product(Z::'a,W,Y)) & \ | |
| 424 | \ (\\<forall>X Y. equal(X::'a,Y) --> equal(domain(X),domain(Y))) & \ | |
| 425 | \ (\\<forall>X Y. equal(X::'a,Y) --> equal(codomain(X),codomain(Y))) & \ | |
| 426 | \ (\\<forall>X Y. equal(X::'a,Y) & identity_map(X) --> identity_map(Y)) & \ | |
| 427 | \ (\\<forall>X Y Z. equal(X::'a,Y) & defined(X::'a,Z) --> defined(Y::'a,Z)) & \ | |
| 428 | \ (\\<forall>X Z Y. equal(X::'a,Y) & defined(Z::'a,X) --> defined(Z::'a,Y)) & \ | |
| 429 | \ (\\<forall>X Z Y. equal(X::'a,Y) --> equal(compos(Z::'a,X),compos(Z::'a,Y))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 430 | \ (\\<forall>X Y Z. equal(X::'a,Y) --> equal(compos(X::'a,Z),compos(Y::'a,Z)))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 431 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 432 | (*54288 inferences so far. Searching to depth 14. 118.0 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 433 | val CAT005_1 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 434 | (EQU001_0_ax ^ "&" ^ CAT001_0_ax ^ "&" ^ CAT001_0_eq ^ " & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 435 | \ (defined(a::'a,d)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 436 | \ (identity_map(d)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 437 | \ (~equal(domain(a),d)) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 438 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 439 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 440 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 441 | (*1728 inferences so far. Searching to depth 10. 5.8 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 442 | val CAT007_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 443 | (EQU001_0_ax ^ "&" ^ CAT001_0_ax ^ "&" ^ CAT001_0_eq ^ " & \ | 
| 8557 | 444 | \ (equal(domain(a),codomain(b))) & \ | 
| 445 | \ (~defined(a::'a,b)) --> False", | |
| 9841 | 446 | meson_tac 1); | 
| 8557 | 447 | |
| 448 | (*82895 inferences so far. Searching to depth 13. 355 secs*) | |
| 449 | val CAT018_1 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 450 | (EQU001_0_ax ^ "&" ^ CAT001_0_ax ^ "&" ^ CAT001_0_eq ^ " & \ | 
| 8557 | 451 | \ (defined(a::'a,b)) & \ | 
| 452 | \ (defined(b::'a,c)) & \ | |
| 453 | \ (~defined(a::'a,compos(b::'a,c))) --> False", | |
| 9841 | 454 | meson_tac 1); | 
| 8557 | 455 | |
| 456 | (*1118 inferences so far. Searching to depth 8. 2.3 secs*) | |
| 457 | val COL001_2 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 458 | (EQU001_0_ax ^ " & \ | 
| 14183 | 459 | \ (\\<forall>X Y Z. equal(apply(apply(apply(s::'a,X),Y),Z),apply(apply(X::'a,Z),apply(Y::'a,Z)))) & \ | 
| 460 | \ (\\<forall>Y X. equal(apply(apply(k::'a,X),Y),X)) & \ | |
| 461 | \ (\\<forall>X Y Z. equal(apply(apply(apply(b::'a,X),Y),Z),apply(X::'a,apply(Y::'a,Z)))) & \ | |
| 462 | \ (\\<forall>X. equal(apply(i::'a,X),X)) & \ | |
| 463 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & \ | |
| 464 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & \ | |
| 465 | \ (\\<forall>X. equal(apply(apply(apply(s::'a,apply(b::'a,X)),i),apply(apply(s::'a,apply(b::'a,X)),i)),apply(x::'a,apply(apply(apply(s::'a,apply(b::'a,X)),i),apply(apply(s::'a,apply(b::'a,X)),i))))) & \ | |
| 466 | \ (\\<forall>Y. ~equal(Y::'a,apply(combinator::'a,Y))) --> False", | |
| 9841 | 467 | meson_tac 1); | 
| 8557 | 468 | |
| 469 | (*500 inferences so far. Searching to depth 8. 0.9 secs*) | |
| 470 | val COL023_1 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 471 | (EQU001_0_ax ^ " & \ | 
| 14183 | 472 | \ (\\<forall>X Y Z. equal(apply(apply(apply(b::'a,X),Y),Z),apply(X::'a,apply(Y::'a,Z)))) & \ | 
| 473 | \ (\\<forall>X Y Z. equal(apply(apply(apply(n::'a,X),Y),Z),apply(apply(apply(X::'a,Z),Y),Z))) & \ | |
| 474 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & \ | |
| 475 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & \ | |
| 476 | \ (\\<forall>Y. ~equal(Y::'a,apply(combinator::'a,Y))) --> False", | |
| 9841 | 477 | meson_tac 1); | 
| 8557 | 478 | |
| 479 | (*3018 inferences so far. Searching to depth 10. 4.3 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 480 | val COL032_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 481 | (EQU001_0_ax ^ " & \ | 
| 14183 | 482 | \ (\\<forall>X. equal(apply(m::'a,X),apply(X::'a,X))) & \ | 
| 483 | \ (\\<forall>Y X Z. equal(apply(apply(apply(q::'a,X),Y),Z),apply(Y::'a,apply(X::'a,Z)))) & \ | |
| 484 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & \ | |
| 485 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & \ | |
| 486 | \ (\\<forall>G H. equal(G::'a,H) --> equal(f(G),f(H))) & \ | |
| 487 | \ (\\<forall>Y. ~equal(apply(Y::'a,f(Y)),apply(f(Y),apply(Y::'a,f(Y))))) --> False", | |
| 9841 | 488 | meson_tac 1); | 
| 8557 | 489 | |
| 490 | (*381878 inferences so far. Searching to depth 13. 670.4 secs*) | |
| 491 | val COL052_2 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 492 | (EQU001_0_ax ^ " & \ | 
| 14183 | 493 | \ (\\<forall>X Y W. equal(response(compos(X::'a,Y),W),response(X::'a,response(Y::'a,W)))) & \ | 
| 494 | \ (\\<forall>X Y. agreeable(X) --> equal(response(X::'a,common_bird(Y)),response(Y::'a,common_bird(Y)))) & \ | |
| 495 | \ (\\<forall>Z X. equal(response(X::'a,Z),response(compatible(X),Z)) --> agreeable(X)) & \ | |
| 496 | \ (\\<forall>A B. equal(A::'a,B) --> equal(common_bird(A),common_bird(B))) & \ | |
| 497 | \ (\\<forall>C D. equal(C::'a,D) --> equal(compatible(C),compatible(D))) & \ | |
| 498 | \ (\\<forall>Q R. equal(Q::'a,R) & agreeable(Q) --> agreeable(R)) & \ | |
| 499 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(compos(A::'a,C),compos(B::'a,C))) & \ | |
| 500 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(compos(F'::'a,D),compos(F'::'a,E))) & \ | |
| 501 | \ (\\<forall>G H I'. equal(G::'a,H) --> equal(response(G::'a,I'),response(H::'a,I'))) & \ | |
| 502 | \ (\\<forall>J L K'. equal(J::'a,K') --> equal(response(L::'a,J),response(L::'a,K'))) & \ | |
| 8557 | 503 | \ (agreeable(c)) & \ | 
| 504 | \ (~agreeable(a)) & \ | |
| 505 | \ (equal(c::'a,compos(a::'a,b))) --> False", | |
| 9841 | 506 | meson_tac 1); | 
| 8557 | 507 | |
| 508 | (*13201 inferences so far. Searching to depth 11. 31.9 secs*) | |
| 509 | val COL075_2 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 510 | (EQU001_0_ax ^ " & \ | 
| 14183 | 511 | \ (\\<forall>Y X. equal(apply(apply(k::'a,X),Y),X)) & \ | 
| 512 | \ (\\<forall>X Y Z. equal(apply(apply(apply(abstraction::'a,X),Y),Z),apply(apply(X::'a,apply(k::'a,Z)),apply(Y::'a,Z)))) & \ | |
| 513 | \ (\\<forall>D E F'. equal(D::'a,E) --> equal(apply(D::'a,F'),apply(E::'a,F'))) & \ | |
| 514 | \ (\\<forall>G I' H. equal(G::'a,H) --> equal(apply(I'::'a,G),apply(I'::'a,H))) & \ | |
| 515 | \ (\\<forall>A B. equal(A::'a,B) --> equal(b(A),b(B))) & \ | |
| 516 | \ (\\<forall>C D. equal(C::'a,D) --> equal(c(C),c(D))) & \ | |
| 517 | \ (\\<forall>Y. ~equal(apply(apply(Y::'a,b(Y)),c(Y)),apply(b(Y),b(Y)))) --> False", | |
| 9841 | 518 | meson_tac 1); | 
| 8557 | 519 | |
| 520 | (*33 inferences so far. Searching to depth 7. 0.1 secs*) | |
| 521 | val COM001_1 = prove | |
| 14183 | 522 |  ("(\\<forall>Goal_state Start_state. follows(Goal_state::'a,Start_state) --> succeeds(Goal_state::'a,Start_state)) &   \
 | 
| 523 | \ (\\<forall>Goal_state Intermediate_state Start_state. succeeds(Goal_state::'a,Intermediate_state) & succeeds(Intermediate_state::'a,Start_state) --> succeeds(Goal_state::'a,Start_state)) & \ | |
| 524 | \ (\\<forall>Start_state Label Goal_state. has(Start_state::'a,goto(Label)) & labels(Label::'a,Goal_state) --> succeeds(Goal_state::'a,Start_state)) & \ | |
| 525 | \ (\\<forall>Start_state Condition Goal_state. has(Start_state::'a,ifthen(Condition::'a,Goal_state)) --> succeeds(Goal_state::'a,Start_state)) & \ | |
| 8557 | 526 | \ (labels(loop::'a,p3)) & \ | 
| 527 | \ (has(p3::'a,ifthen(equal(register_j::'a,n),p4))) & \ | |
| 528 | \ (has(p4::'a,goto(out))) & \ | |
| 529 | \ (follows(p5::'a,p4)) & \ | |
| 530 | \ (follows(p8::'a,p3)) & \ | |
| 531 | \ (has(p8::'a,goto(loop))) & \ | |
| 532 | \ (~succeeds(p3::'a,p3)) --> False", | |
| 9841 | 533 | meson_tac 1); | 
| 8557 | 534 | |
| 535 | (*533 inferences so far. Searching to depth 13. 0.3 secs*) | |
| 536 | val COM002_1 = prove | |
| 14183 | 537 |  ("(\\<forall>Goal_state Start_state. follows(Goal_state::'a,Start_state) --> succeeds(Goal_state::'a,Start_state)) &   \
 | 
| 538 | \ (\\<forall>Goal_state Intermediate_state Start_state. succeeds(Goal_state::'a,Intermediate_state) & succeeds(Intermediate_state::'a,Start_state) --> succeeds(Goal_state::'a,Start_state)) & \ | |
| 539 | \ (\\<forall>Start_state Label Goal_state. has(Start_state::'a,goto(Label)) & labels(Label::'a,Goal_state) --> succeeds(Goal_state::'a,Start_state)) & \ | |
| 540 | \ (\\<forall>Start_state Condition Goal_state. has(Start_state::'a,ifthen(Condition::'a,Goal_state)) --> succeeds(Goal_state::'a,Start_state)) & \ | |
| 8557 | 541 | \ (has(p1::'a,assign(register_j::'a,num0))) & \ | 
| 542 | \ (follows(p2::'a,p1)) & \ | |
| 543 | \ (has(p2::'a,assign(register_k::'a,num1))) & \ | |
| 544 | \ (labels(loop::'a,p3)) & \ | |
| 545 | \ (follows(p3::'a,p2)) & \ | |
| 546 | \ (has(p3::'a,ifthen(equal(register_j::'a,n),p4))) & \ | |
| 547 | \ (has(p4::'a,goto(out))) & \ | |
| 548 | \ (follows(p5::'a,p4)) & \ | |
| 549 | \ (follows(p6::'a,p3)) & \ | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 550 | \ (has(p6::'a,assign(register_k::'a,mtimes(num2::'a,register_k)))) & \ | 
| 8557 | 551 | \ (follows(p7::'a,p6)) & \ | 
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 552 | \ (has(p7::'a,assign(register_j::'a,mplus(register_j::'a,num1)))) & \ | 
| 8557 | 553 | \ (follows(p8::'a,p7)) & \ | 
| 554 | \ (has(p8::'a,goto(loop))) & \ | |
| 555 | \ (~succeeds(p3::'a,p3)) --> False", | |
| 9841 | 556 | meson_tac 1); | 
| 8557 | 557 | |
| 558 | (*4821 inferences so far. Searching to depth 14. 1.3 secs*) | |
| 559 | val COM002_2 = prove | |
| 14183 | 560 |  ("(\\<forall>Goal_state Start_state. ~(fails(Goal_state::'a,Start_state) & follows(Goal_state::'a,Start_state))) &     \
 | 
| 561 | \ (\\<forall>Goal_state Intermediate_state Start_state. fails(Goal_state::'a,Start_state) --> fails(Goal_state::'a,Intermediate_state) | fails(Intermediate_state::'a,Start_state)) & \ | |
| 562 | \ (\\<forall>Start_state Label Goal_state. ~(fails(Goal_state::'a,Start_state) & has(Start_state::'a,goto(Label)) & labels(Label::'a,Goal_state))) & \ | |
| 563 | \ (\\<forall>Start_state Condition Goal_state. ~(fails(Goal_state::'a,Start_state) & has(Start_state::'a,ifthen(Condition::'a,Goal_state)))) & \ | |
| 8557 | 564 | \ (has(p1::'a,assign(register_j::'a,num0))) & \ | 
| 565 | \ (follows(p2::'a,p1)) & \ | |
| 566 | \ (has(p2::'a,assign(register_k::'a,num1))) & \ | |
| 567 | \ (labels(loop::'a,p3)) & \ | |
| 568 | \ (follows(p3::'a,p2)) & \ | |
| 569 | \ (has(p3::'a,ifthen(equal(register_j::'a,n),p4))) & \ | |
| 570 | \ (has(p4::'a,goto(out))) & \ | |
| 571 | \ (follows(p5::'a,p4)) & \ | |
| 572 | \ (follows(p6::'a,p3)) & \ | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 573 | \ (has(p6::'a,assign(register_k::'a,mtimes(num2::'a,register_k)))) & \ | 
| 8557 | 574 | \ (follows(p7::'a,p6)) & \ | 
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 575 | \ (has(p7::'a,assign(register_j::'a,mplus(register_j::'a,num1)))) & \ | 
| 8557 | 576 | \ (follows(p8::'a,p7)) & \ | 
| 577 | \ (has(p8::'a,goto(loop))) & \ | |
| 578 | \ (fails(p3::'a,p3)) --> False", | |
| 9841 | 579 | meson_tac 1); | 
| 8557 | 580 | |
| 581 | (*98 inferences so far. Searching to depth 10. 1.1 secs*) | |
| 582 | val COM003_2 = prove | |
| 14183 | 583 |  ("(\\<forall>X Y Z. program_decides(X) & program(Y) --> decides(X::'a,Y,Z)) &      \
 | 
| 584 | \ (\\<forall>X. program_decides(X) | program(f2(X))) & \ | |
| 585 | \ (\\<forall>X. decides(X::'a,f2(X),f1(X)) --> program_decides(X)) & \ | |
| 586 | \ (\\<forall>X. program_program_decides(X) --> program(X)) & \ | |
| 587 | \ (\\<forall>X. program_program_decides(X) --> program_decides(X)) & \ | |
| 588 | \ (\\<forall>X. program(X) & program_decides(X) --> program_program_decides(X)) & \ | |
| 589 | \ (\\<forall>X. algorithm_program_decides(X) --> algorithm(X)) & \ | |
| 590 | \ (\\<forall>X. algorithm_program_decides(X) --> program_decides(X)) & \ | |
| 591 | \ (\\<forall>X. algorithm(X) & program_decides(X) --> algorithm_program_decides(X)) & \ | |
| 592 | \ (\\<forall>Y X. program_halts2(X::'a,Y) --> program(X)) & \ | |
| 593 | \ (\\<forall>X Y. program_halts2(X::'a,Y) --> halts2(X::'a,Y)) & \ | |
| 594 | \ (\\<forall>X Y. program(X) & halts2(X::'a,Y) --> program_halts2(X::'a,Y)) & \ | |
| 595 | \ (\\<forall>W X Y Z. halts3_outputs(X::'a,Y,Z,W) --> halts3(X::'a,Y,Z)) & \ | |
| 596 | \ (\\<forall>Y Z X W. halts3_outputs(X::'a,Y,Z,W) --> outputs(X::'a,W)) & \ | |
| 597 | \ (\\<forall>Y Z X W. halts3(X::'a,Y,Z) & outputs(X::'a,W) --> halts3_outputs(X::'a,Y,Z,W)) & \ | |
| 598 | \ (\\<forall>Y X. program_not_halts2(X::'a,Y) --> program(X)) & \ | |
| 599 | \ (\\<forall>X Y. ~(program_not_halts2(X::'a,Y) & halts2(X::'a,Y))) & \ | |
| 600 | \ (\\<forall>X Y. program(X) --> program_not_halts2(X::'a,Y) | halts2(X::'a,Y)) & \ | |
| 601 | \ (\\<forall>W X Y. halts2_outputs(X::'a,Y,W) --> halts2(X::'a,Y)) & \ | |
| 602 | \ (\\<forall>Y X W. halts2_outputs(X::'a,Y,W) --> outputs(X::'a,W)) & \ | |
| 603 | \ (\\<forall>Y X W. halts2(X::'a,Y) & outputs(X::'a,W) --> halts2_outputs(X::'a,Y,W)) & \ | |
| 604 | \ (\\<forall>X W Y Z. program_halts2_halts3_outputs(X::'a,Y,Z,W) --> program_halts2(Y::'a,Z)) & \ | |
| 605 | \ (\\<forall>X Y Z W. program_halts2_halts3_outputs(X::'a,Y,Z,W) --> halts3_outputs(X::'a,Y,Z,W)) & \ | |
| 606 | \ (\\<forall>X Y Z W. program_halts2(Y::'a,Z) & halts3_outputs(X::'a,Y,Z,W) --> program_halts2_halts3_outputs(X::'a,Y,Z,W)) & \ | |
| 607 | \ (\\<forall>X W Y Z. program_not_halts2_halts3_outputs(X::'a,Y,Z,W) --> program_not_halts2(Y::'a,Z)) & \ | |
| 608 | \ (\\<forall>X Y Z W. program_not_halts2_halts3_outputs(X::'a,Y,Z,W) --> halts3_outputs(X::'a,Y,Z,W)) & \ | |
| 609 | \ (\\<forall>X Y Z W. program_not_halts2(Y::'a,Z) & halts3_outputs(X::'a,Y,Z,W) --> program_not_halts2_halts3_outputs(X::'a,Y,Z,W)) & \ | |
| 610 | \ (\\<forall>X W Y. program_halts2_halts2_outputs(X::'a,Y,W) --> program_halts2(Y::'a,Y)) & \ | |
| 611 | \ (\\<forall>X Y W. program_halts2_halts2_outputs(X::'a,Y,W) --> halts2_outputs(X::'a,Y,W)) & \ | |
| 612 | \ (\\<forall>X Y W. program_halts2(Y::'a,Y) & halts2_outputs(X::'a,Y,W) --> program_halts2_halts2_outputs(X::'a,Y,W)) & \ | |
| 613 | \ (\\<forall>X W Y. program_not_halts2_halts2_outputs(X::'a,Y,W) --> program_not_halts2(Y::'a,Y)) & \ | |
| 614 | \ (\\<forall>X Y W. program_not_halts2_halts2_outputs(X::'a,Y,W) --> halts2_outputs(X::'a,Y,W)) & \ | |
| 615 | \ (\\<forall>X Y W. program_not_halts2(Y::'a,Y) & halts2_outputs(X::'a,Y,W) --> program_not_halts2_halts2_outputs(X::'a,Y,W)) & \ | |
| 616 | \ (\\<forall>X. algorithm_program_decides(X) --> program_program_decides(c1)) & \ | |
| 617 | \ (\\<forall>W Y Z. program_program_decides(W) --> program_halts2_halts3_outputs(W::'a,Y,Z,good)) & \ | |
| 618 | \ (\\<forall>W Y Z. program_program_decides(W) --> program_not_halts2_halts3_outputs(W::'a,Y,Z,bad)) & \ | |
| 619 | \ (\\<forall>W. program(W) & program_halts2_halts3_outputs(W::'a,f3(W),f3(W),good) & program_not_halts2_halts3_outputs(W::'a,f3(W),f3(W),bad) --> program(c2)) & \ | |
| 620 | \ (\\<forall>W Y. program(W) & program_halts2_halts3_outputs(W::'a,f3(W),f3(W),good) & program_not_halts2_halts3_outputs(W::'a,f3(W),f3(W),bad) --> program_halts2_halts2_outputs(c2::'a,Y,good)) & \ | |
| 621 | \ (\\<forall>W Y. program(W) & program_halts2_halts3_outputs(W::'a,f3(W),f3(W),good) & program_not_halts2_halts3_outputs(W::'a,f3(W),f3(W),bad) --> program_not_halts2_halts2_outputs(c2::'a,Y,bad)) & \ | |
| 622 | \ (\\<forall>V. program(V) & program_halts2_halts2_outputs(V::'a,f4(V),good) & program_not_halts2_halts2_outputs(V::'a,f4(V),bad) --> program(c3)) & \ | |
| 623 | \ (\\<forall>V Y. program(V) & program_halts2_halts2_outputs(V::'a,f4(V),good) & program_not_halts2_halts2_outputs(V::'a,f4(V),bad) & program_halts2(Y::'a,Y) --> halts2(c3::'a,Y)) & \ | |
| 624 | \ (\\<forall>V Y. program(V) & program_halts2_halts2_outputs(V::'a,f4(V),good) & program_not_halts2_halts2_outputs(V::'a,f4(V),bad) --> program_not_halts2_halts2_outputs(c3::'a,Y,bad)) & \ | |
| 8557 | 625 | \ (algorithm_program_decides(c4)) --> False", | 
| 9841 | 626 | meson_tac 1); | 
| 8557 | 627 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 628 | (*2100398 inferences so far. Searching to depth 12. | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 629 | 1256s (21 mins) on griffon*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 630 | val COM004_1 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 631 | (EQU001_0_ax ^ " & \ | 
| 14183 | 632 | \ (\\<forall>C D P Q X Y. failure_node(X::'a,or(C::'a,P)) & failure_node(Y::'a,or(D::'a,Q)) & contradictory(P::'a,Q) & siblings(X::'a,Y) --> failure_node(parent_of(X::'a,Y),or(C::'a,D))) & \ | 
| 633 | \ (\\<forall>X. contradictory(negate(X),X)) & \ | |
| 634 | \ (\\<forall>X. contradictory(X::'a,negate(X))) & \ | |
| 635 | \ (\\<forall>X. siblings(left_child_of(X),right_child_of(X))) & \ | |
| 636 | \ (\\<forall>D E. equal(D::'a,E) --> equal(left_child_of(D),left_child_of(E))) & \ | |
| 637 | \ (\\<forall>F' G. equal(F'::'a,G) --> equal(negate(F'),negate(G))) & \ | |
| 638 | \ (\\<forall>H I' J. equal(H::'a,I') --> equal(or(H::'a,J),or(I'::'a,J))) & \ | |
| 639 | \ (\\<forall>K' M L. equal(K'::'a,L) --> equal(or(M::'a,K'),or(M::'a,L))) & \ | |
| 640 | \ (\\<forall>N O_ P. equal(N::'a,O_) --> equal(parent_of(N::'a,P),parent_of(O_::'a,P))) & \ | |
| 641 | \ (\\<forall>Q S' R. equal(Q::'a,R) --> equal(parent_of(S'::'a,Q),parent_of(S'::'a,R))) & \ | |
| 642 | \ (\\<forall>T' U. equal(T'::'a,U) --> equal(right_child_of(T'),right_child_of(U))) & \ | |
| 643 | \ (\\<forall>V W X. equal(V::'a,W) & contradictory(V::'a,X) --> contradictory(W::'a,X)) & \ | |
| 644 | \ (\\<forall>Y A1 Z. equal(Y::'a,Z) & contradictory(A1::'a,Y) --> contradictory(A1::'a,Z)) & \ | |
| 645 | \ (\\<forall>B1 C1 D1. equal(B1::'a,C1) & failure_node(B1::'a,D1) --> failure_node(C1::'a,D1)) & \ | |
| 646 | \ (\\<forall>E1 G1 F1. equal(E1::'a,F1) & failure_node(G1::'a,E1) --> failure_node(G1::'a,F1)) & \ | |
| 647 | \ (\\<forall>H1 I1 J1. equal(H1::'a,I1) & siblings(H1::'a,J1) --> siblings(I1::'a,J1)) & \ | |
| 648 | \ (\\<forall>K1 M1 L1. equal(K1::'a,L1) & siblings(M1::'a,K1) --> siblings(M1::'a,L1)) & \ | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 649 | \ (failure_node(n_left::'a,or(EMPTY::'a,atom))) & \ | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 650 | \ (failure_node(n_right::'a,or(EMPTY::'a,negate(atom)))) & \ | 
| 8557 | 651 | \ (equal(n_left::'a,left_child_of(n))) & \ | 
| 652 | \ (equal(n_right::'a,right_child_of(n))) & \ | |
| 14183 | 653 | \ (\\<forall>Z. ~failure_node(Z::'a,or(EMPTY::'a,EMPTY))) --> False", | 
| 9841 | 654 | meson_tac 1); | 
| 8557 | 655 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 656 | val GEO001_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 657 | "(\\<forall>X Y. between(X::'a,Y,X) --> equal(X::'a,Y)) & \ | 
| 14183 | 658 | \ (\\<forall>V X Y Z. between(X::'a,Y,V) & between(Y::'a,Z,V) --> between(X::'a,Y,Z)) & \ | 
| 659 | \ (\\<forall>Y X V Z. between(X::'a,Y,Z) & between(X::'a,Y,V) --> equal(X::'a,Y) | between(X::'a,Z,V) | between(X::'a,V,Z)) & \ | |
| 660 | \ (\\<forall>Y X. equidistant(X::'a,Y,Y,X)) & \ | |
| 661 | \ (\\<forall>Z X Y. equidistant(X::'a,Y,Z,Z) --> equal(X::'a,Y)) & \ | |
| 662 | \ (\\<forall>X Y Z V V2 W. equidistant(X::'a,Y,Z,V) & equidistant(X::'a,Y,V2,W) --> equidistant(Z::'a,V,V2,W)) & \ | |
| 663 | \ (\\<forall>W X Z V Y. between(X::'a,W,V) & between(Y::'a,V,Z) --> between(X::'a,outer_pasch(W::'a,X,Y,Z,V),Y)) & \ | |
| 664 | \ (\\<forall>W X Y Z V. between(X::'a,W,V) & between(Y::'a,V,Z) --> between(Z::'a,W,outer_pasch(W::'a,X,Y,Z,V))) & \ | |
| 665 | \ (\\<forall>W X Y Z V. between(X::'a,V,W) & between(Y::'a,V,Z) --> equal(X::'a,V) | between(X::'a,Z,euclid1(W::'a,X,Y,Z,V))) & \ | |
| 666 | \ (\\<forall>W X Y Z V. between(X::'a,V,W) & between(Y::'a,V,Z) --> equal(X::'a,V) | between(X::'a,Y,euclid2(W::'a,X,Y,Z,V))) & \ | |
| 667 | \ (\\<forall>W X Y Z V. between(X::'a,V,W) & between(Y::'a,V,Z) --> equal(X::'a,V) | between(euclid1(W::'a,X,Y,Z,V),W,euclid2(W::'a,X,Y,Z,V))) & \ | |
| 668 | \ (\\<forall>X1 Y1 X Y Z V Z1 V1. equidistant(X::'a,Y,X1,Y1) & equidistant(Y::'a,Z,Y1,Z1) & equidistant(X::'a,V,X1,V1) & equidistant(Y::'a,V,Y1,V1) & between(X::'a,Y,Z) & between(X1::'a,Y1,Z1) --> equal(X::'a,Y) | equidistant(Z::'a,V,Z1,V1)) & \ | |
| 669 | \ (\\<forall>X Y W V. between(X::'a,Y,extension(X::'a,Y,W,V))) & \ | |
| 670 | \ (\\<forall>X Y W V. equidistant(Y::'a,extension(X::'a,Y,W,V),W,V)) & \ | |
| 8557 | 671 | \ (~between(lower_dimension_point_1::'a,lower_dimension_point_2,lower_dimension_point_3)) & \ | 
| 672 | \ (~between(lower_dimension_point_2::'a,lower_dimension_point_3,lower_dimension_point_1)) & \ | |
| 673 | \ (~between(lower_dimension_point_3::'a,lower_dimension_point_1,lower_dimension_point_2)) & \ | |
| 14183 | 674 | \ (\\<forall>Z X Y W V. equidistant(X::'a,W,X,V) & equidistant(Y::'a,W,Y,V) & equidistant(Z::'a,W,Z,V) --> between(X::'a,Y,Z) | between(Y::'a,Z,X) | between(Z::'a,X,Y) | equal(W::'a,V)) & \ | 
| 675 | \ (\\<forall>X Y Z X1 Z1 V. equidistant(V::'a,X,V,X1) & equidistant(V::'a,Z,V,Z1) & between(V::'a,X,Z) & between(X::'a,Y,Z) --> equidistant(V::'a,Y,Z,continuous(X::'a,Y,Z,X1,Z1,V))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 676 | \ (\\<forall>X Y Z X1 V Z1. equidistant(V::'a,X,V,X1) & equidistant(V::'a,Z,V,Z1) & between(V::'a,X,Z) & between(X::'a,Y,Z) --> between(X1::'a,continuous(X::'a,Y,Z,X1,Z1,V),Z1))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 677 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 678 | val GEO001_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 679 | "(\\<forall>X Y W Z. equal(X::'a,Y) & between(X::'a,W,Z) --> between(Y::'a,W,Z)) & \ | 
| 14183 | 680 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & between(W::'a,X,Z) --> between(W::'a,Y,Z)) & \ | 
| 681 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & between(W::'a,Z,X) --> between(W::'a,Z,Y)) & \ | |
| 682 | \ (\\<forall>X Y V W Z. equal(X::'a,Y) & equidistant(X::'a,V,W,Z) --> equidistant(Y::'a,V,W,Z)) & \ | |
| 683 | \ (\\<forall>X V Y W Z. equal(X::'a,Y) & equidistant(V::'a,X,W,Z) --> equidistant(V::'a,Y,W,Z)) & \ | |
| 684 | \ (\\<forall>X V W Y Z. equal(X::'a,Y) & equidistant(V::'a,W,X,Z) --> equidistant(V::'a,W,Y,Z)) & \ | |
| 685 | \ (\\<forall>X V W Z Y. equal(X::'a,Y) & equidistant(V::'a,W,Z,X) --> equidistant(V::'a,W,Z,Y)) & \ | |
| 686 | \ (\\<forall>X Y V1 V2 V3 V4. equal(X::'a,Y) --> equal(outer_pasch(X::'a,V1,V2,V3,V4),outer_pasch(Y::'a,V1,V2,V3,V4))) & \ | |
| 687 | \ (\\<forall>X V1 Y V2 V3 V4. equal(X::'a,Y) --> equal(outer_pasch(V1::'a,X,V2,V3,V4),outer_pasch(V1::'a,Y,V2,V3,V4))) & \ | |
| 688 | \ (\\<forall>X V1 V2 Y V3 V4. equal(X::'a,Y) --> equal(outer_pasch(V1::'a,V2,X,V3,V4),outer_pasch(V1::'a,V2,Y,V3,V4))) & \ | |
| 689 | \ (\\<forall>X V1 V2 V3 Y V4. equal(X::'a,Y) --> equal(outer_pasch(V1::'a,V2,V3,X,V4),outer_pasch(V1::'a,V2,V3,Y,V4))) & \ | |
| 690 | \ (\\<forall>X V1 V2 V3 V4 Y. equal(X::'a,Y) --> equal(outer_pasch(V1::'a,V2,V3,V4,X),outer_pasch(V1::'a,V2,V3,V4,Y))) & \ | |
| 691 | \ (\\<forall>A B C D E F'. equal(A::'a,B) --> equal(euclid1(A::'a,C,D,E,F'),euclid1(B::'a,C,D,E,F'))) & \ | |
| 692 | \ (\\<forall>G I' H J K' L. equal(G::'a,H) --> equal(euclid1(I'::'a,G,J,K',L),euclid1(I'::'a,H,J,K',L))) & \ | |
| 693 | \ (\\<forall>M O_ P N Q R. equal(M::'a,N) --> equal(euclid1(O_::'a,P,M,Q,R),euclid1(O_::'a,P,N,Q,R))) & \ | |
| 694 | \ (\\<forall>S' U V W T' X. equal(S'::'a,T') --> equal(euclid1(U::'a,V,W,S',X),euclid1(U::'a,V,W,T',X))) & \ | |
| 695 | \ (\\<forall>Y A1 B1 C1 D1 Z. equal(Y::'a,Z) --> equal(euclid1(A1::'a,B1,C1,D1,Y),euclid1(A1::'a,B1,C1,D1,Z))) & \ | |
| 696 | \ (\\<forall>E1 F1 G1 H1 I1 J1. equal(E1::'a,F1) --> equal(euclid2(E1::'a,G1,H1,I1,J1),euclid2(F1::'a,G1,H1,I1,J1))) & \ | |
| 697 | \ (\\<forall>K1 M1 L1 N1 O1 P1. equal(K1::'a,L1) --> equal(euclid2(M1::'a,K1,N1,O1,P1),euclid2(M1::'a,L1,N1,O1,P1))) & \ | |
| 698 | \ (\\<forall>Q1 S1 T1 R1 U1 V1. equal(Q1::'a,R1) --> equal(euclid2(S1::'a,T1,Q1,U1,V1),euclid2(S1::'a,T1,R1,U1,V1))) & \ | |
| 699 | \ (\\<forall>W1 Y1 Z1 A2 X1 B2. equal(W1::'a,X1) --> equal(euclid2(Y1::'a,Z1,A2,W1,B2),euclid2(Y1::'a,Z1,A2,X1,B2))) & \ | |
| 700 | \ (\\<forall>C2 E2 F2 G2 H2 D2. equal(C2::'a,D2) --> equal(euclid2(E2::'a,F2,G2,H2,C2),euclid2(E2::'a,F2,G2,H2,D2))) & \ | |
| 701 | \ (\\<forall>X Y V1 V2 V3. equal(X::'a,Y) --> equal(extension(X::'a,V1,V2,V3),extension(Y::'a,V1,V2,V3))) & \ | |
| 702 | \ (\\<forall>X V1 Y V2 V3. equal(X::'a,Y) --> equal(extension(V1::'a,X,V2,V3),extension(V1::'a,Y,V2,V3))) & \ | |
| 703 | \ (\\<forall>X V1 V2 Y V3. equal(X::'a,Y) --> equal(extension(V1::'a,V2,X,V3),extension(V1::'a,V2,Y,V3))) & \ | |
| 704 | \ (\\<forall>X V1 V2 V3 Y. equal(X::'a,Y) --> equal(extension(V1::'a,V2,V3,X),extension(V1::'a,V2,V3,Y))) & \ | |
| 705 | \ (\\<forall>X Y V1 V2 V3 V4 V5. equal(X::'a,Y) --> equal(continuous(X::'a,V1,V2,V3,V4,V5),continuous(Y::'a,V1,V2,V3,V4,V5))) & \ | |
| 706 | \ (\\<forall>X V1 Y V2 V3 V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,X,V2,V3,V4,V5),continuous(V1::'a,Y,V2,V3,V4,V5))) & \ | |
| 707 | \ (\\<forall>X V1 V2 Y V3 V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,X,V3,V4,V5),continuous(V1::'a,V2,Y,V3,V4,V5))) & \ | |
| 708 | \ (\\<forall>X V1 V2 V3 Y V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,X,V4,V5),continuous(V1::'a,V2,V3,Y,V4,V5))) & \ | |
| 709 | \ (\\<forall>X V1 V2 V3 V4 Y V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,X,V5),continuous(V1::'a,V2,V3,V4,Y,V5))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 710 | \ (\\<forall>X V1 V2 V3 V4 V5 Y. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,V5,X),continuous(V1::'a,V2,V3,V4,V5,Y)))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 711 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 712 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 713 | (*179 inferences so far. Searching to depth 7. 3.9 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 714 | val GEO003_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 715 | (EQU001_0_ax ^ "&" ^ GEO001_0_ax ^ "&" ^ GEO001_0_eq ^ " & \ | 
| 8557 | 716 | \ (~between(a::'a,b,b)) --> False", | 
| 9841 | 717 | meson_tac 1); | 
| 8557 | 718 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 719 | val GEO002_ax_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 720 | "(\\<forall>Y X. equidistant(X::'a,Y,Y,X)) & \ | 
| 14183 | 721 | \ (\\<forall>X Y Z V V2 W. equidistant(X::'a,Y,Z,V) & equidistant(X::'a,Y,V2,W) --> equidistant(Z::'a,V,V2,W)) & \ | 
| 722 | \ (\\<forall>Z X Y. equidistant(X::'a,Y,Z,Z) --> equal(X::'a,Y)) & \ | |
| 723 | \ (\\<forall>X Y W V. between(X::'a,Y,extension(X::'a,Y,W,V))) & \ | |
| 724 | \ (\\<forall>X Y W V. equidistant(Y::'a,extension(X::'a,Y,W,V),W,V)) & \ | |
| 725 | \ (\\<forall>X1 Y1 X Y Z V Z1 V1. equidistant(X::'a,Y,X1,Y1) & equidistant(Y::'a,Z,Y1,Z1) & equidistant(X::'a,V,X1,V1) & equidistant(Y::'a,V,Y1,V1) & between(X::'a,Y,Z) & between(X1::'a,Y1,Z1) --> equal(X::'a,Y) | equidistant(Z::'a,V,Z1,V1)) & \ | |
| 726 | \ (\\<forall>X Y. between(X::'a,Y,X) --> equal(X::'a,Y)) & \ | |
| 727 | \ (\\<forall>U V W X Y. between(U::'a,V,W) & between(Y::'a,X,W) --> between(V::'a,inner_pasch(U::'a,V,W,X,Y),Y)) & \ | |
| 728 | \ (\\<forall>V W X Y U. between(U::'a,V,W) & between(Y::'a,X,W) --> between(X::'a,inner_pasch(U::'a,V,W,X,Y),U)) & \ | |
| 8557 | 729 | \ (~between(lower_dimension_point_1::'a,lower_dimension_point_2,lower_dimension_point_3)) & \ | 
| 730 | \ (~between(lower_dimension_point_2::'a,lower_dimension_point_3,lower_dimension_point_1)) & \ | |
| 731 | \ (~between(lower_dimension_point_3::'a,lower_dimension_point_1,lower_dimension_point_2)) & \ | |
| 14183 | 732 | \ (\\<forall>Z X Y W V. equidistant(X::'a,W,X,V) & equidistant(Y::'a,W,Y,V) & equidistant(Z::'a,W,Z,V) --> between(X::'a,Y,Z) | between(Y::'a,Z,X) | between(Z::'a,X,Y) | equal(W::'a,V)) & \ | 
| 733 | \ (\\<forall>U V W X Y. between(U::'a,W,Y) & between(V::'a,W,X) --> equal(U::'a,W) | between(U::'a,V,euclid1(U::'a,V,W,X,Y))) & \ | |
| 734 | \ (\\<forall>U V W X Y. between(U::'a,W,Y) & between(V::'a,W,X) --> equal(U::'a,W) | between(U::'a,X,euclid2(U::'a,V,W,X,Y))) & \ | |
| 735 | \ (\\<forall>U V W X Y. between(U::'a,W,Y) & between(V::'a,W,X) --> equal(U::'a,W) | between(euclid1(U::'a,V,W,X,Y),Y,euclid2(U::'a,V,W,X,Y))) & \ | |
| 736 | \ (\\<forall>U V V1 W X X1. equidistant(U::'a,V,U,V1) & equidistant(U::'a,X,U,X1) & between(U::'a,V,X) & between(V::'a,W,X) --> between(V1::'a,continuous(U::'a,V,V1,W,X,X1),X1)) & \ | |
| 737 | \ (\\<forall>U V V1 W X X1. equidistant(U::'a,V,U,V1) & equidistant(U::'a,X,U,X1) & between(U::'a,V,X) & between(V::'a,W,X) --> equidistant(U::'a,W,U,continuous(U::'a,V,V1,W,X,X1))) & \ | |
| 738 | \ (\\<forall>X Y W Z. equal(X::'a,Y) & between(X::'a,W,Z) --> between(Y::'a,W,Z)) & \ | |
| 739 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & between(W::'a,X,Z) --> between(W::'a,Y,Z)) & \ | |
| 740 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & between(W::'a,Z,X) --> between(W::'a,Z,Y)) & \ | |
| 741 | \ (\\<forall>X Y V W Z. equal(X::'a,Y) & equidistant(X::'a,V,W,Z) --> equidistant(Y::'a,V,W,Z)) & \ | |
| 742 | \ (\\<forall>X V Y W Z. equal(X::'a,Y) & equidistant(V::'a,X,W,Z) --> equidistant(V::'a,Y,W,Z)) & \ | |
| 743 | \ (\\<forall>X V W Y Z. equal(X::'a,Y) & equidistant(V::'a,W,X,Z) --> equidistant(V::'a,W,Y,Z)) & \ | |
| 744 | \ (\\<forall>X V W Z Y. equal(X::'a,Y) & equidistant(V::'a,W,Z,X) --> equidistant(V::'a,W,Z,Y)) & \ | |
| 745 | \ (\\<forall>X Y V1 V2 V3 V4. equal(X::'a,Y) --> equal(inner_pasch(X::'a,V1,V2,V3,V4),inner_pasch(Y::'a,V1,V2,V3,V4))) & \ | |
| 746 | \ (\\<forall>X V1 Y V2 V3 V4. equal(X::'a,Y) --> equal(inner_pasch(V1::'a,X,V2,V3,V4),inner_pasch(V1::'a,Y,V2,V3,V4))) & \ | |
| 747 | \ (\\<forall>X V1 V2 Y V3 V4. equal(X::'a,Y) --> equal(inner_pasch(V1::'a,V2,X,V3,V4),inner_pasch(V1::'a,V2,Y,V3,V4))) & \ | |
| 748 | \ (\\<forall>X V1 V2 V3 Y V4. equal(X::'a,Y) --> equal(inner_pasch(V1::'a,V2,V3,X,V4),inner_pasch(V1::'a,V2,V3,Y,V4))) & \ | |
| 749 | \ (\\<forall>X V1 V2 V3 V4 Y. equal(X::'a,Y) --> equal(inner_pasch(V1::'a,V2,V3,V4,X),inner_pasch(V1::'a,V2,V3,V4,Y))) & \ | |
| 750 | \ (\\<forall>A B C D E F'. equal(A::'a,B) --> equal(euclid1(A::'a,C,D,E,F'),euclid1(B::'a,C,D,E,F'))) & \ | |
| 751 | \ (\\<forall>G I' H J K' L. equal(G::'a,H) --> equal(euclid1(I'::'a,G,J,K',L),euclid1(I'::'a,H,J,K',L))) & \ | |
| 752 | \ (\\<forall>M O_ P N Q R. equal(M::'a,N) --> equal(euclid1(O_::'a,P,M,Q,R),euclid1(O_::'a,P,N,Q,R))) & \ | |
| 753 | \ (\\<forall>S' U V W T' X. equal(S'::'a,T') --> equal(euclid1(U::'a,V,W,S',X),euclid1(U::'a,V,W,T',X))) & \ | |
| 754 | \ (\\<forall>Y A1 B1 C1 D1 Z. equal(Y::'a,Z) --> equal(euclid1(A1::'a,B1,C1,D1,Y),euclid1(A1::'a,B1,C1,D1,Z))) & \ | |
| 755 | \ (\\<forall>E1 F1 G1 H1 I1 J1. equal(E1::'a,F1) --> equal(euclid2(E1::'a,G1,H1,I1,J1),euclid2(F1::'a,G1,H1,I1,J1))) & \ | |
| 756 | \ (\\<forall>K1 M1 L1 N1 O1 P1. equal(K1::'a,L1) --> equal(euclid2(M1::'a,K1,N1,O1,P1),euclid2(M1::'a,L1,N1,O1,P1))) & \ | |
| 757 | \ (\\<forall>Q1 S1 T1 R1 U1 V1. equal(Q1::'a,R1) --> equal(euclid2(S1::'a,T1,Q1,U1,V1),euclid2(S1::'a,T1,R1,U1,V1))) & \ | |
| 758 | \ (\\<forall>W1 Y1 Z1 A2 X1 B2. equal(W1::'a,X1) --> equal(euclid2(Y1::'a,Z1,A2,W1,B2),euclid2(Y1::'a,Z1,A2,X1,B2))) & \ | |
| 759 | \ (\\<forall>C2 E2 F2 G2 H2 D2. equal(C2::'a,D2) --> equal(euclid2(E2::'a,F2,G2,H2,C2),euclid2(E2::'a,F2,G2,H2,D2))) & \ | |
| 760 | \ (\\<forall>X Y V1 V2 V3. equal(X::'a,Y) --> equal(extension(X::'a,V1,V2,V3),extension(Y::'a,V1,V2,V3))) & \ | |
| 761 | \ (\\<forall>X V1 Y V2 V3. equal(X::'a,Y) --> equal(extension(V1::'a,X,V2,V3),extension(V1::'a,Y,V2,V3))) & \ | |
| 762 | \ (\\<forall>X V1 V2 Y V3. equal(X::'a,Y) --> equal(extension(V1::'a,V2,X,V3),extension(V1::'a,V2,Y,V3))) & \ | |
| 763 | \ (\\<forall>X V1 V2 V3 Y. equal(X::'a,Y) --> equal(extension(V1::'a,V2,V3,X),extension(V1::'a,V2,V3,Y))) & \ | |
| 764 | \ (\\<forall>X Y V1 V2 V3 V4 V5. equal(X::'a,Y) --> equal(continuous(X::'a,V1,V2,V3,V4,V5),continuous(Y::'a,V1,V2,V3,V4,V5))) & \ | |
| 765 | \ (\\<forall>X V1 Y V2 V3 V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,X,V2,V3,V4,V5),continuous(V1::'a,Y,V2,V3,V4,V5))) & \ | |
| 766 | \ (\\<forall>X V1 V2 Y V3 V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,X,V3,V4,V5),continuous(V1::'a,V2,Y,V3,V4,V5))) & \ | |
| 767 | \ (\\<forall>X V1 V2 V3 Y V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,X,V4,V5),continuous(V1::'a,V2,V3,Y,V4,V5))) & \ | |
| 768 | \ (\\<forall>X V1 V2 V3 V4 Y V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,X,V5),continuous(V1::'a,V2,V3,V4,Y,V5))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 769 | \ (\\<forall>X V1 V2 V3 V4 V5 Y. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,V5,X),continuous(V1::'a,V2,V3,V4,V5,Y)))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 770 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 771 | (*4272 inferences so far. Searching to depth 10. 29.4 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 772 | val GEO017_2 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 773 | (EQU001_0_ax ^ "&" ^ GEO002_ax_eq ^ " & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 774 | \ (equidistant(u::'a,v,w,x)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 775 | \ (~equidistant(u::'a,v,x,w)) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 776 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 777 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 778 | (*382903 inferences so far. Searching to depth 9. 1022s (17 mins) on griffon*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 779 | val GEO027_3 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 780 | (EQU001_0_ax ^ "&" ^ GEO002_ax_eq ^ " & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 781 | \ (\\<forall>U V. equal(reflection(U::'a,V),extension(U::'a,V,U,V))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 782 | \ (\\<forall>X Y Z. equal(X::'a,Y) --> equal(reflection(X::'a,Z),reflection(Y::'a,Z))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 783 | \ (\\<forall>A1 C1 B1. equal(A1::'a,B1) --> equal(reflection(C1::'a,A1),reflection(C1::'a,B1))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 784 | \ (\\<forall>U V. equidistant(U::'a,V,U,V)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 785 | \ (\\<forall>W X U V. equidistant(U::'a,V,W,X) --> equidistant(W::'a,X,U,V)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 786 | \ (\\<forall>V U W X. equidistant(U::'a,V,W,X) --> equidistant(V::'a,U,W,X)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 787 | \ (\\<forall>U V X W. equidistant(U::'a,V,W,X) --> equidistant(U::'a,V,X,W)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 788 | \ (\\<forall>V U X W. equidistant(U::'a,V,W,X) --> equidistant(V::'a,U,X,W)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 789 | \ (\\<forall>W X V U. equidistant(U::'a,V,W,X) --> equidistant(W::'a,X,V,U)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 790 | \ (\\<forall>X W U V. equidistant(U::'a,V,W,X) --> equidistant(X::'a,W,U,V)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 791 | \ (\\<forall>X W V U. equidistant(U::'a,V,W,X) --> equidistant(X::'a,W,V,U)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 792 | \ (\\<forall>W X U V Y Z. equidistant(U::'a,V,W,X) & equidistant(W::'a,X,Y,Z) --> equidistant(U::'a,V,Y,Z)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 793 | \ (\\<forall>U V W. equal(V::'a,extension(U::'a,V,W,W))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 794 | \ (\\<forall>W X U V Y. equal(Y::'a,extension(U::'a,V,W,X)) --> between(U::'a,V,Y)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 795 | \ (\\<forall>U V. between(U::'a,V,reflection(U::'a,V))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 796 | \ (\\<forall>U V. equidistant(V::'a,reflection(U::'a,V),U,V)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 797 | \ (\\<forall>U V. equal(U::'a,V) --> equal(V::'a,reflection(U::'a,V))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 798 | \ (\\<forall>U. equal(U::'a,reflection(U::'a,U))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 799 | \ (\\<forall>U V. equal(V::'a,reflection(U::'a,V)) --> equal(U::'a,V)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 800 | \ (\\<forall>U V. equidistant(U::'a,U,V,V)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 801 | \ (\\<forall>V V1 U W U1 W1. equidistant(U::'a,V,U1,V1) & equidistant(V::'a,W,V1,W1) & between(U::'a,V,W) & between(U1::'a,V1,W1) --> equidistant(U::'a,W,U1,W1)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 802 | \ (\\<forall>U V W X. between(U::'a,V,W) & between(U::'a,V,X) & equidistant(V::'a,W,V,X) --> equal(U::'a,V) | equal(W::'a,X)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 803 | \ (between(u::'a,v,w)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 804 | \ (~equal(u::'a,v)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 805 | \ (~equal(w::'a,extension(u::'a,v,v,w))) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 806 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 807 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 808 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 809 | (*313884 inferences so far. Searching to depth 10. 887 secs: 15 mins.*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 810 | val GEO058_2 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 811 | (EQU001_0_ax ^ "&" ^ GEO002_ax_eq ^ " & \ | 
| 14183 | 812 | \ (\\<forall>U V. equal(reflection(U::'a,V),extension(U::'a,V,U,V))) & \ | 
| 813 | \ (\\<forall>X Y Z. equal(X::'a,Y) --> equal(reflection(X::'a,Z),reflection(Y::'a,Z))) & \ | |
| 814 | \ (\\<forall>A1 C1 B1. equal(A1::'a,B1) --> equal(reflection(C1::'a,A1),reflection(C1::'a,B1))) & \ | |
| 8557 | 815 | \ (equal(v::'a,reflection(u::'a,v))) & \ | 
| 816 | \ (~equal(u::'a,v)) --> False", | |
| 9841 | 817 | meson_tac 1); | 
| 8557 | 818 | |
| 819 | (*0 inferences so far. Searching to depth 0. 0.2 secs*) | |
| 820 | val GEO079_1 = prove | |
| 14183 | 821 |  ("(\\<forall>U V W X Y Z. right_angle(U::'a,V,W) & right_angle(X::'a,Y,Z) --> eq(U::'a,V,W,X,Y,Z)) &       \
 | 
| 822 | \ (\\<forall>U V W X Y Z. CONGRUENT(U::'a,V,W,X,Y,Z) --> eq(U::'a,V,W,X,Y,Z)) & \ | |
| 823 | \ (\\<forall>V W U X. trapezoid(U::'a,V,W,X) --> parallel(V::'a,W,U,X)) & \ | |
| 824 | \ (\\<forall>U V X Y. parallel(U::'a,V,X,Y) --> eq(X::'a,V,U,V,X,Y)) & \ | |
| 8557 | 825 | \ (trapezoid(a::'a,b,c,d)) & \ | 
| 826 | \ (~eq(a::'a,c,b,c,a,d)) --> False", | |
| 9841 | 827 | meson_tac 1); | 
| 8557 | 828 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 829 | val GRP003_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 830 | "(\\<forall>X. product(identity::'a,X,X)) & \ | 
| 14183 | 831 | \ (\\<forall>X. product(X::'a,identity,X)) & \ | 
| 832 | \ (\\<forall>X. product(INVERSE(X),X,identity)) & \ | |
| 833 | \ (\\<forall>X. product(X::'a,INVERSE(X),identity)) & \ | |
| 834 | \ (\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & \ | |
| 835 | \ (\\<forall>X Y Z W. product(X::'a,Y,Z) & product(X::'a,Y,W) --> equal(Z::'a,W)) & \ | |
| 836 | \ (\\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 837 | \ (\\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 838 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 839 | val GRP003_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 840 | "(\\<forall>X Y. equal(X::'a,Y) --> equal(INVERSE(X),INVERSE(Y))) & \ | 
| 14183 | 841 | \ (\\<forall>X Y W. equal(X::'a,Y) --> equal(multiply(X::'a,W),multiply(Y::'a,W))) & \ | 
| 842 | \ (\\<forall>X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & \ | |
| 843 | \ (\\<forall>X Y W Z. equal(X::'a,Y) & product(X::'a,W,Z) --> product(Y::'a,W,Z)) & \ | |
| 844 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 845 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 846 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 847 | (*2032008 inferences so far. Searching to depth 16. 658s (11 mins) on griffon*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 848 | val GRP001_1 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 849 | (EQU001_0_ax ^ "&" ^ GRP003_0_ax ^ "&" ^ GRP003_0_eq ^ " & \ | 
| 14183 | 850 | \ (\\<forall>X. product(X::'a,X,identity)) & \ | 
| 8557 | 851 | \ (product(a::'a,b,c)) & \ | 
| 852 | \ (~product(b::'a,a,c)) --> False", | |
| 9841 | 853 | meson_tac 1); | 
| 8557 | 854 | |
| 855 | (*2386 inferences so far. Searching to depth 11. 8.7 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 856 | val GRP008_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 857 | (EQU001_0_ax ^ "&" ^ GRP003_0_ax ^ "&" ^ GRP003_0_eq ^ " & \ | 
| 14183 | 858 | \ (\\<forall>A B. equal(A::'a,B) --> equal(h(A),h(B))) & \ | 
| 859 | \ (\\<forall>C D. equal(C::'a,D) --> equal(j(C),j(D))) & \ | |
| 860 | \ (\\<forall>A B. equal(A::'a,B) & q(A) --> q(B)) & \ | |
| 861 | \ (\\<forall>B A C. q(A) & product(A::'a,B,C) --> product(B::'a,A,C)) & \ | |
| 862 | \ (\\<forall>A. product(j(A),A,h(A)) | product(A::'a,j(A),h(A)) | q(A)) & \ | |
| 863 | \ (\\<forall>A. product(j(A),A,h(A)) & product(A::'a,j(A),h(A)) --> q(A)) & \ | |
| 8557 | 864 | \ (~q(identity)) --> False", | 
| 9841 | 865 | meson_tac 1); | 
| 8557 | 866 | |
| 867 | (*8625 inferences so far. Searching to depth 11. 20 secs*) | |
| 868 | val GRP013_1 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 869 | (EQU001_0_ax ^ "&" ^ GRP003_0_ax ^ "&" ^ GRP003_0_eq ^ " & \ | 
| 14183 | 870 | \ (\\<forall>A. product(A::'a,A,identity)) & \ | 
| 8557 | 871 | \ (product(a::'a,b,c)) & \ | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 872 | \ (product(INVERSE(a),INVERSE(b),d)) & \ | 
| 14183 | 873 | \ (\\<forall>A C B. product(INVERSE(A),INVERSE(B),C) --> product(A::'a,C,B)) & \ | 
| 8557 | 874 | \ (~product(c::'a,d,identity)) --> False", | 
| 9841 | 875 | meson_tac 1); | 
| 8557 | 876 | |
| 877 | (*2448 inferences so far. Searching to depth 10. 7.2 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 878 | val GRP037_3 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 879 | (EQU001_0_ax ^ "&" ^ GRP003_0_ax ^ "&" ^ GRP003_0_eq ^ " & \ | 
| 14183 | 880 | \ (\\<forall>A B C. subgroup_member(A) & subgroup_member(B) & product(A::'a,INVERSE(B),C) --> subgroup_member(C)) & \ | 
| 881 | \ (\\<forall>A B. equal(A::'a,B) & subgroup_member(A) --> subgroup_member(B)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 882 | \ (\\<forall>A. subgroup_member(A) --> product(Gidentity::'a,A,A)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 883 | \ (\\<forall>A. subgroup_member(A) --> product(A::'a,Gidentity,A)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 884 | \ (\\<forall>A. subgroup_member(A) --> product(A::'a,Ginverse(A),Gidentity)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 885 | \ (\\<forall>A. subgroup_member(A) --> product(Ginverse(A),A,Gidentity)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 886 | \ (\\<forall>A. subgroup_member(A) --> subgroup_member(Ginverse(A))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 887 | \ (\\<forall>A B. equal(A::'a,B) --> equal(Ginverse(A),Ginverse(B))) & \ | 
| 14183 | 888 | \ (\\<forall>A C D B. product(A::'a,B,C) & product(A::'a,D,C) --> equal(D::'a,B)) & \ | 
| 889 | \ (\\<forall>B C D A. product(A::'a,B,C) & product(D::'a,B,C) --> equal(D::'a,A)) & \ | |
| 8557 | 890 | \ (subgroup_member(a)) & \ | 
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 891 | \ (subgroup_member(Gidentity)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 892 | \ (~equal(INVERSE(a),Ginverse(a))) --> False", | 
| 9841 | 893 | meson_tac 1); | 
| 8557 | 894 | |
| 895 | (*163 inferences so far. Searching to depth 11. 0.3 secs*) | |
| 896 | val GRP031_2 = prove | |
| 14183 | 897 |  ("(\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) &        \
 | 
| 898 | \ (\\<forall>X Y Z W. product(X::'a,Y,Z) & product(X::'a,Y,W) --> equal(Z::'a,W)) & \ | |
| 899 | \ (\\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & \ | |
| 900 | \ (\\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & \ | |
| 901 | \ (\\<forall>A. product(A::'a,INVERSE(A),identity)) & \ | |
| 902 | \ (\\<forall>A. product(A::'a,identity,A)) & \ | |
| 903 | \ (\\<forall>A. ~product(A::'a,a,identity)) --> False", | |
| 9841 | 904 | meson_tac 1); | 
| 8557 | 905 | |
| 906 | (*47 inferences so far. Searching to depth 11. 0.2 secs*) | |
| 907 | val GRP034_4 = prove | |
| 14183 | 908 |  ("(\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) &        \
 | 
| 909 | \ (\\<forall>X. product(identity::'a,X,X)) & \ | |
| 910 | \ (\\<forall>X. product(X::'a,identity,X)) & \ | |
| 911 | \ (\\<forall>X. product(X::'a,INVERSE(X),identity)) & \ | |
| 912 | \ (\\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & \ | |
| 913 | \ (\\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & \ | |
| 914 | \ (\\<forall>B A C. subgroup_member(A) & subgroup_member(B) & product(B::'a,INVERSE(A),C) --> subgroup_member(C)) & \ | |
| 8557 | 915 | \ (subgroup_member(a)) & \ | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 916 | \ (~subgroup_member(INVERSE(a))) --> False", | 
| 9841 | 917 | meson_tac 1); | 
| 8557 | 918 | |
| 919 | (*3287 inferences so far. Searching to depth 14. 3.5 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 920 | val GRP047_2 = prove | 
| 14183 | 921 |  ("(\\<forall>X. product(identity::'a,X,X)) &       \
 | 
| 922 | \ (\\<forall>X. product(INVERSE(X),X,identity)) & \ | |
| 923 | \ (\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & \ | |
| 924 | \ (\\<forall>X Y Z W. product(X::'a,Y,Z) & product(X::'a,Y,W) --> equal(Z::'a,W)) & \ | |
| 925 | \ (\\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & \ | |
| 926 | \ (\\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & \ | |
| 927 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y)) & \ | |
| 8557 | 928 | \ (equal(a::'a,b)) & \ | 
| 929 | \ (~equal(multiply(c::'a,a),multiply(c::'a,b))) --> False", | |
| 9841 | 930 | meson_tac 1); | 
| 8557 | 931 | |
| 932 | (*25559 inferences so far. Searching to depth 19. 16.9 secs*) | |
| 933 | val GRP130_1_002 = prove_hard | |
| 934 |  ("(group_element(e_1)) &       \
 | |
| 935 | \ (group_element(e_2)) & \ | |
| 936 | \ (~equal(e_1::'a,e_2)) & \ | |
| 937 | \ (~equal(e_2::'a,e_1)) & \ | |
| 14183 | 938 | \ (\\<forall>X Y. group_element(X) & group_element(Y) --> product(X::'a,Y,e_1) | product(X::'a,Y,e_2)) & \ | 
| 939 | \ (\\<forall>X Y W Z. product(X::'a,Y,W) & product(X::'a,Y,Z) --> equal(W::'a,Z)) & \ | |
| 940 | \ (\\<forall>X Y W Z. product(X::'a,W,Y) & product(X::'a,Z,Y) --> equal(W::'a,Z)) & \ | |
| 941 | \ (\\<forall>Y X W Z. product(W::'a,Y,X) & product(Z::'a,Y,X) --> equal(W::'a,Z)) & \ | |
| 942 | \ (\\<forall>Z1 Z2 Y X. product(X::'a,Y,Z1) & product(X::'a,Z1,Z2) --> product(Z2::'a,Y,X)) --> False", | |
| 9841 | 943 | meson_tac 1); | 
| 8557 | 944 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 945 | val GRP004_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 946 | "(\\<forall>X. equal(multiply(identity::'a,X),X)) & \ | 
| 14183 | 947 | \ (\\<forall>X. equal(multiply(INVERSE(X),X),identity)) & \ | 
| 948 | \ (\\<forall>X Y Z. equal(multiply(multiply(X::'a,Y),Z),multiply(X::'a,multiply(Y::'a,Z)))) & \ | |
| 949 | \ (\\<forall>A B. equal(A::'a,B) --> equal(INVERSE(A),INVERSE(B))) & \ | |
| 950 | \ (\\<forall>C D E. equal(C::'a,D) --> equal(multiply(C::'a,E),multiply(D::'a,E))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 951 | \ (\\<forall>F' H G. equal(F'::'a,G) --> equal(multiply(H::'a,F'),multiply(H::'a,G)))"; | 
| 8557 | 952 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 953 | val GRP004_2_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 954 | "(\\<forall>Y X. equal(greatest_lower_bound(X::'a,Y),greatest_lower_bound(Y::'a,X))) & \ | 
| 14183 | 955 | \ (\\<forall>Y X. equal(least_upper_bound(X::'a,Y),least_upper_bound(Y::'a,X))) & \ | 
| 956 | \ (\\<forall>X Y Z. equal(greatest_lower_bound(X::'a,greatest_lower_bound(Y::'a,Z)),greatest_lower_bound(greatest_lower_bound(X::'a,Y),Z))) & \ | |
| 957 | \ (\\<forall>X Y Z. equal(least_upper_bound(X::'a,least_upper_bound(Y::'a,Z)),least_upper_bound(least_upper_bound(X::'a,Y),Z))) & \ | |
| 958 | \ (\\<forall>X. equal(least_upper_bound(X::'a,X),X)) & \ | |
| 959 | \ (\\<forall>X. equal(greatest_lower_bound(X::'a,X),X)) & \ | |
| 960 | \ (\\<forall>Y X. equal(least_upper_bound(X::'a,greatest_lower_bound(X::'a,Y)),X)) & \ | |
| 961 | \ (\\<forall>Y X. equal(greatest_lower_bound(X::'a,least_upper_bound(X::'a,Y)),X)) & \ | |
| 962 | \ (\\<forall>Y X Z. equal(multiply(X::'a,least_upper_bound(Y::'a,Z)),least_upper_bound(multiply(X::'a,Y),multiply(X::'a,Z)))) & \ | |
| 963 | \ (\\<forall>Y X Z. equal(multiply(X::'a,greatest_lower_bound(Y::'a,Z)),greatest_lower_bound(multiply(X::'a,Y),multiply(X::'a,Z)))) & \ | |
| 964 | \ (\\<forall>Y Z X. equal(multiply(least_upper_bound(Y::'a,Z),X),least_upper_bound(multiply(Y::'a,X),multiply(Z::'a,X)))) & \ | |
| 965 | \ (\\<forall>Y Z X. equal(multiply(greatest_lower_bound(Y::'a,Z),X),greatest_lower_bound(multiply(Y::'a,X),multiply(Z::'a,X)))) & \ | |
| 966 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(greatest_lower_bound(A::'a,C),greatest_lower_bound(B::'a,C))) & \ | |
| 967 | \ (\\<forall>A C B. equal(A::'a,B) --> equal(greatest_lower_bound(C::'a,A),greatest_lower_bound(C::'a,B))) & \ | |
| 968 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(least_upper_bound(A::'a,C),least_upper_bound(B::'a,C))) & \ | |
| 969 | \ (\\<forall>A C B. equal(A::'a,B) --> equal(least_upper_bound(C::'a,A),least_upper_bound(C::'a,B))) & \ | |
| 970 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(multiply(A::'a,C),multiply(B::'a,C))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 971 | \ (\\<forall>A C B. equal(A::'a,B) --> equal(multiply(C::'a,A),multiply(C::'a,B)))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 972 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 973 | (*3468 inferences so far. Searching to depth 10. 9.1 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 974 | val GRP156_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 975 | (EQU001_0_ax ^ "&" ^ GRP004_0_ax ^ "&" ^ GRP004_2_ax ^ " & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 976 | \ (equal(least_upper_bound(a::'a,b),b)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 977 | \ (~equal(greatest_lower_bound(multiply(a::'a,c),multiply(b::'a,c)),multiply(a::'a,c))) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 978 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 979 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 980 | (*4394 inferences so far. Searching to depth 10. 8.2 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 981 | val GRP168_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 982 | (EQU001_0_ax ^ "&" ^ GRP004_0_ax ^ "&" ^ GRP004_2_ax ^ " & \ | 
| 8557 | 983 | \ (equal(least_upper_bound(a::'a,b),b)) & \ | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 984 | \ (~equal(least_upper_bound(multiply(INVERSE(c),multiply(a::'a,c)),multiply(INVERSE(c),multiply(b::'a,c))),multiply(INVERSE(c),multiply(b::'a,c)))) --> False", | 
| 9841 | 985 | meson_tac 1); | 
| 8557 | 986 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 987 | val HEN002_0_ax = | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 988 | "(\\<forall>X Y. mless_equal(X::'a,Y) --> equal(Divide(X::'a,Y),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 989 | \ (\\<forall>X Y. equal(Divide(X::'a,Y),Zero) --> mless_equal(X::'a,Y)) & \ | 
| 19277 | 990 | \ (\\<forall>Y X. mless_equal(Divide(X::'a,Y),X)) & \ | 
| 991 | \ (\\<forall>X Y Z. mless_equal(Divide(Divide(X::'a,Z),Divide(Y::'a,Z)),Divide(Divide(X::'a,Y),Z))) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 992 | \ (\\<forall>X. mless_equal(Zero::'a,X)) & \ | 
| 19277 | 993 | \ (\\<forall>X Y. mless_equal(X::'a,Y) & mless_equal(Y::'a,X) --> equal(X::'a,Y)) & \ | 
| 994 | \ (\\<forall>X. mless_equal(X::'a,identity))"; | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 995 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 996 | val HEN002_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 997 | "(\\<forall>A B C. equal(A::'a,B) --> equal(Divide(A::'a,C),Divide(B::'a,C))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 998 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(Divide(F'::'a,D),Divide(F'::'a,E))) & \ | 
| 19277 | 999 | \ (\\<forall>G H I'. equal(G::'a,H) & mless_equal(G::'a,I') --> mless_equal(H::'a,I')) & \ | 
| 1000 | \ (\\<forall>J L K'. equal(J::'a,K') & mless_equal(L::'a,J) --> mless_equal(L::'a,K'))"; | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1001 | |
| 8557 | 1002 | (*250258 inferences so far. Searching to depth 16. 406.2 secs*) | 
| 1003 | val HEN003_3 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1004 | (EQU001_0_ax ^ "&" ^ HEN002_0_ax ^ "&" ^ HEN002_0_eq ^ " & \ | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1005 | \ (~equal(Divide(a::'a,a),Zero)) --> False", | 
| 9841 | 1006 | meson_tac 1); | 
| 8557 | 1007 | |
| 1008 | ||
| 1009 | (*202177 inferences so far. Searching to depth 14. 451 secs*) | |
| 1010 | val HEN007_2 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1011 | (EQU001_0_ax ^ " & \ | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1012 | \ (\\<forall>X Y. mless_equal(X::'a,Y) --> quotient(X::'a,Y,Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1013 | \ (\\<forall>X Y. quotient(X::'a,Y,Zero) --> mless_equal(X::'a,Y)) & \ | 
| 19277 | 1014 | \ (\\<forall>Y Z X. quotient(X::'a,Y,Z) --> mless_equal(Z::'a,X)) & \ | 
| 1015 | \ (\\<forall>Y X V3 V2 V1 Z V4 V5. quotient(X::'a,Y,V1) & quotient(Y::'a,Z,V2) & quotient(X::'a,Z,V3) & quotient(V3::'a,V2,V4) & quotient(V1::'a,Z,V5) --> mless_equal(V4::'a,V5)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1016 | \ (\\<forall>X. mless_equal(Zero::'a,X)) & \ | 
| 19277 | 1017 | \ (\\<forall>X Y. mless_equal(X::'a,Y) & mless_equal(Y::'a,X) --> equal(X::'a,Y)) & \ | 
| 1018 | \ (\\<forall>X. mless_equal(X::'a,identity)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1019 | \ (\\<forall>X Y. quotient(X::'a,Y,Divide(X::'a,Y))) & \ | 
| 14183 | 1020 | \ (\\<forall>X Y Z W. quotient(X::'a,Y,Z) & quotient(X::'a,Y,W) --> equal(Z::'a,W)) & \ | 
| 1021 | \ (\\<forall>X Y W Z. equal(X::'a,Y) & quotient(X::'a,W,Z) --> quotient(Y::'a,W,Z)) & \ | |
| 1022 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & quotient(W::'a,X,Z) --> quotient(W::'a,Y,Z)) & \ | |
| 1023 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & quotient(W::'a,Z,X) --> quotient(W::'a,Z,Y)) & \ | |
| 19277 | 1024 | \ (\\<forall>X Z Y. equal(X::'a,Y) & mless_equal(Z::'a,X) --> mless_equal(Z::'a,Y)) & \ | 
| 1025 | \ (\\<forall>X Y Z. equal(X::'a,Y) & mless_equal(X::'a,Z) --> mless_equal(Y::'a,Z)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1026 | \ (\\<forall>X Y W. equal(X::'a,Y) --> equal(Divide(X::'a,W),Divide(Y::'a,W))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1027 | \ (\\<forall>X W Y. equal(X::'a,Y) --> equal(Divide(W::'a,X),Divide(W::'a,Y))) & \ | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1028 | \ (\\<forall>X. quotient(X::'a,identity,Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1029 | \ (\\<forall>X. quotient(Zero::'a,X,Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1030 | \ (\\<forall>X. quotient(X::'a,X,Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1031 | \ (\\<forall>X. quotient(X::'a,Zero,X)) & \ | 
| 19277 | 1032 | \ (\\<forall>Y X Z. mless_equal(X::'a,Y) & mless_equal(Y::'a,Z) --> mless_equal(X::'a,Z)) & \ | 
| 1033 | \ (\\<forall>W1 X Z W2 Y. quotient(X::'a,Y,W1) & mless_equal(W1::'a,Z) & quotient(X::'a,Z,W2) --> mless_equal(W2::'a,Y)) & \ | |
| 1034 | \ (mless_equal(x::'a,y)) & \ | |
| 8557 | 1035 | \ (quotient(z::'a,y,zQy)) & \ | 
| 1036 | \ (quotient(z::'a,x,zQx)) & \ | |
| 19277 | 1037 | \ (~mless_equal(zQy::'a,zQx)) --> False", | 
| 9841 | 1038 | meson_tac 1); | 
| 8557 | 1039 | |
| 1040 | (*60026 inferences so far. Searching to depth 12. 42.2 secs*) | |
| 1041 | val HEN008_4 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1042 | (EQU001_0_ax ^ "&" ^ HEN002_0_ax ^ "&" ^ HEN002_0_eq ^ " & \ | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1043 | \ (\\<forall>X. equal(Divide(X::'a,identity),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1044 | \ (\\<forall>X. equal(Divide(Zero::'a,X),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1045 | \ (\\<forall>X. equal(Divide(X::'a,X),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1046 | \ (equal(Divide(a::'a,Zero),a)) & \ | 
| 19277 | 1047 | \ (\\<forall>Y X Z. mless_equal(X::'a,Y) & mless_equal(Y::'a,Z) --> mless_equal(X::'a,Z)) & \ | 
| 1048 | \ (\\<forall>X Z Y. mless_equal(Divide(X::'a,Y),Z) --> mless_equal(Divide(X::'a,Z),Y)) & \ | |
| 1049 | \ (\\<forall>Y Z X. mless_equal(X::'a,Y) --> mless_equal(Divide(Z::'a,Y),Divide(Z::'a,X))) & \ | |
| 1050 | \ (mless_equal(a::'a,b)) & \ | |
| 1051 | \ (~mless_equal(Divide(a::'a,c),Divide(b::'a,c))) --> False", | |
| 9841 | 1052 | meson_tac 1); | 
| 8557 | 1053 | |
| 1054 | ||
| 1055 | (*3160 inferences so far. Searching to depth 11. 3.5 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1056 | val HEN009_5 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1057 | (EQU001_0_ax ^ " & \ | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1058 | \ (\\<forall>Y X. equal(Divide(Divide(X::'a,Y),X),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1059 | \ (\\<forall>X Y Z. equal(Divide(Divide(Divide(X::'a,Z),Divide(Y::'a,Z)),Divide(Divide(X::'a,Y),Z)),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1060 | \ (\\<forall>X. equal(Divide(Zero::'a,X),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1061 | \ (\\<forall>X Y. equal(Divide(X::'a,Y),Zero) & equal(Divide(Y::'a,X),Zero) --> equal(X::'a,Y)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1062 | \ (\\<forall>X. equal(Divide(X::'a,identity),Zero)) & \ | 
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1063 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(Divide(A::'a,C),Divide(B::'a,C))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1064 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(Divide(F'::'a,D),Divide(F'::'a,E))) & \ | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1065 | \ (\\<forall>Y X Z. equal(Divide(X::'a,Y),Zero) & equal(Divide(Y::'a,Z),Zero) --> equal(Divide(X::'a,Z),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1066 | \ (\\<forall>X Z Y. equal(Divide(Divide(X::'a,Y),Z),Zero) --> equal(Divide(Divide(X::'a,Z),Y),Zero)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1067 | \ (\\<forall>Y Z X. equal(Divide(X::'a,Y),Zero) --> equal(Divide(Divide(Z::'a,Y),Divide(Z::'a,X)),Zero)) & \ | 
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1068 | \ (~equal(Divide(identity::'a,a),Divide(identity::'a,Divide(identity::'a,Divide(identity::'a,a))))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1069 | \ (equal(Divide(identity::'a,a),b)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1070 | \ (equal(Divide(identity::'a,b),c)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1071 | \ (equal(Divide(identity::'a,c),d)) & \ | 
| 8557 | 1072 | \ (~equal(b::'a,d)) --> False", | 
| 9841 | 1073 | meson_tac 1); | 
| 8557 | 1074 | |
| 1075 | (*970373 inferences so far. Searching to depth 17. 890.0 secs*) | |
| 1076 | val HEN012_3 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1077 | (EQU001_0_ax ^ "&" ^ HEN002_0_ax ^ "&" ^ HEN002_0_eq ^ " & \ | 
| 19277 | 1078 | \ (~mless_equal(a::'a,a)) --> False", | 
| 9841 | 1079 | meson_tac 1); | 
| 8557 | 1080 | |
| 1081 | ||
| 1082 | (*1063 inferences so far. Searching to depth 20. 1.0 secs*) | |
| 1083 | val LCL010_1 = prove | |
| 14183 | 1084 |  ("(\\<forall>X Y. is_a_theorem(equivalent(X::'a,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) &       \
 | 
| 1085 | \ (\\<forall>X Z Y. is_a_theorem(equivalent(equivalent(X::'a,Y),equivalent(equivalent(X::'a,Z),equivalent(Z::'a,Y))))) & \ | |
| 8557 | 1086 | \ (~is_a_theorem(equivalent(equivalent(a::'a,b),equivalent(equivalent(c::'a,b),equivalent(a::'a,c))))) --> False", | 
| 9841 | 1087 | meson_tac 1); | 
| 8557 | 1088 | |
| 1089 | (*2549 inferences so far. Searching to depth 12. 1.4 secs*) | |
| 1090 | val LCL077_2 = prove | |
| 14183 | 1091 |  ("(\\<forall>X Y. is_a_theorem(implies(X,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) &  \
 | 
| 1092 | \ (\\<forall>Y X. is_a_theorem(implies(X,implies(Y,X)))) & \ | |
| 1093 | \ (\\<forall>Y X Z. is_a_theorem(implies(implies(X,implies(Y,Z)),implies(implies(X,Y),implies(X,Z))))) & \ | |
| 1094 | \ (\\<forall>Y X. is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X)))) & \ | |
| 1095 | \ (\\<forall>X2 X1 X3. is_a_theorem(implies(X1,X2)) & is_a_theorem(implies(X2,X3)) --> is_a_theorem(implies(X1,X3))) & \ | |
| 8557 | 1096 | \ (~is_a_theorem(implies(not(not(a)),a))) --> False", | 
| 9841 | 1097 | meson_tac 1); | 
| 8557 | 1098 | |
| 1099 | (*2036 inferences so far. Searching to depth 20. 1.5 secs*) | |
| 1100 | val LCL082_1 = prove | |
| 14183 | 1101 |  ("(\\<forall>X Y. is_a_theorem(implies(X::'a,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) &  \
 | 
| 1102 | \ (\\<forall>Y Z U X. is_a_theorem(implies(implies(implies(X::'a,Y),Z),implies(implies(Z::'a,X),implies(U::'a,X))))) & \ | |
| 8557 | 1103 | \ (~is_a_theorem(implies(a::'a,implies(b::'a,a)))) --> False", | 
| 9841 | 1104 | meson_tac 1); | 
| 8557 | 1105 | |
| 1106 | (*1100 inferences so far. Searching to depth 13. 1.0 secs*) | |
| 1107 | val LCL111_1 = prove | |
| 14183 | 1108 |  ("(\\<forall>X Y. is_a_theorem(implies(X,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) &  \
 | 
| 1109 | \ (\\<forall>Y X. is_a_theorem(implies(X,implies(Y,X)))) & \ | |
| 1110 | \ (\\<forall>Y X Z. is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z))))) & \ | |
| 1111 | \ (\\<forall>Y X. is_a_theorem(implies(implies(implies(X,Y),Y),implies(implies(Y,X),X)))) & \ | |
| 1112 | \ (\\<forall>Y X. is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X)))) & \ | |
| 8557 | 1113 | \ (~is_a_theorem(implies(implies(a,b),implies(implies(c,a),implies(c,b))))) --> False", | 
| 9841 | 1114 | meson_tac 1); | 
| 8557 | 1115 | |
| 1116 | (*667 inferences so far. Searching to depth 9. 1.4 secs*) | |
| 1117 | val LCL143_1 = prove | |
| 14183 | 1118 |  ("(\\<forall>X. equal(X,X)) &  \
 | 
| 1119 | \ (\\<forall>Y X. equal(X,Y) --> equal(Y,X)) & \ | |
| 1120 | \ (\\<forall>Y X Z. equal(X,Y) & equal(Y,Z) --> equal(X,Z)) & \ | |
| 1121 | \ (\\<forall>X. equal(implies(true,X),X)) & \ | |
| 1122 | \ (\\<forall>Y X Z. equal(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z))),true)) & \ | |
| 1123 | \ (\\<forall>Y X. equal(implies(implies(X,Y),Y),implies(implies(Y,X),X))) & \ | |
| 1124 | \ (\\<forall>Y X. equal(implies(implies(not(X),not(Y)),implies(Y,X)),true)) & \ | |
| 1125 | \ (\\<forall>A B C. equal(A,B) --> equal(implies(A,C),implies(B,C))) & \ | |
| 1126 | \ (\\<forall>D F' E. equal(D,E) --> equal(implies(F',D),implies(F',E))) & \ | |
| 1127 | \ (\\<forall>G H. equal(G,H) --> equal(not(G),not(H))) & \ | |
| 1128 | \ (\\<forall>X Y. equal(big_V(X,Y),implies(implies(X,Y),Y))) & \ | |
| 1129 | \ (\\<forall>X Y. equal(big_hat(X,Y),not(big_V(not(X),not(Y))))) & \ | |
| 1130 | \ (\\<forall>X Y. ordered(X,Y) --> equal(implies(X,Y),true)) & \ | |
| 1131 | \ (\\<forall>X Y. equal(implies(X,Y),true) --> ordered(X,Y)) & \ | |
| 1132 | \ (\\<forall>A B C. equal(A,B) --> equal(big_V(A,C),big_V(B,C))) & \ | |
| 1133 | \ (\\<forall>D F' E. equal(D,E) --> equal(big_V(F',D),big_V(F',E))) & \ | |
| 1134 | \ (\\<forall>G H I'. equal(G,H) --> equal(big_hat(G,I'),big_hat(H,I'))) & \ | |
| 1135 | \ (\\<forall>J L K'. equal(J,K') --> equal(big_hat(L,J),big_hat(L,K'))) & \ | |
| 1136 | \ (\\<forall>M N O_. equal(M,N) & ordered(M,O_) --> ordered(N,O_)) & \ | |
| 1137 | \ (\\<forall>P R Q. equal(P,Q) & ordered(R,P) --> ordered(R,Q)) & \ | |
| 8557 | 1138 | \ (ordered(x,y)) & \ | 
| 1139 | \ (~ordered(implies(z,x),implies(z,y))) --> False", | |
| 9841 | 1140 | meson_tac 1); | 
| 8557 | 1141 | |
| 1142 | (*5245 inferences so far. Searching to depth 12. 4.6 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1143 | val LCL182_1 = prove | 
| 14183 | 1144 |  ("(\\<forall>A. axiom(or(not(or(A,A)),A))) &   \
 | 
| 1145 | \ (\\<forall>B A. axiom(or(not(A),or(B,A)))) & \ | |
| 1146 | \ (\\<forall>B A. axiom(or(not(or(A,B)),or(B,A)))) & \ | |
| 1147 | \ (\\<forall>B A C. axiom(or(not(or(A,or(B,C))),or(B,or(A,C))))) & \ | |
| 1148 | \ (\\<forall>A C B. axiom(or(not(or(not(A),B)),or(not(or(C,A)),or(C,B))))) & \ | |
| 1149 | \ (\\<forall>X. axiom(X) --> theorem(X)) & \ | |
| 1150 | \ (\\<forall>X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & \ | |
| 1151 | \ (\\<forall>X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & \ | |
| 8557 | 1152 | \ (~theorem(or(not(or(not(p),q)),or(not(not(q)),not(p))))) --> False", | 
| 9841 | 1153 | meson_tac 1); | 
| 8557 | 1154 | |
| 1155 | (*410 inferences so far. Searching to depth 10. 0.3 secs*) | |
| 1156 | val LCL200_1 = prove | |
| 14183 | 1157 |  ("(\\<forall>A. axiom(or(not(or(A,A)),A))) &   \
 | 
| 1158 | \ (\\<forall>B A. axiom(or(not(A),or(B,A)))) & \ | |
| 1159 | \ (\\<forall>B A. axiom(or(not(or(A,B)),or(B,A)))) & \ | |
| 1160 | \ (\\<forall>B A C. axiom(or(not(or(A,or(B,C))),or(B,or(A,C))))) & \ | |
| 1161 | \ (\\<forall>A C B. axiom(or(not(or(not(A),B)),or(not(or(C,A)),or(C,B))))) & \ | |
| 1162 | \ (\\<forall>X. axiom(X) --> theorem(X)) & \ | |
| 1163 | \ (\\<forall>X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & \ | |
| 1164 | \ (\\<forall>X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & \ | |
| 8557 | 1165 | \ (~theorem(or(not(not(or(p,q))),not(q)))) --> False", | 
| 9841 | 1166 | meson_tac 1); | 
| 8557 | 1167 | |
| 1168 | (*5849 inferences so far. Searching to depth 12. 5.6 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1169 | val LCL215_1 = prove | 
| 14183 | 1170 |  ("(\\<forall>A. axiom(or(not(or(A,A)),A))) &   \
 | 
| 1171 | \ (\\<forall>B A. axiom(or(not(A),or(B,A)))) & \ | |
| 1172 | \ (\\<forall>B A. axiom(or(not(or(A,B)),or(B,A)))) & \ | |
| 1173 | \ (\\<forall>B A C. axiom(or(not(or(A,or(B,C))),or(B,or(A,C))))) & \ | |
| 1174 | \ (\\<forall>A C B. axiom(or(not(or(not(A),B)),or(not(or(C,A)),or(C,B))))) & \ | |
| 1175 | \ (\\<forall>X. axiom(X) --> theorem(X)) & \ | |
| 1176 | \ (\\<forall>X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & \ | |
| 1177 | \ (\\<forall>X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & \ | |
| 8557 | 1178 | \ (~theorem(or(not(or(not(p),q)),or(not(or(p,q)),q)))) --> False", | 
| 9841 | 1179 | meson_tac 1); | 
| 8557 | 1180 | |
| 1181 | (*0 secs. Not sure that a search even starts!*) | |
| 1182 | val LCL230_2 = prove | |
| 1183 |  ("(q --> p | r) &     \
 | |
| 1184 | \ (~p) & \ | |
| 1185 | \ (q) & \ | |
| 1186 | \ (~r) --> False", | |
| 9841 | 1187 | meson_tac 1); | 
| 8557 | 1188 | |
| 1189 | (*119585 inferences so far. Searching to depth 14. 262.4 secs*) | |
| 1190 | val LDA003_1 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1191 | (EQU001_0_ax ^ " & \ | 
| 14183 | 1192 | \ (\\<forall>Y X Z. equal(f(X::'a,f(Y::'a,Z)),f(f(X::'a,Y),f(X::'a,Z)))) & \ | 
| 1193 | \ (\\<forall>X Y. left(X::'a,f(X::'a,Y))) & \ | |
| 1194 | \ (\\<forall>Y X Z. left(X::'a,Y) & left(Y::'a,Z) --> left(X::'a,Z)) & \ | |
| 8557 | 1195 | \ (equal(num2::'a,f(num1::'a,num1))) & \ | 
| 1196 | \ (equal(num3::'a,f(num2::'a,num1))) & \ | |
| 1197 | \ (equal(u::'a,f(num2::'a,num2))) & \ | |
| 14183 | 1198 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(f(A::'a,C),f(B::'a,C))) & \ | 
| 1199 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(f(F'::'a,D),f(F'::'a,E))) & \ | |
| 1200 | \ (\\<forall>G H I'. equal(G::'a,H) & left(G::'a,I') --> left(H::'a,I')) & \ | |
| 1201 | \ (\\<forall>J L K'. equal(J::'a,K') & left(L::'a,J) --> left(L::'a,K')) & \ | |
| 8557 | 1202 | \ (~left(num3::'a,u)) --> False", | 
| 9841 | 1203 | meson_tac 1); | 
| 8557 | 1204 | |
| 1205 | ||
| 1206 | (*2392 inferences so far. Searching to depth 12. 2.2 secs*) | |
| 1207 | val MSC002_1 = prove | |
| 1208 |  ("(at(something::'a,here,now)) &   \
 | |
| 14183 | 1209 | \ (\\<forall>Place Situation. hand_at(Place::'a,Situation) --> hand_at(Place::'a,let_go(Situation))) & \ | 
| 1210 | \ (\\<forall>Place Another_place Situation. hand_at(Place::'a,Situation) --> hand_at(Another_place::'a,go(Another_place::'a,Situation))) & \ | |
| 1211 | \ (\\<forall>Thing Situation. ~held(Thing::'a,let_go(Situation))) & \ | |
| 1212 | \ (\\<forall>Situation Thing. at(Thing::'a,here,Situation) --> red(Thing)) & \ | |
| 1213 | \ (\\<forall>Thing Place Situation. at(Thing::'a,Place,Situation) --> at(Thing::'a,Place,let_go(Situation))) & \ | |
| 1214 | \ (\\<forall>Thing Place Situation. at(Thing::'a,Place,Situation) --> at(Thing::'a,Place,pick_up(Situation))) & \ | |
| 1215 | \ (\\<forall>Thing Place Situation. at(Thing::'a,Place,Situation) --> grabbed(Thing::'a,pick_up(go(Place::'a,let_go(Situation))))) & \ | |
| 1216 | \ (\\<forall>Thing Situation. red(Thing) & put(Thing::'a,there,Situation) --> answer(Situation)) & \ | |
| 1217 | \ (\\<forall>Place Thing Another_place Situation. at(Thing::'a,Place,Situation) & grabbed(Thing::'a,Situation) --> put(Thing::'a,Another_place,go(Another_place::'a,Situation))) & \ | |
| 1218 | \ (\\<forall>Thing Place Another_place Situation. at(Thing::'a,Place,Situation) --> held(Thing::'a,Situation) | at(Thing::'a,Place,go(Another_place::'a,Situation))) & \ | |
| 1219 | \ (\\<forall>One_place Thing Place Situation. hand_at(One_place::'a,Situation) & held(Thing::'a,Situation) --> at(Thing::'a,Place,go(Place::'a,Situation))) & \ | |
| 1220 | \ (\\<forall>Place Thing Situation. hand_at(Place::'a,Situation) & at(Thing::'a,Place,Situation) --> held(Thing::'a,pick_up(Situation))) & \ | |
| 1221 | \ (\\<forall>Situation. ~answer(Situation)) --> False", | |
| 9841 | 1222 | meson_tac 1); | 
| 8557 | 1223 | |
| 1224 | (*73 inferences so far. Searching to depth 10. 0.2 secs*) | |
| 1225 | val MSC003_1 = prove | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 1226 |  ("(\\<forall>Number_of_small_parts Small_part Big_part Number_of_mid_parts Mid_part. has_parts(Big_part::'a,Number_of_mid_parts,Mid_part) --> in'(object_in(Big_part::'a,Mid_part,Small_part,Number_of_mid_parts,Number_of_small_parts),Mid_part) | has_parts(Big_part::'a,mtimes(Number_of_mid_parts::'a,Number_of_small_parts),Small_part)) &        \
 | 
| 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 1227 | \ (\\<forall>Big_part Mid_part Number_of_mid_parts Number_of_small_parts Small_part. has_parts(Big_part::'a,Number_of_mid_parts,Mid_part) & has_parts(object_in(Big_part::'a,Mid_part,Small_part,Number_of_mid_parts,Number_of_small_parts),Number_of_small_parts,Small_part) --> has_parts(Big_part::'a,mtimes(Number_of_mid_parts::'a,Number_of_small_parts),Small_part)) & \ | 
| 8557 | 1228 | \ (in'(john::'a,boy)) & \ | 
| 14183 | 1229 | \ (\\<forall>X. in'(X::'a,boy) --> in'(X::'a,human)) & \ | 
| 1230 | \ (\\<forall>X. in'(X::'a,hand) --> has_parts(X::'a,num5,fingers)) & \ | |
| 1231 | \ (\\<forall>X. in'(X::'a,human) --> has_parts(X::'a,num2,arm)) & \ | |
| 1232 | \ (\\<forall>X. in'(X::'a,arm) --> has_parts(X::'a,num1,hand)) & \ | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 1233 | \ (~has_parts(john::'a,mtimes(num2::'a,num1),hand)) --> False", | 
| 9841 | 1234 | meson_tac 1); | 
| 8557 | 1235 | |
| 1236 | (*1486 inferences so far. Searching to depth 20. 1.2 secs*) | |
| 1237 | val MSC004_1 = prove | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 1238 |  ("(\\<forall>Number_of_small_parts Small_part Big_part Number_of_mid_parts Mid_part. has_parts(Big_part::'a,Number_of_mid_parts,Mid_part) --> in'(object_in(Big_part::'a,Mid_part,Small_part,Number_of_mid_parts,Number_of_small_parts),Mid_part) | has_parts(Big_part::'a,mtimes(Number_of_mid_parts::'a,Number_of_small_parts),Small_part)) &        \
 | 
| 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 1239 | \ (\\<forall>Big_part Mid_part Number_of_mid_parts Number_of_small_parts Small_part. has_parts(Big_part::'a,Number_of_mid_parts,Mid_part) & has_parts(object_in(Big_part::'a,Mid_part,Small_part,Number_of_mid_parts,Number_of_small_parts),Number_of_small_parts,Small_part) --> has_parts(Big_part::'a,mtimes(Number_of_mid_parts::'a,Number_of_small_parts),Small_part)) & \ | 
| 8557 | 1240 | \ (in'(john::'a,boy)) & \ | 
| 14183 | 1241 | \ (\\<forall>X. in'(X::'a,boy) --> in'(X::'a,human)) & \ | 
| 1242 | \ (\\<forall>X. in'(X::'a,hand) --> has_parts(X::'a,num5,fingers)) & \ | |
| 1243 | \ (\\<forall>X. in'(X::'a,human) --> has_parts(X::'a,num2,arm)) & \ | |
| 1244 | \ (\\<forall>X. in'(X::'a,arm) --> has_parts(X::'a,num1,hand)) & \ | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
16011diff
changeset | 1245 | \ (~has_parts(john::'a,mtimes(mtimes(num2::'a,num1),num5),fingers)) --> False", | 
| 9841 | 1246 | meson_tac 1); | 
| 8557 | 1247 | |
| 1248 | (*100 inferences so far. Searching to depth 12. 0.1 secs*) | |
| 1249 | val MSC005_1 = prove | |
| 1250 |  ("(value(truth::'a,truth)) &       \
 | |
| 1251 | \ (value(falsity::'a,falsity)) & \ | |
| 14183 | 1252 | \ (\\<forall>X Y. value(X::'a,truth) & value(Y::'a,truth) --> value(xor(X::'a,Y),falsity)) & \ | 
| 1253 | \ (\\<forall>X Y. value(X::'a,truth) & value(Y::'a,falsity) --> value(xor(X::'a,Y),truth)) & \ | |
| 1254 | \ (\\<forall>X Y. value(X::'a,falsity) & value(Y::'a,truth) --> value(xor(X::'a,Y),truth)) & \ | |
| 1255 | \ (\\<forall>X Y. value(X::'a,falsity) & value(Y::'a,falsity) --> value(xor(X::'a,Y),falsity)) & \ | |
| 1256 | \ (\\<forall>Value. ~value(xor(xor(xor(xor(truth::'a,falsity),falsity),truth),falsity),Value)) --> False", | |
| 9841 | 1257 | meson_tac 1); | 
| 8557 | 1258 | |
| 1259 | (*19116 inferences so far. Searching to depth 16. 15.9 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1260 | val MSC006_1 = prove | 
| 14183 | 1261 |  ("(\\<forall>Y X Z. p(X::'a,Y) & p(Y::'a,Z) --> p(X::'a,Z)) &      \
 | 
| 1262 | \ (\\<forall>Y X Z. q(X::'a,Y) & q(Y::'a,Z) --> q(X::'a,Z)) & \ | |
| 1263 | \ (\\<forall>Y X. q(X::'a,Y) --> q(Y::'a,X)) & \ | |
| 1264 | \ (\\<forall>X Y. p(X::'a,Y) | q(X::'a,Y)) & \ | |
| 8557 | 1265 | \ (~p(a::'a,b)) & \ | 
| 1266 | \ (~q(c::'a,d)) --> False", | |
| 9841 | 1267 | meson_tac 1); | 
| 8557 | 1268 | |
| 1269 | (*1713 inferences so far. Searching to depth 10. 2.8 secs*) | |
| 1270 | val NUM001_1 = prove | |
| 14183 | 1271 |  ("(\\<forall>A. equal(A::'a,A)) &                                                \
 | 
| 1272 | \ (\\<forall>B A C. equal(A::'a,B) & equal(B::'a,C) --> equal(A::'a,C)) & \ | |
| 1273 | \ (\\<forall>B A. equal(add(A::'a,B),add(B::'a,A))) & \ | |
| 1274 | \ (\\<forall>A B C. equal(add(A::'a,add(B::'a,C)),add(add(A::'a,B),C))) & \ | |
| 1275 | \ (\\<forall>B A. equal(subtract(add(A::'a,B),B),A)) & \ | |
| 1276 | \ (\\<forall>A B. equal(A::'a,subtract(add(A::'a,B),B))) & \ | |
| 1277 | \ (\\<forall>A C B. equal(add(subtract(A::'a,B),C),subtract(add(A::'a,C),B))) & \ | |
| 1278 | \ (\\<forall>A C B. equal(subtract(add(A::'a,B),C),add(subtract(A::'a,C),B))) & \ | |
| 1279 | \ (\\<forall>A C B D. equal(A::'a,B) & equal(C::'a,add(A::'a,D)) --> equal(C::'a,add(B::'a,D))) & \ | |
| 1280 | \ (\\<forall>A C D B. equal(A::'a,B) & equal(C::'a,add(D::'a,A)) --> equal(C::'a,add(D::'a,B))) & \ | |
| 1281 | \ (\\<forall>A C B D. equal(A::'a,B) & equal(C::'a,subtract(A::'a,D)) --> equal(C::'a,subtract(B::'a,D))) & \ | |
| 1282 | \ (\\<forall>A C D B. equal(A::'a,B) & equal(C::'a,subtract(D::'a,A)) --> equal(C::'a,subtract(D::'a,B))) & \ | |
| 8557 | 1283 | \ (~equal(add(add(a::'a,b),c),add(a::'a,add(b::'a,c)))) --> False", | 
| 9841 | 1284 | meson_tac 1); | 
| 8557 | 1285 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1286 | val NUM001_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1287 | "(\\<forall>A. equal(add(A::'a,num0),A)) & \ | 
| 14183 | 1288 | \ (\\<forall>A B. equal(add(A::'a,successor(B)),successor(add(A::'a,B)))) & \ | 
| 1289 | \ (\\<forall>A. equal(multiply(A::'a,num0),num0)) & \ | |
| 1290 | \ (\\<forall>B A. equal(multiply(A::'a,successor(B)),add(multiply(A::'a,B),A))) & \ | |
| 1291 | \ (\\<forall>A B. equal(successor(A),successor(B)) --> equal(A::'a,B)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1292 | \ (\\<forall>A B. equal(A::'a,B) --> equal(successor(A),successor(B)))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1293 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1294 | val NUM001_1_ax = | 
| 19277 | 1295 | "(\\<forall>A C B. mless(A::'a,B) & mless(C::'a,A) --> mless(C::'a,B)) & \ | 
| 1296 | \ (\\<forall>A B C. equal(add(successor(A),B),C) --> mless(B::'a,C)) & \ | |
| 1297 | \ (\\<forall>A B. mless(A::'a,B) --> equal(add(successor(predecessor_of_1st_minus_2nd(B::'a,A)),A),B))"; | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1298 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1299 | val NUM001_2_ax = | 
| 19277 | 1300 | "(\\<forall>A B. divides(A::'a,B) --> mless(A::'a,B) | equal(A::'a,B)) & \ | 
| 1301 | \ (\\<forall>A B. mless(A::'a,B) --> divides(A::'a,B)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1302 | \ (\\<forall>A B. equal(A::'a,B) --> divides(A::'a,B))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1303 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1304 | (*20717 inferences so far. Searching to depth 11. 13.7 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1305 | val NUM021_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1306 | (EQU001_0_ax ^ "&" ^ NUM001_0_ax ^ "&" ^ NUM001_1_ax ^ "&" ^ NUM001_2_ax ^ | 
| 19277 | 1307 | "& (mless(b::'a,c)) & \ | 
| 1308 | \ (~mless(b::'a,a)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1309 | \ (divides(c::'a,a)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1310 | \ (\\<forall>A. ~equal(successor(A),num0)) --> False", | 
| 9841 | 1311 | meson_tac 1); | 
| 8557 | 1312 | |
| 1313 | (*26320 inferences so far. Searching to depth 10. 26.4 secs*) | |
| 1314 | val NUM024_1 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1315 | (EQU001_0_ax ^ "&" ^ NUM001_0_ax ^ "&" ^ NUM001_1_ax ^ " & \ | 
| 14183 | 1316 | \ (\\<forall>B A. equal(add(A::'a,B),add(B::'a,A))) & \ | 
| 1317 | \ (\\<forall>B A C. equal(add(A::'a,B),add(C::'a,B)) --> equal(A::'a,C)) & \ | |
| 19277 | 1318 | \ (mless(a::'a,a)) & \ | 
| 14183 | 1319 | \ (\\<forall>A. ~equal(successor(A),num0)) --> False", | 
| 9841 | 1320 | meson_tac 1); | 
| 8557 | 1321 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1322 | val SET004_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1323 | "(\\<forall>X U Y. subclass(X::'a,Y) & member(U::'a,X) --> member(U::'a,Y)) & \ | 
| 14183 | 1324 | \ (\\<forall>X Y. member(not_subclass_element(X::'a,Y),X) | subclass(X::'a,Y)) & \ | 
| 1325 | \ (\\<forall>X Y. member(not_subclass_element(X::'a,Y),Y) --> subclass(X::'a,Y)) & \ | |
| 1326 | \ (\\<forall>X. subclass(X::'a,universal_class)) & \ | |
| 1327 | \ (\\<forall>X Y. equal(X::'a,Y) --> subclass(X::'a,Y)) & \ | |
| 1328 | \ (\\<forall>Y X. equal(X::'a,Y) --> subclass(Y::'a,X)) & \ | |
| 1329 | \ (\\<forall>X Y. subclass(X::'a,Y) & subclass(Y::'a,X) --> equal(X::'a,Y)) & \ | |
| 1330 | \ (\\<forall>X U Y. member(U::'a,unordered_pair(X::'a,Y)) --> equal(U::'a,X) | equal(U::'a,Y)) & \ | |
| 1331 | \ (\\<forall>X Y. member(X::'a,universal_class) --> member(X::'a,unordered_pair(X::'a,Y))) & \ | |
| 1332 | \ (\\<forall>X Y. member(Y::'a,universal_class) --> member(Y::'a,unordered_pair(X::'a,Y))) & \ | |
| 1333 | \ (\\<forall>X Y. member(unordered_pair(X::'a,Y),universal_class)) & \ | |
| 1334 | \ (\\<forall>X. equal(unordered_pair(X::'a,X),singleton(X))) & \ | |
| 1335 | \ (\\<forall>X Y. equal(unordered_pair(singleton(X),unordered_pair(X::'a,singleton(Y))),ordered_pair(X::'a,Y))) & \ | |
| 1336 | \ (\\<forall>V Y U X. member(ordered_pair(U::'a,V),cross_product(X::'a,Y)) --> member(U::'a,X)) & \ | |
| 1337 | \ (\\<forall>U X V Y. member(ordered_pair(U::'a,V),cross_product(X::'a,Y)) --> member(V::'a,Y)) & \ | |
| 1338 | \ (\\<forall>U V X Y. member(U::'a,X) & member(V::'a,Y) --> member(ordered_pair(U::'a,V),cross_product(X::'a,Y))) & \ | |
| 1339 | \ (\\<forall>X Y Z. member(Z::'a,cross_product(X::'a,Y)) --> equal(ordered_pair(first(Z),second(Z)),Z)) & \ | |
| 8557 | 1340 | \ (subclass(element_relation::'a,cross_product(universal_class::'a,universal_class))) & \ | 
| 14183 | 1341 | \ (\\<forall>X Y. member(ordered_pair(X::'a,Y),element_relation) --> member(X::'a,Y)) & \ | 
| 1342 | \ (\\<forall>X Y. member(ordered_pair(X::'a,Y),cross_product(universal_class::'a,universal_class)) & member(X::'a,Y) --> member(ordered_pair(X::'a,Y),element_relation)) & \ | |
| 1343 | \ (\\<forall>Y Z X. member(Z::'a,intersection(X::'a,Y)) --> member(Z::'a,X)) & \ | |
| 1344 | \ (\\<forall>X Z Y. member(Z::'a,intersection(X::'a,Y)) --> member(Z::'a,Y)) & \ | |
| 1345 | \ (\\<forall>Z X Y. member(Z::'a,X) & member(Z::'a,Y) --> member(Z::'a,intersection(X::'a,Y))) & \ | |
| 1346 | \ (\\<forall>Z X. ~(member(Z::'a,complement(X)) & member(Z::'a,X))) & \ | |
| 1347 | \ (\\<forall>Z X. member(Z::'a,universal_class) --> member(Z::'a,complement(X)) | member(Z::'a,X)) & \ | |
| 1348 | \ (\\<forall>X Y. equal(complement(intersection(complement(X),complement(Y))),union(X::'a,Y))) & \ | |
| 1349 | \ (\\<forall>X Y. equal(intersection(complement(intersection(X::'a,Y)),complement(intersection(complement(X),complement(Y)))),difference(X::'a,Y))) & \ | |
| 1350 | \ (\\<forall>Xr X Y. equal(intersection(Xr::'a,cross_product(X::'a,Y)),restrct(Xr::'a,X,Y))) & \ | |
| 1351 | \ (\\<forall>Xr X Y. equal(intersection(cross_product(X::'a,Y),Xr),restrct(Xr::'a,X,Y))) & \ | |
| 1352 | \ (\\<forall>Z X. ~(equal(restrct(X::'a,singleton(Z),universal_class),null_class) & member(Z::'a,domain_of(X)))) & \ | |
| 1353 | \ (\\<forall>Z X. member(Z::'a,universal_class) --> equal(restrct(X::'a,singleton(Z),universal_class),null_class) | member(Z::'a,domain_of(X))) & \ | |
| 15306 | 1354 | \ (\\<forall>X. subclass(rot(X),cross_product(cross_product(universal_class::'a,universal_class),universal_class))) & \ | 
| 1355 | \ (\\<forall>V W U X. member(ordered_pair(ordered_pair(U::'a,V),W),rot(X)) --> member(ordered_pair(ordered_pair(V::'a,W),U),X)) & \ | |
| 1356 | \ (\\<forall>U V W X. member(ordered_pair(ordered_pair(V::'a,W),U),X) & member(ordered_pair(ordered_pair(U::'a,V),W),cross_product(cross_product(universal_class::'a,universal_class),universal_class)) --> member(ordered_pair(ordered_pair(U::'a,V),W),rot(X))) & \ | |
| 14183 | 1357 | \ (\\<forall>X. subclass(flip(X),cross_product(cross_product(universal_class::'a,universal_class),universal_class))) & \ | 
| 1358 | \ (\\<forall>V U W X. member(ordered_pair(ordered_pair(U::'a,V),W),flip(X)) --> member(ordered_pair(ordered_pair(V::'a,U),W),X)) & \ | |
| 1359 | \ (\\<forall>U V W X. member(ordered_pair(ordered_pair(V::'a,U),W),X) & member(ordered_pair(ordered_pair(U::'a,V),W),cross_product(cross_product(universal_class::'a,universal_class),universal_class)) --> member(ordered_pair(ordered_pair(U::'a,V),W),flip(X))) & \ | |
| 1360 | \ (\\<forall>Y. equal(domain_of(flip(cross_product(Y::'a,universal_class))),INVERSE(Y))) & \ | |
| 1361 | \ (\\<forall>Z. equal(domain_of(INVERSE(Z)),range_of(Z))) & \ | |
| 1362 | \ (\\<forall>Z X Y. equal(first(not_subclass_element(restrct(Z::'a,X,singleton(Y)),null_class)),domain(Z::'a,X,Y))) & \ | |
| 1363 | \ (\\<forall>Z X Y. equal(second(not_subclass_element(restrct(Z::'a,singleton(X),Y),null_class)),rng(Z::'a,X,Y))) & \ | |
| 1364 | \ (\\<forall>Xr X. equal(range_of(restrct(Xr::'a,X,universal_class)),image_(Xr::'a,X))) & \ | |
| 1365 | \ (\\<forall>X. equal(union(X::'a,singleton(X)),successor(X))) & \ | |
| 8557 | 1366 | \ (subclass(successor_relation::'a,cross_product(universal_class::'a,universal_class))) & \ | 
| 14183 | 1367 | \ (\\<forall>X Y. member(ordered_pair(X::'a,Y),successor_relation) --> equal(successor(X),Y)) & \ | 
| 1368 | \ (\\<forall>X Y. equal(successor(X),Y) & member(ordered_pair(X::'a,Y),cross_product(universal_class::'a,universal_class)) --> member(ordered_pair(X::'a,Y),successor_relation)) & \ | |
| 1369 | \ (\\<forall>X. inductive(X) --> member(null_class::'a,X)) & \ | |
| 1370 | \ (\\<forall>X. inductive(X) --> subclass(image_(successor_relation::'a,X),X)) & \ | |
| 1371 | \ (\\<forall>X. member(null_class::'a,X) & subclass(image_(successor_relation::'a,X),X) --> inductive(X)) & \ | |
| 8557 | 1372 | \ (inductive(omega)) & \ | 
| 14183 | 1373 | \ (\\<forall>Y. inductive(Y) --> subclass(omega::'a,Y)) & \ | 
| 8557 | 1374 | \ (member(omega::'a,universal_class)) & \ | 
| 14183 | 1375 | \ (\\<forall>X. equal(domain_of(restrct(element_relation::'a,universal_class,X)),sum_class(X))) & \ | 
| 1376 | \ (\\<forall>X. member(X::'a,universal_class) --> member(sum_class(X),universal_class)) & \ | |
| 1377 | \ (\\<forall>X. equal(complement(image_(element_relation::'a,complement(X))),powerClass(X))) & \ | |
| 1378 | \ (\\<forall>U. member(U::'a,universal_class) --> member(powerClass(U),universal_class)) & \ | |
| 1379 | \ (\\<forall>Yr Xr. subclass(compos(Yr::'a,Xr),cross_product(universal_class::'a,universal_class))) & \ | |
| 1380 | \ (\\<forall>Z Yr Xr Y. member(ordered_pair(Y::'a,Z),compos(Yr::'a,Xr)) --> member(Z::'a,image_(Yr::'a,image_(Xr::'a,singleton(Y))))) & \ | |
| 1381 | \ (\\<forall>Y Z Yr Xr. member(Z::'a,image_(Yr::'a,image_(Xr::'a,singleton(Y)))) & member(ordered_pair(Y::'a,Z),cross_product(universal_class::'a,universal_class)) --> member(ordered_pair(Y::'a,Z),compos(Yr::'a,Xr))) & \ | |
| 1382 | \ (\\<forall>X. single_valued_class(X) --> subclass(compos(X::'a,INVERSE(X)),identity_relation)) & \ | |
| 1383 | \ (\\<forall>X. subclass(compos(X::'a,INVERSE(X)),identity_relation) --> single_valued_class(X)) & \ | |
| 1384 | \ (\\<forall>Xf. function(Xf) --> subclass(Xf::'a,cross_product(universal_class::'a,universal_class))) & \ | |
| 1385 | \ (\\<forall>Xf. function(Xf) --> subclass(compos(Xf::'a,INVERSE(Xf)),identity_relation)) & \ | |
| 1386 | \ (\\<forall>Xf. subclass(Xf::'a,cross_product(universal_class::'a,universal_class)) & subclass(compos(Xf::'a,INVERSE(Xf)),identity_relation) --> function(Xf)) & \ | |
| 1387 | \ (\\<forall>Xf X. function(Xf) & member(X::'a,universal_class) --> member(image_(Xf::'a,X),universal_class)) & \ | |
| 1388 | \ (\\<forall>X. equal(X::'a,null_class) | member(regular(X),X)) & \ | |
| 1389 | \ (\\<forall>X. equal(X::'a,null_class) | equal(intersection(X::'a,regular(X)),null_class)) & \ | |
| 1390 | \ (\\<forall>Xf Y. equal(sum_class(image_(Xf::'a,singleton(Y))),apply(Xf::'a,Y))) & \ | |
| 8557 | 1391 | \ (function(choice)) & \ | 
| 14183 | 1392 | \ (\\<forall>Y. member(Y::'a,universal_class) --> equal(Y::'a,null_class) | member(apply(choice::'a,Y),Y)) & \ | 
| 1393 | \ (\\<forall>Xf. one_to_one(Xf) --> function(Xf)) & \ | |
| 1394 | \ (\\<forall>Xf. one_to_one(Xf) --> function(INVERSE(Xf))) & \ | |
| 1395 | \ (\\<forall>Xf. function(INVERSE(Xf)) & function(Xf) --> one_to_one(Xf)) & \ | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 1396 | \ (equal(intersection(cross_product(universal_class::'a,universal_class),intersection(cross_product(universal_class::'a,universal_class),complement(compos(complement(element_relation),INVERSE(element_relation))))),subset_relation)) & \ | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 1397 | \ (equal(intersection(INVERSE(subset_relation),subset_relation),identity_relation)) & \ | 
| 14183 | 1398 | \ (\\<forall>Xr. equal(complement(domain_of(intersection(Xr::'a,identity_relation))),diagonalise(Xr))) & \ | 
| 1399 | \ (\\<forall>X. equal(intersection(domain_of(X),diagonalise(compos(INVERSE(element_relation),X))),cantor(X))) & \ | |
| 1400 | \ (\\<forall>Xf. operation(Xf) --> function(Xf)) & \ | |
| 1401 | \ (\\<forall>Xf. operation(Xf) --> equal(cross_product(domain_of(domain_of(Xf)),domain_of(domain_of(Xf))),domain_of(Xf))) & \ | |
| 1402 | \ (\\<forall>Xf. operation(Xf) --> subclass(range_of(Xf),domain_of(domain_of(Xf)))) & \ | |
| 1403 | \ (\\<forall>Xf. function(Xf) & equal(cross_product(domain_of(domain_of(Xf)),domain_of(domain_of(Xf))),domain_of(Xf)) & subclass(range_of(Xf),domain_of(domain_of(Xf))) --> operation(Xf)) & \ | |
| 1404 | \ (\\<forall>Xf1 Xf2 Xh. compatible(Xh::'a,Xf1,Xf2) --> function(Xh)) & \ | |
| 1405 | \ (\\<forall>Xf2 Xf1 Xh. compatible(Xh::'a,Xf1,Xf2) --> equal(domain_of(domain_of(Xf1)),domain_of(Xh))) & \ | |
| 1406 | \ (\\<forall>Xf1 Xh Xf2. compatible(Xh::'a,Xf1,Xf2) --> subclass(range_of(Xh),domain_of(domain_of(Xf2)))) & \ | |
| 1407 | \ (\\<forall>Xh Xh1 Xf1 Xf2. function(Xh) & equal(domain_of(domain_of(Xf1)),domain_of(Xh)) & subclass(range_of(Xh),domain_of(domain_of(Xf2))) --> compatible(Xh1::'a,Xf1,Xf2)) & \ | |
| 1408 | \ (\\<forall>Xh Xf2 Xf1. homomorphism(Xh::'a,Xf1,Xf2) --> operation(Xf1)) & \ | |
| 1409 | \ (\\<forall>Xh Xf1 Xf2. homomorphism(Xh::'a,Xf1,Xf2) --> operation(Xf2)) & \ | |
| 1410 | \ (\\<forall>Xh Xf1 Xf2. homomorphism(Xh::'a,Xf1,Xf2) --> compatible(Xh::'a,Xf1,Xf2)) & \ | |
| 1411 | \ (\\<forall>Xf2 Xh Xf1 X Y. homomorphism(Xh::'a,Xf1,Xf2) & member(ordered_pair(X::'a,Y),domain_of(Xf1)) --> equal(apply(Xf2::'a,ordered_pair(apply(Xh::'a,X),apply(Xh::'a,Y))),apply(Xh::'a,apply(Xf1::'a,ordered_pair(X::'a,Y))))) & \ | |
| 1412 | \ (\\<forall>Xh Xf1 Xf2. operation(Xf1) & operation(Xf2) & compatible(Xh::'a,Xf1,Xf2) --> member(ordered_pair(not_homomorphism1(Xh::'a,Xf1,Xf2),not_homomorphism2(Xh::'a,Xf1,Xf2)),domain_of(Xf1)) | homomorphism(Xh::'a,Xf1,Xf2)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1413 | \ (\\<forall>Xh Xf1 Xf2. operation(Xf1) & operation(Xf2) & compatible(Xh::'a,Xf1,Xf2) & equal(apply(Xf2::'a,ordered_pair(apply(Xh::'a,not_homomorphism1(Xh::'a,Xf1,Xf2)),apply(Xh::'a,not_homomorphism2(Xh::'a,Xf1,Xf2)))),apply(Xh::'a,apply(Xf1::'a,ordered_pair(not_homomorphism1(Xh::'a,Xf1,Xf2),not_homomorphism2(Xh::'a,Xf1,Xf2))))) --> homomorphism(Xh::'a,Xf1,Xf2))"; | 
| 8557 | 1414 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1415 | val SET004_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1416 | "(\\<forall>D E F'. equal(D::'a,E) --> equal(apply(D::'a,F'),apply(E::'a,F'))) & \ | 
| 14183 | 1417 | \ (\\<forall>G I' H. equal(G::'a,H) --> equal(apply(I'::'a,G),apply(I'::'a,H))) & \ | 
| 1418 | \ (\\<forall>J K'. equal(J::'a,K') --> equal(cantor(J),cantor(K'))) & \ | |
| 1419 | \ (\\<forall>L M. equal(L::'a,M) --> equal(complement(L),complement(M))) & \ | |
| 1420 | \ (\\<forall>N O_ P. equal(N::'a,O_) --> equal(compos(N::'a,P),compos(O_::'a,P))) & \ | |
| 1421 | \ (\\<forall>Q S' R. equal(Q::'a,R) --> equal(compos(S'::'a,Q),compos(S'::'a,R))) & \ | |
| 1422 | \ (\\<forall>T' U V. equal(T'::'a,U) --> equal(cross_product(T'::'a,V),cross_product(U::'a,V))) & \ | |
| 1423 | \ (\\<forall>W Y X. equal(W::'a,X) --> equal(cross_product(Y::'a,W),cross_product(Y::'a,X))) & \ | |
| 1424 | \ (\\<forall>Z A1. equal(Z::'a,A1) --> equal(diagonalise(Z),diagonalise(A1))) & \ | |
| 1425 | \ (\\<forall>B1 C1 D1. equal(B1::'a,C1) --> equal(difference(B1::'a,D1),difference(C1::'a,D1))) & \ | |
| 1426 | \ (\\<forall>E1 G1 F1. equal(E1::'a,F1) --> equal(difference(G1::'a,E1),difference(G1::'a,F1))) & \ | |
| 1427 | \ (\\<forall>H1 I1 J1 K1. equal(H1::'a,I1) --> equal(domain(H1::'a,J1,K1),domain(I1::'a,J1,K1))) & \ | |
| 1428 | \ (\\<forall>L1 N1 M1 O1. equal(L1::'a,M1) --> equal(domain(N1::'a,L1,O1),domain(N1::'a,M1,O1))) & \ | |
| 1429 | \ (\\<forall>P1 R1 S1 Q1. equal(P1::'a,Q1) --> equal(domain(R1::'a,S1,P1),domain(R1::'a,S1,Q1))) & \ | |
| 1430 | \ (\\<forall>T1 U1. equal(T1::'a,U1) --> equal(domain_of(T1),domain_of(U1))) & \ | |
| 1431 | \ (\\<forall>V1 W1. equal(V1::'a,W1) --> equal(first(V1),first(W1))) & \ | |
| 1432 | \ (\\<forall>X1 Y1. equal(X1::'a,Y1) --> equal(flip(X1),flip(Y1))) & \ | |
| 1433 | \ (\\<forall>Z1 A2 B2. equal(Z1::'a,A2) --> equal(image_(Z1::'a,B2),image_(A2::'a,B2))) & \ | |
| 1434 | \ (\\<forall>C2 E2 D2. equal(C2::'a,D2) --> equal(image_(E2::'a,C2),image_(E2::'a,D2))) & \ | |
| 1435 | \ (\\<forall>F2 G2 H2. equal(F2::'a,G2) --> equal(intersection(F2::'a,H2),intersection(G2::'a,H2))) & \ | |
| 1436 | \ (\\<forall>I2 K2 J2. equal(I2::'a,J2) --> equal(intersection(K2::'a,I2),intersection(K2::'a,J2))) & \ | |
| 1437 | \ (\\<forall>L2 M2. equal(L2::'a,M2) --> equal(INVERSE(L2),INVERSE(M2))) & \ | |
| 1438 | \ (\\<forall>N2 O2 P2 Q2. equal(N2::'a,O2) --> equal(not_homomorphism1(N2::'a,P2,Q2),not_homomorphism1(O2::'a,P2,Q2))) & \ | |
| 1439 | \ (\\<forall>R2 T2 S2 U2. equal(R2::'a,S2) --> equal(not_homomorphism1(T2::'a,R2,U2),not_homomorphism1(T2::'a,S2,U2))) & \ | |
| 1440 | \ (\\<forall>V2 X2 Y2 W2. equal(V2::'a,W2) --> equal(not_homomorphism1(X2::'a,Y2,V2),not_homomorphism1(X2::'a,Y2,W2))) & \ | |
| 1441 | \ (\\<forall>Z2 A3 B3 C3. equal(Z2::'a,A3) --> equal(not_homomorphism2(Z2::'a,B3,C3),not_homomorphism2(A3::'a,B3,C3))) & \ | |
| 1442 | \ (\\<forall>D3 F3 E3 G3. equal(D3::'a,E3) --> equal(not_homomorphism2(F3::'a,D3,G3),not_homomorphism2(F3::'a,E3,G3))) & \ | |
| 1443 | \ (\\<forall>H3 J3 K3 I3. equal(H3::'a,I3) --> equal(not_homomorphism2(J3::'a,K3,H3),not_homomorphism2(J3::'a,K3,I3))) & \ | |
| 1444 | \ (\\<forall>L3 M3 N3. equal(L3::'a,M3) --> equal(not_subclass_element(L3::'a,N3),not_subclass_element(M3::'a,N3))) & \ | |
| 1445 | \ (\\<forall>O3 Q3 P3. equal(O3::'a,P3) --> equal(not_subclass_element(Q3::'a,O3),not_subclass_element(Q3::'a,P3))) & \ | |
| 1446 | \ (\\<forall>R3 S3 T3. equal(R3::'a,S3) --> equal(ordered_pair(R3::'a,T3),ordered_pair(S3::'a,T3))) & \ | |
| 1447 | \ (\\<forall>U3 W3 V3. equal(U3::'a,V3) --> equal(ordered_pair(W3::'a,U3),ordered_pair(W3::'a,V3))) & \ | |
| 1448 | \ (\\<forall>X3 Y3. equal(X3::'a,Y3) --> equal(powerClass(X3),powerClass(Y3))) & \ | |
| 1449 | \ (\\<forall>Z3 A4 B4 C4. equal(Z3::'a,A4) --> equal(rng(Z3::'a,B4,C4),rng(A4::'a,B4,C4))) & \ | |
| 1450 | \ (\\<forall>D4 F4 E4 G4. equal(D4::'a,E4) --> equal(rng(F4::'a,D4,G4),rng(F4::'a,E4,G4))) & \ | |
| 1451 | \ (\\<forall>H4 J4 K4 I4. equal(H4::'a,I4) --> equal(rng(J4::'a,K4,H4),rng(J4::'a,K4,I4))) & \ | |
| 1452 | \ (\\<forall>L4 M4. equal(L4::'a,M4) --> equal(range_of(L4),range_of(M4))) & \ | |
| 1453 | \ (\\<forall>N4 O4. equal(N4::'a,O4) --> equal(regular(N4),regular(O4))) & \ | |
| 1454 | \ (\\<forall>P4 Q4 R4 S4. equal(P4::'a,Q4) --> equal(restrct(P4::'a,R4,S4),restrct(Q4::'a,R4,S4))) & \ | |
| 1455 | \ (\\<forall>T4 V4 U4 W4. equal(T4::'a,U4) --> equal(restrct(V4::'a,T4,W4),restrct(V4::'a,U4,W4))) & \ | |
| 1456 | \ (\\<forall>X4 Z4 A5 Y4. equal(X4::'a,Y4) --> equal(restrct(Z4::'a,A5,X4),restrct(Z4::'a,A5,Y4))) & \ | |
| 15306 | 1457 | \ (\\<forall>B5 C5. equal(B5::'a,C5) --> equal(rot(B5),rot(C5))) & \ | 
| 14183 | 1458 | \ (\\<forall>D5 E5. equal(D5::'a,E5) --> equal(second(D5),second(E5))) & \ | 
| 1459 | \ (\\<forall>F5 G5. equal(F5::'a,G5) --> equal(singleton(F5),singleton(G5))) & \ | |
| 1460 | \ (\\<forall>H5 I5. equal(H5::'a,I5) --> equal(successor(H5),successor(I5))) & \ | |
| 1461 | \ (\\<forall>J5 K5. equal(J5::'a,K5) --> equal(sum_class(J5),sum_class(K5))) & \ | |
| 1462 | \ (\\<forall>L5 M5 N5. equal(L5::'a,M5) --> equal(union(L5::'a,N5),union(M5::'a,N5))) & \ | |
| 1463 | \ (\\<forall>O5 Q5 P5. equal(O5::'a,P5) --> equal(union(Q5::'a,O5),union(Q5::'a,P5))) & \ | |
| 1464 | \ (\\<forall>R5 S5 T5. equal(R5::'a,S5) --> equal(unordered_pair(R5::'a,T5),unordered_pair(S5::'a,T5))) & \ | |
| 1465 | \ (\\<forall>U5 W5 V5. equal(U5::'a,V5) --> equal(unordered_pair(W5::'a,U5),unordered_pair(W5::'a,V5))) & \ | |
| 1466 | \ (\\<forall>X5 Y5 Z5 A6. equal(X5::'a,Y5) & compatible(X5::'a,Z5,A6) --> compatible(Y5::'a,Z5,A6)) & \ | |
| 1467 | \ (\\<forall>B6 D6 C6 E6. equal(B6::'a,C6) & compatible(D6::'a,B6,E6) --> compatible(D6::'a,C6,E6)) & \ | |
| 1468 | \ (\\<forall>F6 H6 I6 G6. equal(F6::'a,G6) & compatible(H6::'a,I6,F6) --> compatible(H6::'a,I6,G6)) & \ | |
| 1469 | \ (\\<forall>J6 K6. equal(J6::'a,K6) & function(J6) --> function(K6)) & \ | |
| 1470 | \ (\\<forall>L6 M6 N6 O6. equal(L6::'a,M6) & homomorphism(L6::'a,N6,O6) --> homomorphism(M6::'a,N6,O6)) & \ | |
| 1471 | \ (\\<forall>P6 R6 Q6 S6. equal(P6::'a,Q6) & homomorphism(R6::'a,P6,S6) --> homomorphism(R6::'a,Q6,S6)) & \ | |
| 1472 | \ (\\<forall>T6 V6 W6 U6. equal(T6::'a,U6) & homomorphism(V6::'a,W6,T6) --> homomorphism(V6::'a,W6,U6)) & \ | |
| 1473 | \ (\\<forall>X6 Y6. equal(X6::'a,Y6) & inductive(X6) --> inductive(Y6)) & \ | |
| 1474 | \ (\\<forall>Z6 A7 B7. equal(Z6::'a,A7) & member(Z6::'a,B7) --> member(A7::'a,B7)) & \ | |
| 1475 | \ (\\<forall>C7 E7 D7. equal(C7::'a,D7) & member(E7::'a,C7) --> member(E7::'a,D7)) & \ | |
| 1476 | \ (\\<forall>F7 G7. equal(F7::'a,G7) & one_to_one(F7) --> one_to_one(G7)) & \ | |
| 1477 | \ (\\<forall>H7 I7. equal(H7::'a,I7) & operation(H7) --> operation(I7)) & \ | |
| 1478 | \ (\\<forall>J7 K7. equal(J7::'a,K7) & single_valued_class(J7) --> single_valued_class(K7)) & \ | |
| 1479 | \ (\\<forall>L7 M7 N7. equal(L7::'a,M7) & subclass(L7::'a,N7) --> subclass(M7::'a,N7)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1480 | \ (\\<forall>O7 Q7 P7. equal(O7::'a,P7) & subclass(Q7::'a,O7) --> subclass(Q7::'a,P7))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1481 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1482 | val SET004_1_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1483 | "(\\<forall>X. subclass(compose_class(X),cross_product(universal_class::'a,universal_class))) & \ | 
| 14183 | 1484 | \ (\\<forall>X Y Z. member(ordered_pair(Y::'a,Z),compose_class(X)) --> equal(compos(X::'a,Y),Z)) & \ | 
| 1485 | \ (\\<forall>Y Z X. member(ordered_pair(Y::'a,Z),cross_product(universal_class::'a,universal_class)) & equal(compos(X::'a,Y),Z) --> member(ordered_pair(Y::'a,Z),compose_class(X))) & \ | |
| 8557 | 1486 | \ (subclass(composition_function::'a,cross_product(universal_class::'a,cross_product(universal_class::'a,universal_class)))) & \ | 
| 14183 | 1487 | \ (\\<forall>X Y Z. member(ordered_pair(X::'a,ordered_pair(Y::'a,Z)),composition_function) --> equal(compos(X::'a,Y),Z)) & \ | 
| 1488 | \ (\\<forall>X Y. member(ordered_pair(X::'a,Y),cross_product(universal_class::'a,universal_class)) --> member(ordered_pair(X::'a,ordered_pair(Y::'a,compos(X::'a,Y))),composition_function)) & \ | |
| 8557 | 1489 | \ (subclass(domain_relation::'a,cross_product(universal_class::'a,universal_class))) & \ | 
| 14183 | 1490 | \ (\\<forall>X Y. member(ordered_pair(X::'a,Y),domain_relation) --> equal(domain_of(X),Y)) & \ | 
| 1491 | \ (\\<forall>X. member(X::'a,universal_class) --> member(ordered_pair(X::'a,domain_of(X)),domain_relation)) & \ | |
| 1492 | \ (\\<forall>X. equal(first(not_subclass_element(compos(X::'a,INVERSE(X)),identity_relation)),single_valued1(X))) & \ | |
| 1493 | \ (\\<forall>X. equal(second(not_subclass_element(compos(X::'a,INVERSE(X)),identity_relation)),single_valued2(X))) & \ | |
| 1494 | \ (\\<forall>X. equal(domain(X::'a,image_(INVERSE(X),singleton(single_valued1(X))),single_valued2(X)),single_valued3(X))) & \ | |
| 8557 | 1495 | \ (equal(intersection(complement(compos(element_relation::'a,complement(identity_relation))),element_relation),singleton_relation)) & \ | 
| 1496 | \ (subclass(application_function::'a,cross_product(universal_class::'a,cross_product(universal_class::'a,universal_class)))) & \ | |
| 14183 | 1497 | \ (\\<forall>Z Y X. member(ordered_pair(X::'a,ordered_pair(Y::'a,Z)),application_function) --> member(Y::'a,domain_of(X))) & \ | 
| 1498 | \ (\\<forall>X Y Z. member(ordered_pair(X::'a,ordered_pair(Y::'a,Z)),application_function) --> equal(apply(X::'a,Y),Z)) & \ | |
| 1499 | \ (\\<forall>Z X Y. member(ordered_pair(X::'a,ordered_pair(Y::'a,Z)),cross_product(universal_class::'a,cross_product(universal_class::'a,universal_class))) & member(Y::'a,domain_of(X)) --> member(ordered_pair(X::'a,ordered_pair(Y::'a,apply(X::'a,Y))),application_function)) & \ | |
| 1500 | \ (\\<forall>X Y Xf. maps(Xf::'a,X,Y) --> function(Xf)) & \ | |
| 1501 | \ (\\<forall>Y Xf X. maps(Xf::'a,X,Y) --> equal(domain_of(Xf),X)) & \ | |
| 1502 | \ (\\<forall>X Xf Y. maps(Xf::'a,X,Y) --> subclass(range_of(Xf),Y)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1503 | \ (\\<forall>Xf Y. function(Xf) & subclass(range_of(Xf),Y) --> maps(Xf::'a,domain_of(Xf),Y))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1504 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1505 | val SET004_1_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1506 | "(\\<forall>L M. equal(L::'a,M) --> equal(compose_class(L),compose_class(M))) & \ | 
| 14183 | 1507 | \ (\\<forall>N2 O2. equal(N2::'a,O2) --> equal(single_valued1(N2),single_valued1(O2))) & \ | 
| 1508 | \ (\\<forall>P2 Q2. equal(P2::'a,Q2) --> equal(single_valued2(P2),single_valued2(Q2))) & \ | |
| 1509 | \ (\\<forall>R2 S2. equal(R2::'a,S2) --> equal(single_valued3(R2),single_valued3(S2))) & \ | |
| 1510 | \ (\\<forall>X2 Y2 Z2 A3. equal(X2::'a,Y2) & maps(X2::'a,Z2,A3) --> maps(Y2::'a,Z2,A3)) & \ | |
| 1511 | \ (\\<forall>B3 D3 C3 E3. equal(B3::'a,C3) & maps(D3::'a,B3,E3) --> maps(D3::'a,C3,E3)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1512 | \ (\\<forall>F3 H3 I3 G3. equal(F3::'a,G3) & maps(H3::'a,I3,F3) --> maps(H3::'a,I3,G3))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1513 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1514 | val NUM004_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1515 | "(\\<forall>X. equal(union(X::'a,INVERSE(X)),symmetrization_of(X))) & \ | 
| 14183 | 1516 | \ (\\<forall>X Y. irreflexive(X::'a,Y) --> subclass(restrct(X::'a,Y,Y),complement(identity_relation))) & \ | 
| 1517 | \ (\\<forall>X Y. subclass(restrct(X::'a,Y,Y),complement(identity_relation)) --> irreflexive(X::'a,Y)) & \ | |
| 1518 | \ (\\<forall>Y X. connected(X::'a,Y) --> subclass(cross_product(Y::'a,Y),union(identity_relation::'a,symmetrization_of(X)))) & \ | |
| 1519 | \ (\\<forall>X Y. subclass(cross_product(Y::'a,Y),union(identity_relation::'a,symmetrization_of(X))) --> connected(X::'a,Y)) & \ | |
| 1520 | \ (\\<forall>Xr Y. transitive(Xr::'a,Y) --> subclass(compos(restrct(Xr::'a,Y,Y),restrct(Xr::'a,Y,Y)),restrct(Xr::'a,Y,Y))) & \ | |
| 1521 | \ (\\<forall>Xr Y. subclass(compos(restrct(Xr::'a,Y,Y),restrct(Xr::'a,Y,Y)),restrct(Xr::'a,Y,Y)) --> transitive(Xr::'a,Y)) & \ | |
| 1522 | \ (\\<forall>Xr Y. asymmetric(Xr::'a,Y) --> equal(restrct(intersection(Xr::'a,INVERSE(Xr)),Y,Y),null_class)) & \ | |
| 1523 | \ (\\<forall>Xr Y. equal(restrct(intersection(Xr::'a,INVERSE(Xr)),Y,Y),null_class) --> asymmetric(Xr::'a,Y)) & \ | |
| 1524 | \ (\\<forall>Xr Y Z. equal(segment(Xr::'a,Y,Z),domain_of(restrct(Xr::'a,Y,singleton(Z))))) & \ | |
| 1525 | \ (\\<forall>X Y. well_ordering(X::'a,Y) --> connected(X::'a,Y)) & \ | |
| 1526 | \ (\\<forall>Y Xr U. well_ordering(Xr::'a,Y) & subclass(U::'a,Y) --> equal(U::'a,null_class) | member(least(Xr::'a,U),U)) & \ | |
| 1527 | \ (\\<forall>Y V Xr U. well_ordering(Xr::'a,Y) & subclass(U::'a,Y) & member(V::'a,U) --> member(least(Xr::'a,U),U)) & \ | |
| 1528 | \ (\\<forall>Y Xr U. well_ordering(Xr::'a,Y) & subclass(U::'a,Y) --> equal(segment(Xr::'a,U,least(Xr::'a,U)),null_class)) & \ | |
| 1529 | \ (\\<forall>Y V U Xr. ~(well_ordering(Xr::'a,Y) & subclass(U::'a,Y) & member(V::'a,U) & member(ordered_pair(V::'a,least(Xr::'a,U)),Xr))) & \ | |
| 1530 | \ (\\<forall>Xr Y. connected(Xr::'a,Y) & equal(not_well_ordering(Xr::'a,Y),null_class) --> well_ordering(Xr::'a,Y)) & \ | |
| 1531 | \ (\\<forall>Xr Y. connected(Xr::'a,Y) --> subclass(not_well_ordering(Xr::'a,Y),Y) | well_ordering(Xr::'a,Y)) & \ | |
| 1532 | \ (\\<forall>V Xr Y. member(V::'a,not_well_ordering(Xr::'a,Y)) & equal(segment(Xr::'a,not_well_ordering(Xr::'a,Y),V),null_class) & connected(Xr::'a,Y) --> well_ordering(Xr::'a,Y)) & \ | |
| 1533 | \ (\\<forall>Xr Y Z. section(Xr::'a,Y,Z) --> subclass(Y::'a,Z)) & \ | |
| 1534 | \ (\\<forall>Xr Z Y. section(Xr::'a,Y,Z) --> subclass(domain_of(restrct(Xr::'a,Z,Y)),Y)) & \ | |
| 1535 | \ (\\<forall>Xr Y Z. subclass(Y::'a,Z) & subclass(domain_of(restrct(Xr::'a,Z,Y)),Y) --> section(Xr::'a,Y,Z)) & \ | |
| 1536 | \ (\\<forall>X. member(X::'a,ordinal_numbers) --> well_ordering(element_relation::'a,X)) & \ | |
| 1537 | \ (\\<forall>X. member(X::'a,ordinal_numbers) --> subclass(sum_class(X),X)) & \ | |
| 1538 | \ (\\<forall>X. well_ordering(element_relation::'a,X) & subclass(sum_class(X),X) & member(X::'a,universal_class) --> member(X::'a,ordinal_numbers)) & \ | |
| 1539 | \ (\\<forall>X. well_ordering(element_relation::'a,X) & subclass(sum_class(X),X) --> member(X::'a,ordinal_numbers) | equal(X::'a,ordinal_numbers)) & \ | |
| 8557 | 1540 | \ (equal(union(singleton(null_class),image_(successor_relation::'a,ordinal_numbers)),kind_1_ordinals)) & \ | 
| 1541 | \ (equal(intersection(complement(kind_1_ordinals),ordinal_numbers),limit_ordinals)) & \ | |
| 14183 | 1542 | \ (\\<forall>X. subclass(rest_of(X),cross_product(universal_class::'a,universal_class))) & \ | 
| 1543 | \ (\\<forall>V U X. member(ordered_pair(U::'a,V),rest_of(X)) --> member(U::'a,domain_of(X))) & \ | |
| 1544 | \ (\\<forall>X U V. member(ordered_pair(U::'a,V),rest_of(X)) --> equal(restrct(X::'a,U,universal_class),V)) & \ | |
| 1545 | \ (\\<forall>U V X. member(U::'a,domain_of(X)) & equal(restrct(X::'a,U,universal_class),V) --> member(ordered_pair(U::'a,V),rest_of(X))) & \ | |
| 8557 | 1546 | \ (subclass(rest_relation::'a,cross_product(universal_class::'a,universal_class))) & \ | 
| 14183 | 1547 | \ (\\<forall>X Y. member(ordered_pair(X::'a,Y),rest_relation) --> equal(rest_of(X),Y)) & \ | 
| 1548 | \ (\\<forall>X. member(X::'a,universal_class) --> member(ordered_pair(X::'a,rest_of(X)),rest_relation)) & \ | |
| 1549 | \ (\\<forall>X Z. member(X::'a,recursion_equation_functions(Z)) --> function(Z)) & \ | |
| 1550 | \ (\\<forall>Z X. member(X::'a,recursion_equation_functions(Z)) --> function(X)) & \ | |
| 1551 | \ (\\<forall>Z X. member(X::'a,recursion_equation_functions(Z)) --> member(domain_of(X),ordinal_numbers)) & \ | |
| 1552 | \ (\\<forall>Z X. member(X::'a,recursion_equation_functions(Z)) --> equal(compos(Z::'a,rest_of(X)),X)) & \ | |
| 1553 | \ (\\<forall>X Z. function(Z) & function(X) & member(domain_of(X),ordinal_numbers) & equal(compos(Z::'a,rest_of(X)),X) --> member(X::'a,recursion_equation_functions(Z))) & \ | |
| 8557 | 1554 | \ (subclass(union_of_range_map::'a,cross_product(universal_class::'a,universal_class))) & \ | 
| 14183 | 1555 | \ (\\<forall>X Y. member(ordered_pair(X::'a,Y),union_of_range_map) --> equal(sum_class(range_of(X)),Y)) & \ | 
| 1556 | \ (\\<forall>X Y. member(ordered_pair(X::'a,Y),cross_product(universal_class::'a,universal_class)) & equal(sum_class(range_of(X)),Y) --> member(ordered_pair(X::'a,Y),union_of_range_map)) & \ | |
| 1557 | \ (\\<forall>X Y. equal(apply(recursion(X::'a,successor_relation,union_of_range_map),Y),ordinal_add(X::'a,Y))) & \ | |
| 1558 | \ (\\<forall>X Y. equal(recursion(null_class::'a,apply(add_relation::'a,X),union_of_range_map),ordinal_multiply(X::'a,Y))) & \ | |
| 1559 | \ (\\<forall>X. member(X::'a,omega) --> equal(integer_of(X),X)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1560 | \ (\\<forall>X. member(X::'a,omega) | equal(integer_of(X),null_class))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1561 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1562 | val NUM004_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1563 | "(\\<forall>D E. equal(D::'a,E) --> equal(integer_of(D),integer_of(E))) & \ | 
| 14183 | 1564 | \ (\\<forall>F' G H. equal(F'::'a,G) --> equal(least(F'::'a,H),least(G::'a,H))) & \ | 
| 1565 | \ (\\<forall>I' K' J. equal(I'::'a,J) --> equal(least(K'::'a,I'),least(K'::'a,J))) & \ | |
| 1566 | \ (\\<forall>L M N. equal(L::'a,M) --> equal(not_well_ordering(L::'a,N),not_well_ordering(M::'a,N))) & \ | |
| 1567 | \ (\\<forall>O_ Q P. equal(O_::'a,P) --> equal(not_well_ordering(Q::'a,O_),not_well_ordering(Q::'a,P))) & \ | |
| 1568 | \ (\\<forall>R S' T'. equal(R::'a,S') --> equal(ordinal_add(R::'a,T'),ordinal_add(S'::'a,T'))) & \ | |
| 1569 | \ (\\<forall>U W V. equal(U::'a,V) --> equal(ordinal_add(W::'a,U),ordinal_add(W::'a,V))) & \ | |
| 1570 | \ (\\<forall>X Y Z. equal(X::'a,Y) --> equal(ordinal_multiply(X::'a,Z),ordinal_multiply(Y::'a,Z))) & \ | |
| 1571 | \ (\\<forall>A1 C1 B1. equal(A1::'a,B1) --> equal(ordinal_multiply(C1::'a,A1),ordinal_multiply(C1::'a,B1))) & \ | |
| 1572 | \ (\\<forall>F1 G1 H1 I1. equal(F1::'a,G1) --> equal(recursion(F1::'a,H1,I1),recursion(G1::'a,H1,I1))) & \ | |
| 1573 | \ (\\<forall>J1 L1 K1 M1. equal(J1::'a,K1) --> equal(recursion(L1::'a,J1,M1),recursion(L1::'a,K1,M1))) & \ | |
| 1574 | \ (\\<forall>N1 P1 Q1 O1. equal(N1::'a,O1) --> equal(recursion(P1::'a,Q1,N1),recursion(P1::'a,Q1,O1))) & \ | |
| 1575 | \ (\\<forall>R1 S1. equal(R1::'a,S1) --> equal(recursion_equation_functions(R1),recursion_equation_functions(S1))) & \ | |
| 1576 | \ (\\<forall>T1 U1. equal(T1::'a,U1) --> equal(rest_of(T1),rest_of(U1))) & \ | |
| 1577 | \ (\\<forall>V1 W1 X1 Y1. equal(V1::'a,W1) --> equal(segment(V1::'a,X1,Y1),segment(W1::'a,X1,Y1))) & \ | |
| 1578 | \ (\\<forall>Z1 B2 A2 C2. equal(Z1::'a,A2) --> equal(segment(B2::'a,Z1,C2),segment(B2::'a,A2,C2))) & \ | |
| 1579 | \ (\\<forall>D2 F2 G2 E2. equal(D2::'a,E2) --> equal(segment(F2::'a,G2,D2),segment(F2::'a,G2,E2))) & \ | |
| 1580 | \ (\\<forall>H2 I2. equal(H2::'a,I2) --> equal(symmetrization_of(H2),symmetrization_of(I2))) & \ | |
| 1581 | \ (\\<forall>J2 K2 L2. equal(J2::'a,K2) & asymmetric(J2::'a,L2) --> asymmetric(K2::'a,L2)) & \ | |
| 1582 | \ (\\<forall>M2 O2 N2. equal(M2::'a,N2) & asymmetric(O2::'a,M2) --> asymmetric(O2::'a,N2)) & \ | |
| 1583 | \ (\\<forall>P2 Q2 R2. equal(P2::'a,Q2) & connected(P2::'a,R2) --> connected(Q2::'a,R2)) & \ | |
| 1584 | \ (\\<forall>S2 U2 T2. equal(S2::'a,T2) & connected(U2::'a,S2) --> connected(U2::'a,T2)) & \ | |
| 1585 | \ (\\<forall>V2 W2 X2. equal(V2::'a,W2) & irreflexive(V2::'a,X2) --> irreflexive(W2::'a,X2)) & \ | |
| 1586 | \ (\\<forall>Y2 A3 Z2. equal(Y2::'a,Z2) & irreflexive(A3::'a,Y2) --> irreflexive(A3::'a,Z2)) & \ | |
| 1587 | \ (\\<forall>B3 C3 D3 E3. equal(B3::'a,C3) & section(B3::'a,D3,E3) --> section(C3::'a,D3,E3)) & \ | |
| 1588 | \ (\\<forall>F3 H3 G3 I3. equal(F3::'a,G3) & section(H3::'a,F3,I3) --> section(H3::'a,G3,I3)) & \ | |
| 1589 | \ (\\<forall>J3 L3 M3 K3. equal(J3::'a,K3) & section(L3::'a,M3,J3) --> section(L3::'a,M3,K3)) & \ | |
| 1590 | \ (\\<forall>N3 O3 P3. equal(N3::'a,O3) & transitive(N3::'a,P3) --> transitive(O3::'a,P3)) & \ | |
| 1591 | \ (\\<forall>Q3 S3 R3. equal(Q3::'a,R3) & transitive(S3::'a,Q3) --> transitive(S3::'a,R3)) & \ | |
| 1592 | \ (\\<forall>T3 U3 V3. equal(T3::'a,U3) & well_ordering(T3::'a,V3) --> well_ordering(U3::'a,V3)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1593 | \ (\\<forall>W3 Y3 X3. equal(W3::'a,X3) & well_ordering(Y3::'a,W3) --> well_ordering(Y3::'a,X3))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1594 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1595 | (*1345 inferences so far. Searching to depth 7. 23.3 secs. BIG*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1596 | val NUM180_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1597 | (EQU001_0_ax ^ "&" ^ SET004_0_ax ^ "&" ^ SET004_0_eq ^ "&" ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1598 | SET004_1_ax ^ "&" ^ SET004_1_eq ^ "&" ^ NUM004_0_ax ^ "&" ^ NUM004_0_eq ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1599 | " & (~subclass(limit_ordinals::'a,ordinal_numbers)) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1600 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1601 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1602 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1603 | (*0 inferences so far. Searching to depth 0. 16.8 secs. BIG*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1604 | val NUM228_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1605 | (EQU001_0_ax ^ "&" ^ SET004_0_ax ^ "&" ^ SET004_0_eq ^ "&" ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1606 | SET004_1_ax ^ "&" ^ SET004_1_eq ^ "&" ^ NUM004_0_ax ^ "&" ^ NUM004_0_eq ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1607 | " & (~function(z)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1608 | \ (~equal(recursion_equation_functions(z),null_class)) --> False", | 
| 9841 | 1609 | meson_tac 1); | 
| 8557 | 1610 | |
| 1611 | ||
| 1612 | (*4868 inferences so far. Searching to depth 12. 4.3 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1613 | val PLA002_1 = prove | 
| 14183 | 1614 |  ("(\\<forall>Situation1 Situation2. warm(Situation1) | cold(Situation2)) &    \
 | 
| 1615 | \ (\\<forall>Situation. at(a::'a,Situation) --> at(b::'a,walk(b::'a,Situation))) & \ | |
| 1616 | \ (\\<forall>Situation. at(a::'a,Situation) --> at(b::'a,drive(b::'a,Situation))) & \ | |
| 1617 | \ (\\<forall>Situation. at(b::'a,Situation) --> at(a::'a,walk(a::'a,Situation))) & \ | |
| 1618 | \ (\\<forall>Situation. at(b::'a,Situation) --> at(a::'a,drive(a::'a,Situation))) & \ | |
| 1619 | \ (\\<forall>Situation. cold(Situation) & at(b::'a,Situation) --> at(c::'a,skate(c::'a,Situation))) & \ | |
| 1620 | \ (\\<forall>Situation. cold(Situation) & at(c::'a,Situation) --> at(b::'a,skate(b::'a,Situation))) & \ | |
| 1621 | \ (\\<forall>Situation. warm(Situation) & at(b::'a,Situation) --> at(d::'a,climb(d::'a,Situation))) & \ | |
| 1622 | \ (\\<forall>Situation. warm(Situation) & at(d::'a,Situation) --> at(b::'a,climb(b::'a,Situation))) & \ | |
| 1623 | \ (\\<forall>Situation. at(c::'a,Situation) --> at(d::'a,go(d::'a,Situation))) & \ | |
| 1624 | \ (\\<forall>Situation. at(d::'a,Situation) --> at(c::'a,go(c::'a,Situation))) & \ | |
| 1625 | \ (\\<forall>Situation. at(c::'a,Situation) --> at(e::'a,go(e::'a,Situation))) & \ | |
| 1626 | \ (\\<forall>Situation. at(e::'a,Situation) --> at(c::'a,go(c::'a,Situation))) & \ | |
| 1627 | \ (\\<forall>Situation. at(d::'a,Situation) --> at(f::'a,go(f::'a,Situation))) & \ | |
| 1628 | \ (\\<forall>Situation. at(f::'a,Situation) --> at(d::'a,go(d::'a,Situation))) & \ | |
| 8557 | 1629 | \ (at(f::'a,s0)) & \ | 
| 14183 | 1630 | \ (\\<forall>S'. ~at(a::'a,S')) --> False", | 
| 9841 | 1631 | meson_tac 1); | 
| 8557 | 1632 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1633 | val PLA001_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1634 | "(\\<forall>X Y State. holds(X::'a,State) & holds(Y::'a,State) --> holds(and'(X::'a,Y),State)) & \ | 
| 14183 | 1635 | \ (\\<forall>State X. holds(EMPTY::'a,State) & holds(clear(X),State) & differ(X::'a,table) --> holds(holding(X),do(pickup(X),State))) & \ | 
| 1636 | \ (\\<forall>Y X State. holds(on(X::'a,Y),State) & holds(clear(X),State) & holds(EMPTY::'a,State) --> holds(clear(Y),do(pickup(X),State))) & \ | |
| 1637 | \ (\\<forall>Y State X Z. holds(on(X::'a,Y),State) & differ(X::'a,Z) --> holds(on(X::'a,Y),do(pickup(Z),State))) & \ | |
| 1638 | \ (\\<forall>State X Z. holds(clear(X),State) & differ(X::'a,Z) --> holds(clear(X),do(pickup(Z),State))) & \ | |
| 1639 | \ (\\<forall>X Y State. holds(holding(X),State) & holds(clear(Y),State) --> holds(EMPTY::'a,do(putdown(X::'a,Y),State))) & \ | |
| 1640 | \ (\\<forall>X Y State. holds(holding(X),State) & holds(clear(Y),State) --> holds(on(X::'a,Y),do(putdown(X::'a,Y),State))) & \ | |
| 1641 | \ (\\<forall>X Y State. holds(holding(X),State) & holds(clear(Y),State) --> holds(clear(X),do(putdown(X::'a,Y),State))) & \ | |
| 1642 | \ (\\<forall>Z W X Y State. holds(on(X::'a,Y),State) --> holds(on(X::'a,Y),do(putdown(Z::'a,W),State))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1643 | \ (\\<forall>X State Z Y. holds(clear(Z),State) & differ(Z::'a,Y) --> holds(clear(Z),do(putdown(X::'a,Y),State)))"; | 
| 8557 | 1644 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1645 | val PLA001_1_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1646 | "(\\<forall>Y X. differ(Y::'a,X) --> differ(X::'a,Y)) & \ | 
| 8557 | 1647 | \ (differ(a::'a,b)) & \ | 
| 1648 | \ (differ(a::'a,c)) & \ | |
| 1649 | \ (differ(a::'a,d)) & \ | |
| 1650 | \ (differ(a::'a,table)) & \ | |
| 1651 | \ (differ(b::'a,c)) & \ | |
| 1652 | \ (differ(b::'a,d)) & \ | |
| 1653 | \ (differ(b::'a,table)) & \ | |
| 1654 | \ (differ(c::'a,d)) & \ | |
| 1655 | \ (differ(c::'a,table)) & \ | |
| 1656 | \ (differ(d::'a,table)) & \ | |
| 1657 | \ (holds(on(a::'a,table),s0)) & \ | |
| 1658 | \ (holds(on(b::'a,table),s0)) & \ | |
| 1659 | \ (holds(on(c::'a,d),s0)) & \ | |
| 1660 | \ (holds(on(d::'a,table),s0)) & \ | |
| 1661 | \ (holds(clear(a),s0)) & \ | |
| 1662 | \ (holds(clear(b),s0)) & \ | |
| 1663 | \ (holds(clear(c),s0)) & \ | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10440diff
changeset | 1664 | \ (holds(EMPTY::'a,s0)) & \ | 
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1665 | \ (\\<forall>State. holds(clear(table),State))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1666 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1667 | (*190 inferences so far. Searching to depth 10. 0.6 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1668 | val PLA006_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1669 | (PLA001_0_ax ^ "&" ^ PLA001_1_ax ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1670 | "& (\\<forall>State. ~holds(on(c::'a,table),State)) --> False", | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1671 | meson_tac 1); | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1672 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1673 | (*190 inferences so far. Searching to depth 10. 0.5 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1674 | val PLA017_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1675 | (PLA001_0_ax ^ "&" ^ PLA001_1_ax ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1676 | "& (\\<forall>State. ~holds(on(a::'a,c),State)) --> False", | 
| 9841 | 1677 | meson_tac 1); | 
| 8557 | 1678 | |
| 1679 | (*13732 inferences so far. Searching to depth 16. 9.8 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1680 | val PLA022_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1681 | (PLA001_0_ax ^ "&" ^ PLA001_1_ax ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1682 | "& (\\<forall>State. ~holds(and'(on(c::'a,d),on(a::'a,c)),State)) --> False", | 
| 9841 | 1683 | meson_tac 1); | 
| 8557 | 1684 | |
| 1685 | (*217 inferences so far. Searching to depth 13. 0.7 secs*) | |
| 1686 | val PLA022_2 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1687 | (PLA001_0_ax ^ "&" ^ PLA001_1_ax ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1688 | "& (\\<forall>State. ~holds(and'(on(a::'a,c),on(c::'a,d)),State)) --> False", | 
| 9841 | 1689 | meson_tac 1); | 
| 8557 | 1690 | |
| 1691 | (*948 inferences so far. Searching to depth 18. 1.1 secs*) | |
| 1692 | val PRV001_1 = prove | |
| 19277 | 1693 |  ("(\\<forall>X Y Z. q1(X::'a,Y,Z) & mless_or_equal(X::'a,Y) --> q2(X::'a,Y,Z)) &    \
 | 
| 1694 | \ (\\<forall>X Y Z. q1(X::'a,Y,Z) --> mless_or_equal(X::'a,Y) | q3(X::'a,Y,Z)) & \ | |
| 14183 | 1695 | \ (\\<forall>Z X Y. q2(X::'a,Y,Z) --> q4(X::'a,Y,Y)) & \ | 
| 1696 | \ (\\<forall>Z Y X. q3(X::'a,Y,Z) --> q4(X::'a,Y,X)) & \ | |
| 19277 | 1697 | \ (\\<forall>X. mless_or_equal(X::'a,X)) & \ | 
| 1698 | \ (\\<forall>X Y. mless_or_equal(X::'a,Y) & mless_or_equal(Y::'a,X) --> equal(X::'a,Y)) & \ | |
| 1699 | \ (\\<forall>Y X Z. mless_or_equal(X::'a,Y) & mless_or_equal(Y::'a,Z) --> mless_or_equal(X::'a,Z)) & \ | |
| 1700 | \ (\\<forall>Y X. mless_or_equal(X::'a,Y) | mless_or_equal(Y::'a,X)) & \ | |
| 1701 | \ (\\<forall>X Y. equal(X::'a,Y) --> mless_or_equal(X::'a,Y)) & \ | |
| 1702 | \ (\\<forall>X Y Z. equal(X::'a,Y) & mless_or_equal(X::'a,Z) --> mless_or_equal(Y::'a,Z)) & \ | |
| 1703 | \ (\\<forall>X Z Y. equal(X::'a,Y) & mless_or_equal(Z::'a,X) --> mless_or_equal(Z::'a,Y)) & \ | |
| 8557 | 1704 | \ (q1(a::'a,b,c)) & \ | 
| 19277 | 1705 | \ (\\<forall>W. ~(q4(a::'a,b,W) & mless_or_equal(a::'a,W) & mless_or_equal(b::'a,W) & mless_or_equal(W::'a,a))) & \ | 
| 1706 | \ (\\<forall>W. ~(q4(a::'a,b,W) & mless_or_equal(a::'a,W) & mless_or_equal(b::'a,W) & mless_or_equal(W::'a,b))) --> False", | |
| 9841 | 1707 | meson_tac 1); | 
| 8557 | 1708 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1709 | (*PRV is now called SWV (software verification) *) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1710 | val SWV001_1_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1711 | "(\\<forall>X. equal(predecessor(successor(X)),X)) & \ | 
| 14183 | 1712 | \ (\\<forall>X. equal(successor(predecessor(X)),X)) & \ | 
| 1713 | \ (\\<forall>X Y. equal(predecessor(X),predecessor(Y)) --> equal(X::'a,Y)) & \ | |
| 1714 | \ (\\<forall>X Y. equal(successor(X),successor(Y)) --> equal(X::'a,Y)) & \ | |
| 19277 | 1715 | \ (\\<forall>X. mless_THAN(predecessor(X),X)) & \ | 
| 1716 | \ (\\<forall>X. mless_THAN(X::'a,successor(X))) & \ | |
| 1717 | \ (\\<forall>X Y Z. mless_THAN(X::'a,Y) & mless_THAN(Y::'a,Z) --> mless_THAN(X::'a,Z)) & \ | |
| 1718 | \ (\\<forall>X Y. mless_THAN(X::'a,Y) | mless_THAN(Y::'a,X) | equal(X::'a,Y)) & \ | |
| 1719 | \ (\\<forall>X. ~mless_THAN(X::'a,X)) & \ | |
| 1720 | \ (\\<forall>Y X. ~(mless_THAN(X::'a,Y) & mless_THAN(Y::'a,X))) & \ | |
| 1721 | \ (\\<forall>Y X Z. equal(X::'a,Y) & mless_THAN(X::'a,Z) --> mless_THAN(Y::'a,Z)) & \ | |
| 1722 | \ (\\<forall>Y Z X. equal(X::'a,Y) & mless_THAN(Z::'a,X) --> mless_THAN(Z::'a,Y))"; | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1723 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1724 | val SWV001_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1725 | "(\\<forall>X Y. equal(X::'a,Y) --> equal(predecessor(X),predecessor(Y))) & \ | 
| 14183 | 1726 | \ (\\<forall>X Y. equal(X::'a,Y) --> equal(successor(X),successor(Y))) & \ | 
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1727 | \ (\\<forall>X Y. equal(X::'a,Y) --> equal(a(X),a(Y)))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1728 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1729 | (*21 inferences so far. Searching to depth 5. 0.4 secs*) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1730 | val PRV003_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1731 | (EQU001_0_ax ^ "&" ^ SWV001_1_ax ^ "&" ^ SWV001_0_eq ^ " & \ | 
| 19277 | 1732 | \ (~mless_THAN(n::'a,j)) & \ | 
| 1733 | \ (mless_THAN(k::'a,j)) & \ | |
| 1734 | \ (~mless_THAN(k::'a,i)) & \ | |
| 1735 | \ (mless_THAN(i::'a,n)) & \ | |
| 1736 | \ (mless_THAN(a(j),a(k))) & \ | |
| 1737 | \ (\\<forall>X. mless_THAN(X::'a,j) & mless_THAN(a(X),a(k)) --> mless_THAN(X::'a,i)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1738 | \ (\\<forall>X. mless_THAN(One::'a,i) & mless_THAN(a(X),a(predecessor(i))) --> mless_THAN(X::'a,i) | mless_THAN(n::'a,X)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1739 | \ (\\<forall>X. ~(mless_THAN(One::'a,X) & mless_THAN(X::'a,i) & mless_THAN(a(X),a(predecessor(X))))) & \ | 
| 19277 | 1740 | \ (mless_THAN(j::'a,i)) --> False", | 
| 9841 | 1741 | meson_tac 1); | 
| 8557 | 1742 | |
| 1743 | (*584 inferences so far. Searching to depth 7. 1.1 secs*) | |
| 1744 | val PRV005_1 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1745 | (EQU001_0_ax ^ "&" ^ SWV001_1_ax ^ "&" ^ SWV001_0_eq ^ " & \ | 
| 19277 | 1746 | \ (~mless_THAN(n::'a,k)) & \ | 
| 1747 | \ (~mless_THAN(k::'a,l)) & \ | |
| 1748 | \ (~mless_THAN(k::'a,i)) & \ | |
| 1749 | \ (mless_THAN(l::'a,n)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1750 | \ (mless_THAN(One::'a,l)) & \ | 
| 19277 | 1751 | \ (mless_THAN(a(k),a(predecessor(l)))) & \ | 
| 1752 | \ (\\<forall>X. mless_THAN(X::'a,successor(n)) & mless_THAN(a(X),a(k)) --> mless_THAN(X::'a,l)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1753 | \ (\\<forall>X. mless_THAN(One::'a,l) & mless_THAN(a(X),a(predecessor(l))) --> mless_THAN(X::'a,l) | mless_THAN(n::'a,X)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1754 | \ (\\<forall>X. ~(mless_THAN(One::'a,X) & mless_THAN(X::'a,l) & mless_THAN(a(X),a(predecessor(X))))) --> False", | 
| 9841 | 1755 | meson_tac 1); | 
| 8557 | 1756 | |
| 1757 | (*2343 inferences so far. Searching to depth 8. 3.5 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1758 | val PRV006_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1759 | (EQU001_0_ax ^ "&" ^ SWV001_1_ax ^ "&" ^ SWV001_0_eq ^ " & \ | 
| 19277 | 1760 | \ (~mless_THAN(n::'a,m)) & \ | 
| 1761 | \ (mless_THAN(i::'a,m)) & \ | |
| 1762 | \ (mless_THAN(i::'a,n)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1763 | \ (~mless_THAN(i::'a,One)) & \ | 
| 19277 | 1764 | \ (mless_THAN(a(i),a(m))) & \ | 
| 1765 | \ (\\<forall>X. mless_THAN(X::'a,successor(n)) & mless_THAN(a(X),a(m)) --> mless_THAN(X::'a,i)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1766 | \ (\\<forall>X. mless_THAN(One::'a,i) & mless_THAN(a(X),a(predecessor(i))) --> mless_THAN(X::'a,i) | mless_THAN(n::'a,X)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 1767 | \ (\\<forall>X. ~(mless_THAN(One::'a,X) & mless_THAN(X::'a,i) & mless_THAN(a(X),a(predecessor(X))))) --> False", | 
| 9841 | 1768 | meson_tac 1); | 
| 8557 | 1769 | |
| 1770 | (*86 inferences so far. Searching to depth 14. 0.1 secs*) | |
| 1771 | val PRV009_1 = prove | |
| 19277 | 1772 |  ("(\\<forall>Y X. mless_or_equal(X::'a,Y) | mless(Y::'a,X)) &   \
 | 
| 1773 | \ (mless(j::'a,i)) & \ | |
| 1774 | \ (mless_or_equal(m::'a,p)) & \ | |
| 1775 | \ (mless_or_equal(p::'a,q)) & \ | |
| 1776 | \ (mless_or_equal(q::'a,n)) & \ | |
| 1777 | \ (\\<forall>X Y. mless_or_equal(m::'a,X) & mless(X::'a,i) & mless(j::'a,Y) & mless_or_equal(Y::'a,n) --> mless_or_equal(a(X),a(Y))) & \ | |
| 1778 | \ (\\<forall>X Y. mless_or_equal(m::'a,X) & mless_or_equal(X::'a,Y) & mless_or_equal(Y::'a,j) --> mless_or_equal(a(X),a(Y))) & \ | |
| 1779 | \ (\\<forall>X Y. mless_or_equal(i::'a,X) & mless_or_equal(X::'a,Y) & mless_or_equal(Y::'a,n) --> mless_or_equal(a(X),a(Y))) & \ | |
| 1780 | \ (~mless_or_equal(a(p),a(q))) --> False", | |
| 9841 | 1781 | meson_tac 1); | 
| 8557 | 1782 | |
| 1783 | (*222 inferences so far. Searching to depth 8. 0.4 secs*) | |
| 1784 | val PUZ012_1 = prove | |
| 14183 | 1785 |  ("(\\<forall>X. equal_fruits(X::'a,X)) &   \
 | 
| 1786 | \ (\\<forall>X. equal_boxes(X::'a,X)) & \ | |
| 1787 | \ (\\<forall>X Y. ~(label(X::'a,Y) & contains(X::'a,Y))) & \ | |
| 1788 | \ (\\<forall>X. contains(boxa::'a,X) | contains(boxb::'a,X) | contains(boxc::'a,X)) & \ | |
| 1789 | \ (\\<forall>X. contains(X::'a,apples) | contains(X::'a,bananas) | contains(X::'a,oranges)) & \ | |
| 1790 | \ (\\<forall>X Y Z. contains(X::'a,Y) & contains(X::'a,Z) --> equal_fruits(Y::'a,Z)) & \ | |
| 1791 | \ (\\<forall>Y X Z. contains(X::'a,Y) & contains(Z::'a,Y) --> equal_boxes(X::'a,Z)) & \ | |
| 8557 | 1792 | \ (~equal_boxes(boxa::'a,boxb)) & \ | 
| 1793 | \ (~equal_boxes(boxb::'a,boxc)) & \ | |
| 1794 | \ (~equal_boxes(boxa::'a,boxc)) & \ | |
| 1795 | \ (~equal_fruits(apples::'a,bananas)) & \ | |
| 1796 | \ (~equal_fruits(bananas::'a,oranges)) & \ | |
| 1797 | \ (~equal_fruits(apples::'a,oranges)) & \ | |
| 1798 | \ (label(boxa::'a,apples)) & \ | |
| 1799 | \ (label(boxb::'a,oranges)) & \ | |
| 1800 | \ (label(boxc::'a,bananas)) & \ | |
| 1801 | \ (contains(boxb::'a,apples)) & \ | |
| 1802 | \ (~(contains(boxa::'a,bananas) & contains(boxc::'a,oranges))) --> False", | |
| 9841 | 1803 | meson_tac 1); | 
| 8557 | 1804 | |
| 1805 | (*35 inferences so far. Searching to depth 5. 3.2 secs*) | |
| 1806 | val PUZ020_1 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1807 | (EQU001_0_ax ^ " & \ | 
| 14183 | 1808 | \ (\\<forall>A B. equal(A::'a,B) --> equal(statement_by(A),statement_by(B))) & \ | 
| 1809 | \ (\\<forall>X. person(X) --> knight(X) | knave(X)) & \ | |
| 1810 | \ (\\<forall>X. ~(person(X) & knight(X) & knave(X))) & \ | |
| 1811 | \ (\\<forall>X Y. says(X::'a,Y) & a_truth(Y) --> a_truth(Y)) & \ | |
| 1812 | \ (\\<forall>X Y. ~(says(X::'a,Y) & equal(X::'a,Y))) & \ | |
| 1813 | \ (\\<forall>Y X. says(X::'a,Y) --> equal(Y::'a,statement_by(X))) & \ | |
| 1814 | \ (\\<forall>X Y. ~(person(X) & equal(X::'a,statement_by(Y)))) & \ | |
| 1815 | \ (\\<forall>X. person(X) & a_truth(statement_by(X)) --> knight(X)) & \ | |
| 1816 | \ (\\<forall>X. person(X) --> a_truth(statement_by(X)) | knave(X)) & \ | |
| 1817 | \ (\\<forall>X Y. equal(X::'a,Y) & knight(X) --> knight(Y)) & \ | |
| 1818 | \ (\\<forall>X Y. equal(X::'a,Y) & knave(X) --> knave(Y)) & \ | |
| 1819 | \ (\\<forall>X Y. equal(X::'a,Y) & person(X) --> person(Y)) & \ | |
| 1820 | \ (\\<forall>X Y Z. equal(X::'a,Y) & says(X::'a,Z) --> says(Y::'a,Z)) & \ | |
| 1821 | \ (\\<forall>X Z Y. equal(X::'a,Y) & says(Z::'a,X) --> says(Z::'a,Y)) & \ | |
| 1822 | \ (\\<forall>X Y. equal(X::'a,Y) & a_truth(X) --> a_truth(Y)) & \ | |
| 1823 | \ (\\<forall>X Y. knight(X) & says(X::'a,Y) --> a_truth(Y)) & \ | |
| 1824 | \ (\\<forall>X Y. ~(knave(X) & says(X::'a,Y) & a_truth(Y))) & \ | |
| 8557 | 1825 | \ (person(husband)) & \ | 
| 1826 | \ (person(wife)) & \ | |
| 1827 | \ (~equal(husband::'a,wife)) & \ | |
| 1828 | \ (says(husband::'a,statement_by(husband))) & \ | |
| 1829 | \ (a_truth(statement_by(husband)) & knight(husband) --> knight(wife)) & \ | |
| 1830 | \ (knight(husband) --> a_truth(statement_by(husband))) & \ | |
| 1831 | \ (a_truth(statement_by(husband)) | knight(wife)) & \ | |
| 1832 | \ (knight(wife) --> a_truth(statement_by(husband))) & \ | |
| 1833 | \ (~knight(husband)) --> False", | |
| 9841 | 1834 | meson_tac 1); | 
| 8557 | 1835 | |
| 1836 | (*121806 inferences so far. Searching to depth 17. 63.0 secs*) | |
| 1837 | val PUZ025_1 = prove_hard | |
| 14183 | 1838 |  ("(\\<forall>X. a_truth(truthteller(X)) | a_truth(liar(X))) & \
 | 
| 1839 | \ (\\<forall>X. ~(a_truth(truthteller(X)) & a_truth(liar(X)))) & \ | |
| 1840 | \ (\\<forall>Truthteller Statement. a_truth(truthteller(Truthteller)) & a_truth(says(Truthteller::'a,Statement)) --> a_truth(Statement)) & \ | |
| 1841 | \ (\\<forall>Liar Statement. ~(a_truth(liar(Liar)) & a_truth(says(Liar::'a,Statement)) & a_truth(Statement))) & \ | |
| 1842 | \ (\\<forall>Statement Truthteller. a_truth(Statement) & a_truth(says(Truthteller::'a,Statement)) --> a_truth(truthteller(Truthteller))) & \ | |
| 1843 | \ (\\<forall>Statement Liar. a_truth(says(Liar::'a,Statement)) --> a_truth(Statement) | a_truth(liar(Liar))) & \ | |
| 1844 | \ (\\<forall>Z X Y. people(X::'a,Y,Z) & a_truth(liar(X)) & a_truth(liar(Y)) --> a_truth(equal_type(X::'a,Y))) & \ | |
| 1845 | \ (\\<forall>Z X Y. people(X::'a,Y,Z) & a_truth(truthteller(X)) & a_truth(truthteller(Y)) --> a_truth(equal_type(X::'a,Y))) & \ | |
| 1846 | \ (\\<forall>X Y. a_truth(equal_type(X::'a,Y)) & a_truth(truthteller(X)) --> a_truth(truthteller(Y))) & \ | |
| 1847 | \ (\\<forall>X Y. a_truth(equal_type(X::'a,Y)) & a_truth(liar(X)) --> a_truth(liar(Y))) & \ | |
| 1848 | \ (\\<forall>X Y. a_truth(truthteller(X)) --> a_truth(equal_type(X::'a,Y)) | a_truth(liar(Y))) & \ | |
| 1849 | \ (\\<forall>X Y. a_truth(liar(X)) --> a_truth(equal_type(X::'a,Y)) | a_truth(truthteller(Y))) & \ | |
| 1850 | \ (\\<forall>Y X. a_truth(equal_type(X::'a,Y)) --> a_truth(equal_type(Y::'a,X))) & \ | |
| 1851 | \ (\\<forall>X Y. ask_1_if_2(X::'a,Y) & a_truth(truthteller(X)) & a_truth(Y) --> answer(yes)) & \ | |
| 1852 | \ (\\<forall>X Y. ask_1_if_2(X::'a,Y) & a_truth(truthteller(X)) --> a_truth(Y) | answer(no)) & \ | |
| 1853 | \ (\\<forall>X Y. ask_1_if_2(X::'a,Y) & a_truth(liar(X)) & a_truth(Y) --> answer(no)) & \ | |
| 1854 | \ (\\<forall>X Y. ask_1_if_2(X::'a,Y) & a_truth(liar(X)) --> a_truth(Y) | answer(yes)) & \ | |
| 8557 | 1855 | \ (people(b::'a,c,a)) & \ | 
| 1856 | \ (people(a::'a,b,a)) & \ | |
| 1857 | \ (people(a::'a,c,b)) & \ | |
| 1858 | \ (people(c::'a,b,a)) & \ | |
| 1859 | \ (a_truth(says(a::'a,equal_type(b::'a,c)))) & \ | |
| 1860 | \ (ask_1_if_2(c::'a,equal_type(a::'a,b))) & \ | |
| 14183 | 1861 | \ (\\<forall>Answer. ~answer(Answer)) --> False", | 
| 9841 | 1862 | meson_tac 1); | 
| 8557 | 1863 | |
| 1864 | ||
| 1865 | (*621 inferences so far. Searching to depth 18. 0.2 secs*) | |
| 1866 | val PUZ029_1 = prove | |
| 14183 | 1867 |  ("(\\<forall>X. dances_on_tightropes(X) | eats_pennybuns(X) | old(X)) &      \
 | 
| 1868 | \ (\\<forall>X. pig(X) & liable_to_giddiness(X) --> treated_with_respect(X)) & \ | |
| 1869 | \ (\\<forall>X. wise(X) & balloonist(X) --> has_umbrella(X)) & \ | |
| 1870 | \ (\\<forall>X. ~(looks_ridiculous(X) & eats_pennybuns(X) & eats_lunch_in_public(X))) & \ | |
| 1871 | \ (\\<forall>X. balloonist(X) & young(X) --> liable_to_giddiness(X)) & \ | |
| 1872 | \ (\\<forall>X. fat(X) & looks_ridiculous(X) --> dances_on_tightropes(X) | eats_lunch_in_public(X)) & \ | |
| 1873 | \ (\\<forall>X. ~(liable_to_giddiness(X) & wise(X) & dances_on_tightropes(X))) & \ | |
| 1874 | \ (\\<forall>X. pig(X) & has_umbrella(X) --> looks_ridiculous(X)) & \ | |
| 1875 | \ (\\<forall>X. treated_with_respect(X) --> dances_on_tightropes(X) | fat(X)) & \ | |
| 1876 | \ (\\<forall>X. young(X) | old(X)) & \ | |
| 1877 | \ (\\<forall>X. ~(young(X) & old(X))) & \ | |
| 8557 | 1878 | \ (wise(piggy)) & \ | 
| 1879 | \ (young(piggy)) & \ | |
| 1880 | \ (pig(piggy)) & \ | |
| 1881 | \ (balloonist(piggy)) --> False", | |
| 9841 | 1882 | meson_tac 1); | 
| 8557 | 1883 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1884 | val RNG001_0_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1885 | "(\\<forall>X. sum(additive_identity::'a,X,X)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1886 | \ (\\<forall>X. sum(X::'a,additive_identity,X)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1887 | \ (\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1888 | \ (\\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1889 | \ (\\<forall>X. sum(additive_inverse(X),X,additive_identity)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1890 | \ (\\<forall>X. sum(X::'a,additive_inverse(X),additive_identity)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1891 | \ (\\<forall>Y U Z X V W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(U::'a,Z,W) --> sum(X::'a,V,W)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1892 | \ (\\<forall>Y X V U Z W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(X::'a,V,W) --> sum(U::'a,Z,W)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1893 | \ (\\<forall>Y X Z. sum(X::'a,Y,Z) --> sum(Y::'a,X,Z)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1894 | \ (\\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1895 | \ (\\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1896 | \ (\\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1897 | \ (\\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1898 | \ (\\<forall>Y Z V3 X V1 V2 V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & product(V3::'a,X,V4) --> sum(V1::'a,V2,V4)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1899 | \ (\\<forall>Y Z V1 V2 V3 X V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(V3::'a,X,V4)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1900 | \ (\\<forall>X Y U V. sum(X::'a,Y,U) & sum(X::'a,Y,V) --> equal(U::'a,V)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1901 | \ (\\<forall>X Y U V. product(X::'a,Y,U) & product(X::'a,Y,V) --> equal(U::'a,V))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1902 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1903 | val RNG001_0_eq = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1904 | "(\\<forall>X Y. equal(X::'a,Y) --> equal(additive_inverse(X),additive_inverse(Y))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1905 | \ (\\<forall>X Y W. equal(X::'a,Y) --> equal(add(X::'a,W),add(Y::'a,W))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1906 | \ (\\<forall>X W Y. equal(X::'a,Y) --> equal(add(W::'a,X),add(W::'a,Y))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1907 | \ (\\<forall>X Y W Z. equal(X::'a,Y) & sum(X::'a,W,Z) --> sum(Y::'a,W,Z)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1908 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & sum(W::'a,X,Z) --> sum(W::'a,Y,Z)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1909 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & sum(W::'a,Z,X) --> sum(W::'a,Z,Y)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1910 | \ (\\<forall>X Y W. equal(X::'a,Y) --> equal(multiply(X::'a,W),multiply(Y::'a,W))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1911 | \ (\\<forall>X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1912 | \ (\\<forall>X Y W Z. equal(X::'a,Y) & product(X::'a,W,Z) --> product(Y::'a,W,Z)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1913 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1914 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1915 | |
| 8557 | 1916 | (*93620 inferences so far. Searching to depth 24. 65.9 secs*) | 
| 1917 | val RNG001_3 = prove_hard | |
| 14183 | 1918 |  ("(\\<forall>X. sum(additive_identity::'a,X,X)) &  \
 | 
| 1919 | \ (\\<forall>X. sum(additive_inverse(X),X,additive_identity)) & \ | |
| 1920 | \ (\\<forall>Y U Z X V W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(U::'a,Z,W) --> sum(X::'a,V,W)) & \ | |
| 1921 | \ (\\<forall>Y X V U Z W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(X::'a,V,W) --> sum(U::'a,Z,W)) & \ | |
| 1922 | \ (\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & \ | |
| 1923 | \ (\\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & \ | |
| 1924 | \ (\\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & \ | |
| 8557 | 1925 | \ (~product(a::'a,additive_identity,additive_identity)) --> False", | 
| 9841 | 1926 | meson_tac 1); | 
| 8557 | 1927 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1928 | val RNG_other_ax = | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1929 | "(\\<forall>X. sum(X::'a,additive_inverse(X),additive_identity)) & \ | 
| 14183 | 1930 | \ (\\<forall>Y U Z X V W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(U::'a,Z,W) --> sum(X::'a,V,W)) & \ | 
| 1931 | \ (\\<forall>Y X V U Z W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(X::'a,V,W) --> sum(U::'a,Z,W)) & \ | |
| 1932 | \ (\\<forall>Y X Z. sum(X::'a,Y,Z) --> sum(Y::'a,X,Z)) & \ | |
| 1933 | \ (\\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & \ | |
| 1934 | \ (\\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & \ | |
| 1935 | \ (\\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & \ | |
| 1936 | \ (\\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & \ | |
| 1937 | \ (\\<forall>Y Z V3 X V1 V2 V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & product(V3::'a,X,V4) --> sum(V1::'a,V2,V4)) & \ | |
| 1938 | \ (\\<forall>Y Z V1 V2 V3 X V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(V3::'a,X,V4)) & \ | |
| 1939 | \ (\\<forall>X Y U V. sum(X::'a,Y,U) & sum(X::'a,Y,V) --> equal(U::'a,V)) & \ | |
| 1940 | \ (\\<forall>X Y U V. product(X::'a,Y,U) & product(X::'a,Y,V) --> equal(U::'a,V)) & \ | |
| 1941 | \ (\\<forall>X Y. equal(X::'a,Y) --> equal(additive_inverse(X),additive_inverse(Y))) & \ | |
| 1942 | \ (\\<forall>X Y W. equal(X::'a,Y) --> equal(add(X::'a,W),add(Y::'a,W))) & \ | |
| 1943 | \ (\\<forall>X Y W Z. equal(X::'a,Y) & sum(X::'a,W,Z) --> sum(Y::'a,W,Z)) & \ | |
| 1944 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & sum(W::'a,X,Z) --> sum(W::'a,Y,Z)) & \ | |
| 1945 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & sum(W::'a,Z,X) --> sum(W::'a,Z,Y)) & \ | |
| 1946 | \ (\\<forall>X Y W. equal(X::'a,Y) --> equal(multiply(X::'a,W),multiply(Y::'a,W))) & \ | |
| 1947 | \ (\\<forall>X Y W Z. equal(X::'a,Y) & product(X::'a,W,Z) --> product(Y::'a,W,Z)) & \ | |
| 1948 | \ (\\<forall>X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1949 | \ (\\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y))"; | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1950 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1951 | |
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1952 | (****************SLOW | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1953 | 76385914 inferences so far. Searching to depth 18 | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1954 | No proof after 5 1/2 hours! (griffon) | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1955 | val RNG001_5 = prove_hard | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1956 | (EQU001_0_ax ^ " & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1957 | \ (\\<forall>X. sum(additive_identity::'a,X,X)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1958 | \ (\\<forall>X. sum(X::'a,additive_identity,X)) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1959 | \ (\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1960 | \ (\\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & \ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1961 | \ (\\<forall>X. sum(additive_inverse(X),X,additive_identity)) & " ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1962 | RNG_other_ax ^ | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1963 | " & (~product(a::'a,additive_identity,additive_identity)) --> False", | 
| 9841 | 1964 | meson_tac 1); | 
| 8557 | 1965 | ****************) | 
| 1966 | ||
| 1967 | (*0 inferences so far. Searching to depth 0. 0.5 secs*) | |
| 1968 | val RNG011_5 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 1969 | (EQU001_0_ax ^ " & \ | 
| 14183 | 1970 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & \ | 
| 1971 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & \ | |
| 1972 | \ (\\<forall>G H. equal(G::'a,H) --> equal(additive_inverse(G),additive_inverse(H))) & \ | |
| 1973 | \ (\\<forall>I' J K'. equal(I'::'a,J) --> equal(multiply(I'::'a,K'),multiply(J::'a,K'))) & \ | |
| 1974 | \ (\\<forall>L N M. equal(L::'a,M) --> equal(multiply(N::'a,L),multiply(N::'a,M))) & \ | |
| 1975 | \ (\\<forall>A B C D. equal(A::'a,B) --> equal(associator(A::'a,C,D),associator(B::'a,C,D))) & \ | |
| 1976 | \ (\\<forall>E G F' H. equal(E::'a,F') --> equal(associator(G::'a,E,H),associator(G::'a,F',H))) & \ | |
| 1977 | \ (\\<forall>I' K' L J. equal(I'::'a,J) --> equal(associator(K'::'a,L,I'),associator(K'::'a,L,J))) & \ | |
| 1978 | \ (\\<forall>M N O_. equal(M::'a,N) --> equal(commutator(M::'a,O_),commutator(N::'a,O_))) & \ | |
| 1979 | \ (\\<forall>P R Q. equal(P::'a,Q) --> equal(commutator(R::'a,P),commutator(R::'a,Q))) & \ | |
| 1980 | \ (\\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & \ | |
| 1981 | \ (\\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & \ | |
| 1982 | \ (\\<forall>X. equal(add(X::'a,additive_identity),X)) & \ | |
| 1983 | \ (\\<forall>X. equal(add(additive_identity::'a,X),X)) & \ | |
| 1984 | \ (\\<forall>X. equal(add(X::'a,additive_inverse(X)),additive_identity)) & \ | |
| 1985 | \ (\\<forall>X. equal(add(additive_inverse(X),X),additive_identity)) & \ | |
| 8557 | 1986 | \ (equal(additive_inverse(additive_identity),additive_identity)) & \ | 
| 14183 | 1987 | \ (\\<forall>X Y. equal(add(X::'a,add(additive_inverse(X),Y)),Y)) & \ | 
| 1988 | \ (\\<forall>X Y. equal(additive_inverse(add(X::'a,Y)),add(additive_inverse(X),additive_inverse(Y)))) & \ | |
| 1989 | \ (\\<forall>X. equal(additive_inverse(additive_inverse(X)),X)) & \ | |
| 1990 | \ (\\<forall>X. equal(multiply(X::'a,additive_identity),additive_identity)) & \ | |
| 1991 | \ (\\<forall>X. equal(multiply(additive_identity::'a,X),additive_identity)) & \ | |
| 1992 | \ (\\<forall>X Y. equal(multiply(additive_inverse(X),additive_inverse(Y)),multiply(X::'a,Y))) & \ | |
| 1993 | \ (\\<forall>X Y. equal(multiply(X::'a,additive_inverse(Y)),additive_inverse(multiply(X::'a,Y)))) & \ | |
| 1994 | \ (\\<forall>X Y. equal(multiply(additive_inverse(X),Y),additive_inverse(multiply(X::'a,Y)))) & \ | |
| 1995 | \ (\\<forall>Y X Z. equal(multiply(X::'a,add(Y::'a,Z)),add(multiply(X::'a,Y),multiply(X::'a,Z)))) & \ | |
| 1996 | \ (\\<forall>X Y Z. equal(multiply(add(X::'a,Y),Z),add(multiply(X::'a,Z),multiply(Y::'a,Z)))) & \ | |
| 1997 | \ (\\<forall>X Y. equal(multiply(multiply(X::'a,Y),Y),multiply(X::'a,multiply(Y::'a,Y)))) & \ | |
| 1998 | \ (\\<forall>X Y Z. equal(associator(X::'a,Y,Z),add(multiply(multiply(X::'a,Y),Z),additive_inverse(multiply(X::'a,multiply(Y::'a,Z)))))) & \ | |
| 1999 | \ (\\<forall>X Y. equal(commutator(X::'a,Y),add(multiply(Y::'a,X),additive_inverse(multiply(X::'a,Y))))) & \ | |
| 2000 | \ (\\<forall>X Y. equal(multiply(multiply(associator(X::'a,X,Y),X),associator(X::'a,X,Y)),additive_identity)) & \ | |
| 8557 | 2001 | \ (~equal(multiply(multiply(associator(a::'a,a,b),a),associator(a::'a,a,b)),additive_identity)) --> False", | 
| 9841 | 2002 | meson_tac 1); | 
| 8557 | 2003 | |
| 2004 | (*202 inferences so far. Searching to depth 8. 0.6 secs*) | |
| 2005 | val RNG023_6 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2006 | (EQU001_0_ax ^ " & \ | 
| 14183 | 2007 | \ (\\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & \ | 
| 2008 | \ (\\<forall>X Y Z. equal(add(X::'a,add(Y::'a,Z)),add(add(X::'a,Y),Z))) & \ | |
| 2009 | \ (\\<forall>X. equal(add(additive_identity::'a,X),X)) & \ | |
| 2010 | \ (\\<forall>X. equal(add(X::'a,additive_identity),X)) & \ | |
| 2011 | \ (\\<forall>X. equal(multiply(additive_identity::'a,X),additive_identity)) & \ | |
| 2012 | \ (\\<forall>X. equal(multiply(X::'a,additive_identity),additive_identity)) & \ | |
| 2013 | \ (\\<forall>X. equal(add(additive_inverse(X),X),additive_identity)) & \ | |
| 2014 | \ (\\<forall>X. equal(add(X::'a,additive_inverse(X)),additive_identity)) & \ | |
| 2015 | \ (\\<forall>Y X Z. equal(multiply(X::'a,add(Y::'a,Z)),add(multiply(X::'a,Y),multiply(X::'a,Z)))) & \ | |
| 2016 | \ (\\<forall>X Y Z. equal(multiply(add(X::'a,Y),Z),add(multiply(X::'a,Z),multiply(Y::'a,Z)))) & \ | |
| 2017 | \ (\\<forall>X. equal(additive_inverse(additive_inverse(X)),X)) & \ | |
| 2018 | \ (\\<forall>X Y. equal(multiply(multiply(X::'a,Y),Y),multiply(X::'a,multiply(Y::'a,Y)))) & \ | |
| 2019 | \ (\\<forall>X Y. equal(multiply(multiply(X::'a,X),Y),multiply(X::'a,multiply(X::'a,Y)))) & \ | |
| 2020 | \ (\\<forall>X Y Z. equal(associator(X::'a,Y,Z),add(multiply(multiply(X::'a,Y),Z),additive_inverse(multiply(X::'a,multiply(Y::'a,Z)))))) & \ | |
| 2021 | \ (\\<forall>X Y. equal(commutator(X::'a,Y),add(multiply(Y::'a,X),additive_inverse(multiply(X::'a,Y))))) & \ | |
| 2022 | \ (\\<forall>D E F'. equal(D::'a,E) --> equal(add(D::'a,F'),add(E::'a,F'))) & \ | |
| 2023 | \ (\\<forall>G I' H. equal(G::'a,H) --> equal(add(I'::'a,G),add(I'::'a,H))) & \ | |
| 2024 | \ (\\<forall>J K'. equal(J::'a,K') --> equal(additive_inverse(J),additive_inverse(K'))) & \ | |
| 2025 | \ (\\<forall>L M N O_. equal(L::'a,M) --> equal(associator(L::'a,N,O_),associator(M::'a,N,O_))) & \ | |
| 2026 | \ (\\<forall>P R Q S'. equal(P::'a,Q) --> equal(associator(R::'a,P,S'),associator(R::'a,Q,S'))) & \ | |
| 2027 | \ (\\<forall>T' V W U. equal(T'::'a,U) --> equal(associator(V::'a,W,T'),associator(V::'a,W,U))) & \ | |
| 2028 | \ (\\<forall>X Y Z. equal(X::'a,Y) --> equal(commutator(X::'a,Z),commutator(Y::'a,Z))) & \ | |
| 2029 | \ (\\<forall>A1 C1 B1. equal(A1::'a,B1) --> equal(commutator(C1::'a,A1),commutator(C1::'a,B1))) & \ | |
| 2030 | \ (\\<forall>D1 E1 F1. equal(D1::'a,E1) --> equal(multiply(D1::'a,F1),multiply(E1::'a,F1))) & \ | |
| 2031 | \ (\\<forall>G1 I1 H1. equal(G1::'a,H1) --> equal(multiply(I1::'a,G1),multiply(I1::'a,H1))) & \ | |
| 8557 | 2032 | \ (~equal(associator(x::'a,x,y),additive_identity)) --> False", | 
| 9841 | 2033 | meson_tac 1); | 
| 8557 | 2034 | |
| 2035 | (*0 inferences so far. Searching to depth 0. 0.6 secs*) | |
| 2036 | val RNG028_2 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2037 | (EQU001_0_ax ^ " & \ | 
| 14183 | 2038 | \ (\\<forall>X. equal(add(additive_identity::'a,X),X)) & \ | 
| 2039 | \ (\\<forall>X. equal(multiply(additive_identity::'a,X),additive_identity)) & \ | |
| 2040 | \ (\\<forall>X. equal(multiply(X::'a,additive_identity),additive_identity)) & \ | |
| 2041 | \ (\\<forall>X. equal(add(additive_inverse(X),X),additive_identity)) & \ | |
| 2042 | \ (\\<forall>X Y. equal(additive_inverse(add(X::'a,Y)),add(additive_inverse(X),additive_inverse(Y)))) & \ | |
| 2043 | \ (\\<forall>X. equal(additive_inverse(additive_inverse(X)),X)) & \ | |
| 2044 | \ (\\<forall>Y X Z. equal(multiply(X::'a,add(Y::'a,Z)),add(multiply(X::'a,Y),multiply(X::'a,Z)))) & \ | |
| 2045 | \ (\\<forall>X Y Z. equal(multiply(add(X::'a,Y),Z),add(multiply(X::'a,Z),multiply(Y::'a,Z)))) & \ | |
| 2046 | \ (\\<forall>X Y. equal(multiply(multiply(X::'a,Y),Y),multiply(X::'a,multiply(Y::'a,Y)))) & \ | |
| 2047 | \ (\\<forall>X Y. equal(multiply(multiply(X::'a,X),Y),multiply(X::'a,multiply(X::'a,Y)))) & \ | |
| 2048 | \ (\\<forall>X Y. equal(multiply(additive_inverse(X),Y),additive_inverse(multiply(X::'a,Y)))) & \ | |
| 2049 | \ (\\<forall>X Y. equal(multiply(X::'a,additive_inverse(Y)),additive_inverse(multiply(X::'a,Y)))) & \ | |
| 8557 | 2050 | \ (equal(additive_inverse(additive_identity),additive_identity)) & \ | 
| 14183 | 2051 | \ (\\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & \ | 
| 2052 | \ (\\<forall>X Y Z. equal(add(X::'a,add(Y::'a,Z)),add(add(X::'a,Y),Z))) & \ | |
| 2053 | \ (\\<forall>Z X Y. equal(add(X::'a,Z),add(Y::'a,Z)) --> equal(X::'a,Y)) & \ | |
| 2054 | \ (\\<forall>Z X Y. equal(add(Z::'a,X),add(Z::'a,Y)) --> equal(X::'a,Y)) & \ | |
| 2055 | \ (\\<forall>D E F'. equal(D::'a,E) --> equal(add(D::'a,F'),add(E::'a,F'))) & \ | |
| 2056 | \ (\\<forall>G I' H. equal(G::'a,H) --> equal(add(I'::'a,G),add(I'::'a,H))) & \ | |
| 2057 | \ (\\<forall>J K'. equal(J::'a,K') --> equal(additive_inverse(J),additive_inverse(K'))) & \ | |
| 2058 | \ (\\<forall>D1 E1 F1. equal(D1::'a,E1) --> equal(multiply(D1::'a,F1),multiply(E1::'a,F1))) & \ | |
| 2059 | \ (\\<forall>G1 I1 H1. equal(G1::'a,H1) --> equal(multiply(I1::'a,G1),multiply(I1::'a,H1))) & \ | |
| 2060 | \ (\\<forall>X Y Z. equal(associator(X::'a,Y,Z),add(multiply(multiply(X::'a,Y),Z),additive_inverse(multiply(X::'a,multiply(Y::'a,Z)))))) & \ | |
| 2061 | \ (\\<forall>L M N O_. equal(L::'a,M) --> equal(associator(L::'a,N,O_),associator(M::'a,N,O_))) & \ | |
| 2062 | \ (\\<forall>P R Q S'. equal(P::'a,Q) --> equal(associator(R::'a,P,S'),associator(R::'a,Q,S'))) & \ | |
| 2063 | \ (\\<forall>T' V W U. equal(T'::'a,U) --> equal(associator(V::'a,W,T'),associator(V::'a,W,U))) & \ | |
| 2064 | \ (\\<forall>X Y. ~equal(multiply(multiply(Y::'a,X),Y),multiply(Y::'a,multiply(X::'a,Y)))) & \ | |
| 2065 | \ (\\<forall>X Y Z. ~equal(associator(Y::'a,X,Z),additive_inverse(associator(X::'a,Y,Z)))) & \ | |
| 2066 | \ (\\<forall>X Y Z. ~equal(associator(Z::'a,Y,X),additive_inverse(associator(X::'a,Y,Z)))) & \ | |
| 8557 | 2067 | \ (~equal(multiply(multiply(cx::'a,multiply(cy::'a,cx)),cz),multiply(cx::'a,multiply(cy::'a,multiply(cx::'a,cz))))) --> False", | 
| 9841 | 2068 | meson_tac 1); | 
| 8557 | 2069 | |
| 2070 | (*209 inferences so far. Searching to depth 9. 1.2 secs*) | |
| 2071 | val RNG038_2 = prove | |
| 14183 | 2072 |  ("(\\<forall>X. sum(X::'a,additive_identity,X)) &  \
 | 
| 2073 | \ (\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2074 | \ (\\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & " ^ RNG_other_ax ^ " & \ | 
| 14183 | 2075 | \ (\\<forall>X. product(additive_identity::'a,X,additive_identity)) & \ | 
| 2076 | \ (\\<forall>X. product(X::'a,additive_identity,additive_identity)) & \ | |
| 2077 | \ (\\<forall>X Y. equal(X::'a,additive_identity) --> product(X::'a,h(X::'a,Y),Y)) & \ | |
| 8557 | 2078 | \ (product(a::'a,b,additive_identity)) & \ | 
| 2079 | \ (~equal(a::'a,additive_identity)) & \ | |
| 2080 | \ (~equal(b::'a,additive_identity)) --> False", | |
| 9841 | 2081 | meson_tac 1); | 
| 8557 | 2082 | |
| 2083 | (*2660 inferences so far. Searching to depth 10. 7.0 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2084 | val RNG040_2 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2085 | (EQU001_0_ax ^ "&" ^ RNG001_0_eq ^ " & \ | 
| 14183 | 2086 | \ (\\<forall>X. sum(additive_identity::'a,X,X)) & \ | 
| 2087 | \ (\\<forall>X. sum(X::'a,additive_identity,X)) & \ | |
| 2088 | \ (\\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & \ | |
| 2089 | \ (\\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & \ | |
| 2090 | \ (\\<forall>X. sum(additive_inverse(X),X,additive_identity)) & \ | |
| 2091 | \ (\\<forall>X. sum(X::'a,additive_inverse(X),additive_identity)) & \ | |
| 2092 | \ (\\<forall>Y U Z X V W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(U::'a,Z,W) --> sum(X::'a,V,W)) & \ | |
| 2093 | \ (\\<forall>Y X V U Z W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(X::'a,V,W) --> sum(U::'a,Z,W)) & \ | |
| 2094 | \ (\\<forall>Y X Z. sum(X::'a,Y,Z) --> sum(Y::'a,X,Z)) & \ | |
| 2095 | \ (\\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & \ | |
| 2096 | \ (\\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & \ | |
| 2097 | \ (\\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & \ | |
| 2098 | \ (\\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & \ | |
| 2099 | \ (\\<forall>X Y U V. sum(X::'a,Y,U) & sum(X::'a,Y,V) --> equal(U::'a,V)) & \ | |
| 2100 | \ (\\<forall>X Y U V. product(X::'a,Y,U) & product(X::'a,Y,V) --> equal(U::'a,V)) & \ | |
| 2101 | \ (\\<forall>A. product(A::'a,multiplicative_identity,A)) & \ | |
| 2102 | \ (\\<forall>A. product(multiplicative_identity::'a,A,A)) & \ | |
| 2103 | \ (\\<forall>A. product(A::'a,h(A),multiplicative_identity) | equal(A::'a,additive_identity)) & \ | |
| 2104 | \ (\\<forall>A. product(h(A),A,multiplicative_identity) | equal(A::'a,additive_identity)) & \ | |
| 2105 | \ (\\<forall>B A C. product(A::'a,B,C) --> product(B::'a,A,C)) & \ | |
| 2106 | \ (\\<forall>A B. equal(A::'a,B) --> equal(h(A),h(B))) & \ | |
| 8557 | 2107 | \ (sum(b::'a,c,d)) & \ | 
| 2108 | \ (product(d::'a,a,additive_identity)) & \ | |
| 2109 | \ (product(b::'a,a,l)) & \ | |
| 2110 | \ (product(c::'a,a,n)) & \ | |
| 2111 | \ (~sum(l::'a,n,additive_identity)) --> False", | |
| 9841 | 2112 | meson_tac 1); | 
| 8557 | 2113 | |
| 2114 | (*8991 inferences so far. Searching to depth 9. 22.2 secs*) | |
| 2115 | val RNG041_1 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2116 | (EQU001_0_ax ^ "&" ^ RNG001_0_ax ^ "&" ^ RNG001_0_eq ^ " & \ | 
| 14183 | 2117 | \ (\\<forall>A B. equal(A::'a,B) --> equal(h(A),h(B))) & \ | 
| 2118 | \ (\\<forall>A. product(additive_identity::'a,A,additive_identity)) & \ | |
| 2119 | \ (\\<forall>A. product(A::'a,additive_identity,additive_identity)) & \ | |
| 2120 | \ (\\<forall>A. product(A::'a,multiplicative_identity,A)) & \ | |
| 2121 | \ (\\<forall>A. product(multiplicative_identity::'a,A,A)) & \ | |
| 2122 | \ (\\<forall>A. product(A::'a,h(A),multiplicative_identity) | equal(A::'a,additive_identity)) & \ | |
| 2123 | \ (\\<forall>A. product(h(A),A,multiplicative_identity) | equal(A::'a,additive_identity)) & \ | |
| 8557 | 2124 | \ (product(a::'a,b,additive_identity)) & \ | 
| 2125 | \ (~equal(a::'a,additive_identity)) & \ | |
| 2126 | \ (~equal(b::'a,additive_identity)) --> False", | |
| 9841 | 2127 | meson_tac 1); | 
| 8557 | 2128 | |
| 2129 | (*101319 inferences so far. Searching to depth 14. 76.0 secs*) | |
| 2130 | val ROB010_1 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2131 | (EQU001_0_ax ^ " & \ | 
| 14183 | 2132 | \ (\\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & \ | 
| 2133 | \ (\\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & \ | |
| 2134 | \ (\\<forall>Y X. equal(negate(add(negate(add(X::'a,Y)),negate(add(X::'a,negate(Y))))),X)) & \ | |
| 2135 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & \ | |
| 2136 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & \ | |
| 2137 | \ (\\<forall>G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & \ | |
| 8557 | 2138 | \ (equal(negate(add(a::'a,negate(b))),c)) & \ | 
| 2139 | \ (~equal(negate(add(c::'a,negate(add(b::'a,a)))),a)) --> False", | |
| 9841 | 2140 | meson_tac 1); | 
| 8557 | 2141 | |
| 2142 | ||
| 2143 | (*6933 inferences so far. Searching to depth 12. 5.1 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2144 | val ROB013_1 = prove | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2145 | (EQU001_0_ax ^ " & \ | 
| 14183 | 2146 | \ (\\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & \ | 
| 2147 | \ (\\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & \ | |
| 2148 | \ (\\<forall>Y X. equal(negate(add(negate(add(X::'a,Y)),negate(add(X::'a,negate(Y))))),X)) & \ | |
| 2149 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & \ | |
| 2150 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & \ | |
| 2151 | \ (\\<forall>G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & \ | |
| 8557 | 2152 | \ (equal(negate(add(a::'a,b)),c)) & \ | 
| 2153 | \ (~equal(negate(add(c::'a,negate(add(negate(b),a)))),a)) --> False", | |
| 9841 | 2154 | meson_tac 1); | 
| 8557 | 2155 | |
| 2156 | (*6614 inferences so far. Searching to depth 11. 20.4 secs*) | |
| 2157 | val ROB016_1 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2158 | (EQU001_0_ax ^ " & \ | 
| 14183 | 2159 | \ (\\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & \ | 
| 2160 | \ (\\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & \ | |
| 2161 | \ (\\<forall>Y X. equal(negate(add(negate(add(X::'a,Y)),negate(add(X::'a,negate(Y))))),X)) & \ | |
| 2162 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & \ | |
| 2163 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & \ | |
| 2164 | \ (\\<forall>G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & \ | |
| 2165 | \ (\\<forall>J K' L. equal(J::'a,K') --> equal(multiply(J::'a,L),multiply(K'::'a,L))) & \ | |
| 2166 | \ (\\<forall>M O_ N. equal(M::'a,N) --> equal(multiply(O_::'a,M),multiply(O_::'a,N))) & \ | |
| 2167 | \ (\\<forall>P Q. equal(P::'a,Q) --> equal(successor(P),successor(Q))) & \ | |
| 2168 | \ (\\<forall>R S'. equal(R::'a,S') & positive_integer(R) --> positive_integer(S')) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2169 | \ (\\<forall>X. equal(multiply(One::'a,X),X)) & \ | 
| 14183 | 2170 | \ (\\<forall>V X. positive_integer(X) --> equal(multiply(successor(V),X),add(X::'a,multiply(V::'a,X)))) & \ | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2171 | \ (positive_integer(One)) & \ | 
| 14183 | 2172 | \ (\\<forall>X. positive_integer(X) --> positive_integer(successor(X))) & \ | 
| 8557 | 2173 | \ (equal(negate(add(d::'a,e)),negate(e))) & \ | 
| 2174 | \ (positive_integer(k)) & \ | |
| 14183 | 2175 | \ (\\<forall>Vk X Y. equal(negate(add(negate(Y),negate(add(X::'a,negate(Y))))),X) & positive_integer(Vk) --> equal(negate(add(Y::'a,multiply(Vk::'a,add(X::'a,negate(add(X::'a,negate(Y))))))),negate(Y))) & \ | 
| 8557 | 2176 | \ (~equal(negate(add(e::'a,multiply(k::'a,add(d::'a,negate(add(d::'a,negate(e))))))),negate(e))) --> False", | 
| 9841 | 2177 | meson_tac 1); | 
| 8557 | 2178 | |
| 2179 | (*14077 inferences so far. Searching to depth 11. 32.8 secs*) | |
| 2180 | val ROB021_1 = prove_hard | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2181 | (EQU001_0_ax ^ " & \ | 
| 14183 | 2182 | \ (\\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & \ | 
| 2183 | \ (\\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & \ | |
| 2184 | \ (\\<forall>Y X. equal(negate(add(negate(add(X::'a,Y)),negate(add(X::'a,negate(Y))))),X)) & \ | |
| 2185 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & \ | |
| 2186 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & \ | |
| 2187 | \ (\\<forall>G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & \ | |
| 2188 | \ (\\<forall>X Y. equal(negate(X),negate(Y)) --> equal(X::'a,Y)) & \ | |
| 8557 | 2189 | \ (~equal(add(negate(add(a::'a,negate(b))),negate(add(negate(a),negate(b)))),b)) --> False", | 
| 9841 | 2190 | meson_tac 1); | 
| 8557 | 2191 | |
| 2192 | (*35532 inferences so far. Searching to depth 19. 54.3 secs*) | |
| 2193 | val SET005_1 = prove_hard | |
| 14183 | 2194 |  ("(\\<forall>Subset Element Superset. member(Element::'a,Subset) & subset(Subset::'a,Superset) --> member(Element::'a,Superset)) & \
 | 
| 2195 | \ (\\<forall>Superset Subset. subset(Subset::'a,Superset) | member(member_of_1_not_of_2(Subset::'a,Superset),Subset)) & \ | |
| 2196 | \ (\\<forall>Subset Superset. member(member_of_1_not_of_2(Subset::'a,Superset),Superset) --> subset(Subset::'a,Superset)) & \ | |
| 2197 | \ (\\<forall>Subset Superset. equal_sets(Subset::'a,Superset) --> subset(Subset::'a,Superset)) & \ | |
| 2198 | \ (\\<forall>Subset Superset. equal_sets(Superset::'a,Subset) --> subset(Subset::'a,Superset)) & \ | |
| 2199 | \ (\\<forall>Set2 Set1. subset(Set1::'a,Set2) & subset(Set2::'a,Set1) --> equal_sets(Set2::'a,Set1)) & \ | |
| 2200 | \ (\\<forall>Set2 Intersection Element Set1. intersection(Set1::'a,Set2,Intersection) & member(Element::'a,Intersection) --> member(Element::'a,Set1)) & \ | |
| 2201 | \ (\\<forall>Set1 Intersection Element Set2. intersection(Set1::'a,Set2,Intersection) & member(Element::'a,Intersection) --> member(Element::'a,Set2)) & \ | |
| 2202 | \ (\\<forall>Set2 Set1 Element Intersection. intersection(Set1::'a,Set2,Intersection) & member(Element::'a,Set2) & member(Element::'a,Set1) --> member(Element::'a,Intersection)) & \ | |
| 2203 | \ (\\<forall>Set2 Intersection Set1. member(h(Set1::'a,Set2,Intersection),Intersection) | intersection(Set1::'a,Set2,Intersection) | member(h(Set1::'a,Set2,Intersection),Set1)) & \ | |
| 2204 | \ (\\<forall>Set1 Intersection Set2. member(h(Set1::'a,Set2,Intersection),Intersection) | intersection(Set1::'a,Set2,Intersection) | member(h(Set1::'a,Set2,Intersection),Set2)) & \ | |
| 2205 | \ (\\<forall>Set1 Set2 Intersection. member(h(Set1::'a,Set2,Intersection),Intersection) & member(h(Set1::'a,Set2,Intersection),Set2) & member(h(Set1::'a,Set2,Intersection),Set1) --> intersection(Set1::'a,Set2,Intersection)) & \ | |
| 8557 | 2206 | \ (intersection(a::'a,b,aIb)) & \ | 
| 2207 | \ (intersection(b::'a,c,bIc)) & \ | |
| 2208 | \ (intersection(a::'a,bIc,aIbIc)) & \ | |
| 2209 | \ (~intersection(aIb::'a,c,aIbIc)) --> False", | |
| 9841 | 2210 | meson_tac 1); | 
| 8557 | 2211 | |
| 2212 | ||
| 2213 | (*6450 inferences so far. Searching to depth 14. 4.2 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2214 | val SET009_1 = prove | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2215 |  ("(\\<forall>Subset Element Superset. member(Element::'a,Subset) & ssubset(Subset::'a,Superset) --> member(Element::'a,Superset)) & \
 | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2216 | \ (\\<forall>Superset Subset. ssubset(Subset::'a,Superset) | member(member_of_1_not_of_2(Subset::'a,Superset),Subset)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2217 | \ (\\<forall>Subset Superset. member(member_of_1_not_of_2(Subset::'a,Superset),Superset) --> ssubset(Subset::'a,Superset)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2218 | \ (\\<forall>Subset Superset. equal_sets(Subset::'a,Superset) --> ssubset(Subset::'a,Superset)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2219 | \ (\\<forall>Subset Superset. equal_sets(Superset::'a,Subset) --> ssubset(Subset::'a,Superset)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2220 | \ (\\<forall>Set2 Set1. ssubset(Set1::'a,Set2) & ssubset(Set2::'a,Set1) --> equal_sets(Set2::'a,Set1)) & \ | 
| 14183 | 2221 | \ (\\<forall>Set2 Difference Element Set1. difference(Set1::'a,Set2,Difference) & member(Element::'a,Difference) --> member(Element::'a,Set1)) & \ | 
| 2222 | \ (\\<forall>Element A_set Set1 Set2. ~(member(Element::'a,Set1) & member(Element::'a,Set2) & difference(A_set::'a,Set1,Set2))) & \ | |
| 2223 | \ (\\<forall>Set1 Difference Element Set2. member(Element::'a,Set1) & difference(Set1::'a,Set2,Difference) --> member(Element::'a,Difference) | member(Element::'a,Set2)) & \ | |
| 2224 | \ (\\<forall>Set1 Set2 Difference. difference(Set1::'a,Set2,Difference) | member(k(Set1::'a,Set2,Difference),Set1) | member(k(Set1::'a,Set2,Difference),Difference)) & \ | |
| 2225 | \ (\\<forall>Set1 Set2 Difference. member(k(Set1::'a,Set2,Difference),Set2) --> member(k(Set1::'a,Set2,Difference),Difference) | difference(Set1::'a,Set2,Difference)) & \ | |
| 2226 | \ (\\<forall>Set1 Set2 Difference. member(k(Set1::'a,Set2,Difference),Difference) & member(k(Set1::'a,Set2,Difference),Set1) --> member(k(Set1::'a,Set2,Difference),Set2) | difference(Set1::'a,Set2,Difference)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2227 | \ (ssubset(d::'a,a)) & \ | 
| 8557 | 2228 | \ (difference(b::'a,a,bDa)) & \ | 
| 2229 | \ (difference(b::'a,d,bDd)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2230 | \ (~ssubset(bDa::'a,bDd)) --> False", | 
| 9841 | 2231 | meson_tac 1); | 
| 8557 | 2232 | |
| 14220 
4dc132902672
Merging of ex/cla.ML and ex/mesontest.ML to ex/Classical.thy
 paulson parents: 
14183diff
changeset | 2233 | (*34726 inferences so far. Searching to depth 6. 2420 secs: 40 mins! BIG*) | 
| 8557 | 2234 | val SET025_4 = prove_hard | 
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2235 | (EQU001_0_ax ^ " & \ | 
| 14183 | 2236 | \ (\\<forall>Y X. member(X::'a,Y) --> little_set(X)) & \ | 
| 2237 | \ (\\<forall>X Y. little_set(f1(X::'a,Y)) | equal(X::'a,Y)) & \ | |
| 2238 | \ (\\<forall>X Y. member(f1(X::'a,Y),X) | member(f1(X::'a,Y),Y) | equal(X::'a,Y)) & \ | |
| 2239 | \ (\\<forall>X Y. member(f1(X::'a,Y),X) & member(f1(X::'a,Y),Y) --> equal(X::'a,Y)) & \ | |
| 2240 | \ (\\<forall>X U Y. member(U::'a,non_ordered_pair(X::'a,Y)) --> equal(U::'a,X) | equal(U::'a,Y)) & \ | |
| 2241 | \ (\\<forall>Y U X. little_set(U) & equal(U::'a,X) --> member(U::'a,non_ordered_pair(X::'a,Y))) & \ | |
| 2242 | \ (\\<forall>X U Y. little_set(U) & equal(U::'a,Y) --> member(U::'a,non_ordered_pair(X::'a,Y))) & \ | |
| 2243 | \ (\\<forall>X Y. little_set(non_ordered_pair(X::'a,Y))) & \ | |
| 2244 | \ (\\<forall>X. equal(singleton_set(X),non_ordered_pair(X::'a,X))) & \ | |
| 2245 | \ (\\<forall>X Y. equal(ordered_pair(X::'a,Y),non_ordered_pair(singleton_set(X),non_ordered_pair(X::'a,Y)))) & \ | |
| 2246 | \ (\\<forall>X. ordered_pair_predicate(X) --> little_set(f2(X))) & \ | |
| 2247 | \ (\\<forall>X. ordered_pair_predicate(X) --> little_set(f3(X))) & \ | |
| 2248 | \ (\\<forall>X. ordered_pair_predicate(X) --> equal(X::'a,ordered_pair(f2(X),f3(X)))) & \ | |
| 2249 | \ (\\<forall>X Y Z. little_set(Y) & little_set(Z) & equal(X::'a,ordered_pair(Y::'a,Z)) --> ordered_pair_predicate(X)) & \ | |
| 2250 | \ (\\<forall>Z X. member(Z::'a,first(X)) --> little_set(f4(Z::'a,X))) & \ | |
| 2251 | \ (\\<forall>Z X. member(Z::'a,first(X)) --> little_set(f5(Z::'a,X))) & \ | |
| 2252 | \ (\\<forall>Z X. member(Z::'a,first(X)) --> equal(X::'a,ordered_pair(f4(Z::'a,X),f5(Z::'a,X)))) & \ | |
| 2253 | \ (\\<forall>Z X. member(Z::'a,first(X)) --> member(Z::'a,f4(Z::'a,X))) & \ | |
| 2254 | \ (\\<forall>X V Z U. little_set(U) & little_set(V) & equal(X::'a,ordered_pair(U::'a,V)) & member(Z::'a,U) --> member(Z::'a,first(X))) & \ | |
| 2255 | \ (\\<forall>Z X. member(Z::'a,second(X)) --> little_set(f6(Z::'a,X))) & \ | |
| 2256 | \ (\\<forall>Z X. member(Z::'a,second(X)) --> little_set(f7(Z::'a,X))) & \ | |
| 2257 | \ (\\<forall>Z X. member(Z::'a,second(X)) --> equal(X::'a,ordered_pair(f6(Z::'a,X),f7(Z::'a,X)))) & \ | |
| 2258 | \ (\\<forall>Z X. member(Z::'a,second(X)) --> member(Z::'a,f7(Z::'a,X))) & \ | |
| 2259 | \ (\\<forall>X U Z V. little_set(U) & little_set(V) & equal(X::'a,ordered_pair(U::'a,V)) & member(Z::'a,V) --> member(Z::'a,second(X))) & \ | |
| 2260 | \ (\\<forall>Z. member(Z::'a,estin) --> ordered_pair_predicate(Z)) & \ | |
| 2261 | \ (\\<forall>Z. member(Z::'a,estin) --> member(first(Z),second(Z))) & \ | |
| 2262 | \ (\\<forall>Z. little_set(Z) & ordered_pair_predicate(Z) & member(first(Z),second(Z)) --> member(Z::'a,estin)) & \ | |
| 2263 | \ (\\<forall>Y Z X. member(Z::'a,intersection(X::'a,Y)) --> member(Z::'a,X)) & \ | |
| 2264 | \ (\\<forall>X Z Y. member(Z::'a,intersection(X::'a,Y)) --> member(Z::'a,Y)) & \ | |
| 2265 | \ (\\<forall>X Z Y. member(Z::'a,X) & member(Z::'a,Y) --> member(Z::'a,intersection(X::'a,Y))) & \ | |
| 2266 | \ (\\<forall>Z X. ~(member(Z::'a,complement(X)) & member(Z::'a,X))) & \ | |
| 2267 | \ (\\<forall>Z X. little_set(Z) --> member(Z::'a,complement(X)) | member(Z::'a,X)) & \ | |
| 2268 | \ (\\<forall>X Y. equal(union(X::'a,Y),complement(intersection(complement(X),complement(Y))))) & \ | |
| 2269 | \ (\\<forall>Z X. member(Z::'a,domain_of(X)) --> ordered_pair_predicate(f8(Z::'a,X))) & \ | |
| 2270 | \ (\\<forall>Z X. member(Z::'a,domain_of(X)) --> member(f8(Z::'a,X),X)) & \ | |
| 2271 | \ (\\<forall>Z X. member(Z::'a,domain_of(X)) --> equal(Z::'a,first(f8(Z::'a,X)))) & \ | |
| 2272 | \ (\\<forall>X Z Xp. little_set(Z) & ordered_pair_predicate(Xp) & member(Xp::'a,X) & equal(Z::'a,first(Xp)) --> member(Z::'a,domain_of(X))) & \ | |
| 2273 | \ (\\<forall>X Y Z. member(Z::'a,cross_product(X::'a,Y)) --> ordered_pair_predicate(Z)) & \ | |
| 2274 | \ (\\<forall>Y Z X. member(Z::'a,cross_product(X::'a,Y)) --> member(first(Z),X)) & \ | |
| 2275 | \ (\\<forall>X Z Y. member(Z::'a,cross_product(X::'a,Y)) --> member(second(Z),Y)) & \ | |
| 2276 | \ (\\<forall>X Z Y. little_set(Z) & ordered_pair_predicate(Z) & member(first(Z),X) & member(second(Z),Y) --> member(Z::'a,cross_product(X::'a,Y))) & \ | |
| 2277 | \ (\\<forall>X Z. member(Z::'a,inv1 X) --> ordered_pair_predicate(Z)) & \ | |
| 2278 | \ (\\<forall>Z X. member(Z::'a,inv1 X) --> member(ordered_pair(second(Z),first(Z)),X)) & \ | |
| 2279 | \ (\\<forall>Z X. little_set(Z) & ordered_pair_predicate(Z) & member(ordered_pair(second(Z),first(Z)),X) --> member(Z::'a,inv1 X)) & \ | |
| 15306 | 2280 | \ (\\<forall>Z X. member(Z::'a,rot_right(X)) --> little_set(f9(Z::'a,X))) & \ | 
| 2281 | \ (\\<forall>Z X. member(Z::'a,rot_right(X)) --> little_set(f10(Z::'a,X))) & \ | |
| 2282 | \ (\\<forall>Z X. member(Z::'a,rot_right(X)) --> little_set(f11(Z::'a,X))) & \ | |
| 2283 | \ (\\<forall>Z X. member(Z::'a,rot_right(X)) --> equal(Z::'a,ordered_pair(f9(Z::'a,X),ordered_pair(f10(Z::'a,X),f11(Z::'a,X))))) & \ | |
| 2284 | \ (\\<forall>Z X. member(Z::'a,rot_right(X)) --> member(ordered_pair(f10(Z::'a,X),ordered_pair(f11(Z::'a,X),f9(Z::'a,X))),X)) & \ | |
| 2285 | \ (\\<forall>Z V W U X. little_set(Z) & little_set(U) & little_set(V) & little_set(W) & equal(Z::'a,ordered_pair(U::'a,ordered_pair(V::'a,W))) & member(ordered_pair(V::'a,ordered_pair(W::'a,U)),X) --> member(Z::'a,rot_right(X))) & \ | |
| 14183 | 2286 | \ (\\<forall>Z X. member(Z::'a,flip_range_of(X)) --> little_set(f12(Z::'a,X))) & \ | 
| 2287 | \ (\\<forall>Z X. member(Z::'a,flip_range_of(X)) --> little_set(f13(Z::'a,X))) & \ | |
| 2288 | \ (\\<forall>Z X. member(Z::'a,flip_range_of(X)) --> little_set(f14(Z::'a,X))) & \ | |
| 2289 | \ (\\<forall>Z X. member(Z::'a,flip_range_of(X)) --> equal(Z::'a,ordered_pair(f12(Z::'a,X),ordered_pair(f13(Z::'a,X),f14(Z::'a,X))))) & \ | |
| 2290 | \ (\\<forall>Z X. member(Z::'a,flip_range_of(X)) --> member(ordered_pair(f12(Z::'a,X),ordered_pair(f14(Z::'a,X),f13(Z::'a,X))),X)) & \ | |
| 2291 | \ (\\<forall>Z U W V X. little_set(Z) & little_set(U) & little_set(V) & little_set(W) & equal(Z::'a,ordered_pair(U::'a,ordered_pair(V::'a,W))) & member(ordered_pair(U::'a,ordered_pair(W::'a,V)),X) --> member(Z::'a,flip_range_of(X))) & \ | |
| 2292 | \ (\\<forall>X. equal(successor(X),union(X::'a,singleton_set(X)))) & \ | |
| 2293 | \ (\\<forall>Z. ~member(Z::'a,empty_set)) & \ | |
| 2294 | \ (\\<forall>Z. little_set(Z) --> member(Z::'a,universal_set)) & \ | |
| 8557 | 2295 | \ (little_set(infinity)) & \ | 
| 2296 | \ (member(empty_set::'a,infinity)) & \ | |
| 14183 | 2297 | \ (\\<forall>X. member(X::'a,infinity) --> member(successor(X),infinity)) & \ | 
| 2298 | \ (\\<forall>Z X. member(Z::'a,sigma(X)) --> member(f16(Z::'a,X),X)) & \ | |
| 2299 | \ (\\<forall>Z X. member(Z::'a,sigma(X)) --> member(Z::'a,f16(Z::'a,X))) & \ | |
| 2300 | \ (\\<forall>X Z Y. member(Y::'a,X) & member(Z::'a,Y) --> member(Z::'a,sigma(X))) & \ | |
| 2301 | \ (\\<forall>U. little_set(U) --> little_set(sigma(U))) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2302 | \ (\\<forall>X U Y. ssubset(X::'a,Y) & member(U::'a,X) --> member(U::'a,Y)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2303 | \ (\\<forall>Y X. ssubset(X::'a,Y) | member(f17(X::'a,Y),X)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2304 | \ (\\<forall>X Y. member(f17(X::'a,Y),Y) --> ssubset(X::'a,Y)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2305 | \ (\\<forall>X Y. proper_subset(X::'a,Y) --> ssubset(X::'a,Y)) & \ | 
| 14183 | 2306 | \ (\\<forall>X Y. ~(proper_subset(X::'a,Y) & equal(X::'a,Y))) & \ | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2307 | \ (\\<forall>X Y. ssubset(X::'a,Y) --> proper_subset(X::'a,Y) | equal(X::'a,Y)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2308 | \ (\\<forall>Z X. member(Z::'a,powerset(X)) --> ssubset(Z::'a,X)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2309 | \ (\\<forall>Z X. little_set(Z) & ssubset(Z::'a,X) --> member(Z::'a,powerset(X))) & \ | 
| 14183 | 2310 | \ (\\<forall>U. little_set(U) --> little_set(powerset(U))) & \ | 
| 2311 | \ (\\<forall>Z X. relation(Z) & member(X::'a,Z) --> ordered_pair_predicate(X)) & \ | |
| 2312 | \ (\\<forall>Z. relation(Z) | member(f18(Z),Z)) & \ | |
| 2313 | \ (\\<forall>Z. ordered_pair_predicate(f18(Z)) --> relation(Z)) & \ | |
| 2314 | \ (\\<forall>U X V W. single_valued_set(X) & little_set(U) & little_set(V) & little_set(W) & member(ordered_pair(U::'a,V),X) & member(ordered_pair(U::'a,W),X) --> equal(V::'a,W)) & \ | |
| 2315 | \ (\\<forall>X. single_valued_set(X) | little_set(f19(X))) & \ | |
| 2316 | \ (\\<forall>X. single_valued_set(X) | little_set(f20(X))) & \ | |
| 2317 | \ (\\<forall>X. single_valued_set(X) | little_set(f21(X))) & \ | |
| 2318 | \ (\\<forall>X. single_valued_set(X) | member(ordered_pair(f19(X),f20(X)),X)) & \ | |
| 2319 | \ (\\<forall>X. single_valued_set(X) | member(ordered_pair(f19(X),f21(X)),X)) & \ | |
| 2320 | \ (\\<forall>X. equal(f20(X),f21(X)) --> single_valued_set(X)) & \ | |
| 2321 | \ (\\<forall>Xf. function(Xf) --> relation(Xf)) & \ | |
| 2322 | \ (\\<forall>Xf. function(Xf) --> single_valued_set(Xf)) & \ | |
| 2323 | \ (\\<forall>Xf. relation(Xf) & single_valued_set(Xf) --> function(Xf)) & \ | |
| 2324 | \ (\\<forall>Z X Xf. member(Z::'a,image_(X::'a,Xf)) --> ordered_pair_predicate(f22(Z::'a,X,Xf))) & \ | |
| 2325 | \ (\\<forall>Z X Xf. member(Z::'a,image_(X::'a,Xf)) --> member(f22(Z::'a,X,Xf),Xf)) & \ | |
| 2326 | \ (\\<forall>Z Xf X. member(Z::'a,image_(X::'a,Xf)) --> member(first(f22(Z::'a,X,Xf)),X)) & \ | |
| 2327 | \ (\\<forall>X Xf Z. member(Z::'a,image_(X::'a,Xf)) --> equal(second(f22(Z::'a,X,Xf)),Z)) & \ | |
| 2328 | \ (\\<forall>Xf X Y Z. little_set(Z) & ordered_pair_predicate(Y) & member(Y::'a,Xf) & member(first(Y),X) & equal(second(Y),Z) --> member(Z::'a,image_(X::'a,Xf))) & \ | |
| 2329 | \ (\\<forall>X Xf. little_set(X) & function(Xf) --> little_set(image_(X::'a,Xf))) & \ | |
| 2330 | \ (\\<forall>X U Y. ~(disjoint(X::'a,Y) & member(U::'a,X) & member(U::'a,Y))) & \ | |
| 2331 | \ (\\<forall>Y X. disjoint(X::'a,Y) | member(f23(X::'a,Y),X)) & \ | |
| 2332 | \ (\\<forall>X Y. disjoint(X::'a,Y) | member(f23(X::'a,Y),Y)) & \ | |
| 2333 | \ (\\<forall>X. equal(X::'a,empty_set) | member(f24(X),X)) & \ | |
| 2334 | \ (\\<forall>X. equal(X::'a,empty_set) | disjoint(f24(X),X)) & \ | |
| 8557 | 2335 | \ (function(f25)) & \ | 
| 14183 | 2336 | \ (\\<forall>X. little_set(X) --> equal(X::'a,empty_set) | member(f26(X),X)) & \ | 
| 2337 | \ (\\<forall>X. little_set(X) --> equal(X::'a,empty_set) | member(ordered_pair(X::'a,f26(X)),f25)) & \ | |
| 2338 | \ (\\<forall>Z X. member(Z::'a,range_of(X)) --> ordered_pair_predicate(f27(Z::'a,X))) & \ | |
| 2339 | \ (\\<forall>Z X. member(Z::'a,range_of(X)) --> member(f27(Z::'a,X),X)) & \ | |
| 2340 | \ (\\<forall>Z X. member(Z::'a,range_of(X)) --> equal(Z::'a,second(f27(Z::'a,X)))) & \ | |
| 2341 | \ (\\<forall>X Z Xp. little_set(Z) & ordered_pair_predicate(Xp) & member(Xp::'a,X) & equal(Z::'a,second(Xp)) --> member(Z::'a,range_of(X))) & \ | |
| 2342 | \ (\\<forall>Z. member(Z::'a,identity_relation) --> ordered_pair_predicate(Z)) & \ | |
| 2343 | \ (\\<forall>Z. member(Z::'a,identity_relation) --> equal(first(Z),second(Z))) & \ | |
| 2344 | \ (\\<forall>Z. little_set(Z) & ordered_pair_predicate(Z) & equal(first(Z),second(Z)) --> member(Z::'a,identity_relation)) & \ | |
| 2345 | \ (\\<forall>X Y. equal(restrct(X::'a,Y),intersection(X::'a,cross_product(Y::'a,universal_set)))) & \ | |
| 2346 | \ (\\<forall>Xf. one_to_one_function(Xf) --> function(Xf)) & \ | |
| 2347 | \ (\\<forall>Xf. one_to_one_function(Xf) --> function(inv1 Xf)) & \ | |
| 2348 | \ (\\<forall>Xf. function(Xf) & function(inv1 Xf) --> one_to_one_function(Xf)) & \ | |
| 2349 | \ (\\<forall>Z Xf Y. member(Z::'a,apply(Xf::'a,Y)) --> ordered_pair_predicate(f28(Z::'a,Xf,Y))) & \ | |
| 2350 | \ (\\<forall>Z Y Xf. member(Z::'a,apply(Xf::'a,Y)) --> member(f28(Z::'a,Xf,Y),Xf)) & \ | |
| 2351 | \ (\\<forall>Z Xf Y. member(Z::'a,apply(Xf::'a,Y)) --> equal(first(f28(Z::'a,Xf,Y)),Y)) & \ | |
| 2352 | \ (\\<forall>Z Xf Y. member(Z::'a,apply(Xf::'a,Y)) --> member(Z::'a,second(f28(Z::'a,Xf,Y)))) & \ | |
| 2353 | \ (\\<forall>Xf Y Z W. ordered_pair_predicate(W) & member(W::'a,Xf) & equal(first(W),Y) & member(Z::'a,second(W)) --> member(Z::'a,apply(Xf::'a,Y))) & \ | |
| 2354 | \ (\\<forall>Xf X Y. equal(apply_to_two_arguments(Xf::'a,X,Y),apply(Xf::'a,ordered_pair(X::'a,Y)))) & \ | |
| 2355 | \ (\\<forall>X Y Xf. maps(Xf::'a,X,Y) --> function(Xf)) & \ | |
| 2356 | \ (\\<forall>Y Xf X. maps(Xf::'a,X,Y) --> equal(domain_of(Xf),X)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2357 | \ (\\<forall>X Xf Y. maps(Xf::'a,X,Y) --> ssubset(range_of(Xf),Y)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2358 | \ (\\<forall>X Xf Y. function(Xf) & equal(domain_of(Xf),X) & ssubset(range_of(Xf),Y) --> maps(Xf::'a,X,Y)) & \ | 
| 14183 | 2359 | \ (\\<forall>Xf Xs. closed(Xs::'a,Xf) --> little_set(Xs)) & \ | 
| 2360 | \ (\\<forall>Xs Xf. closed(Xs::'a,Xf) --> little_set(Xf)) & \ | |
| 2361 | \ (\\<forall>Xf Xs. closed(Xs::'a,Xf) --> maps(Xf::'a,cross_product(Xs::'a,Xs),Xs)) & \ | |
| 2362 | \ (\\<forall>Xf Xs. little_set(Xs) & little_set(Xf) & maps(Xf::'a,cross_product(Xs::'a,Xs),Xs) --> closed(Xs::'a,Xf)) & \ | |
| 2363 | \ (\\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> little_set(f29(Z::'a,Xf,Xg))) & \ | |
| 2364 | \ (\\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> little_set(f30(Z::'a,Xf,Xg))) & \ | |
| 2365 | \ (\\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> little_set(f31(Z::'a,Xf,Xg))) & \ | |
| 2366 | \ (\\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> equal(Z::'a,ordered_pair(f29(Z::'a,Xf,Xg),f30(Z::'a,Xf,Xg)))) & \ | |
| 2367 | \ (\\<forall>Z Xg Xf. member(Z::'a,composition(Xf::'a,Xg)) --> member(ordered_pair(f29(Z::'a,Xf,Xg),f31(Z::'a,Xf,Xg)),Xf)) & \ | |
| 2368 | \ (\\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> member(ordered_pair(f31(Z::'a,Xf,Xg),f30(Z::'a,Xf,Xg)),Xg)) & \ | |
| 2369 | \ (\\<forall>Z X Xf W Y Xg. little_set(Z) & little_set(X) & little_set(Y) & little_set(W) & equal(Z::'a,ordered_pair(X::'a,Y)) & member(ordered_pair(X::'a,W),Xf) & member(ordered_pair(W::'a,Y),Xg) --> member(Z::'a,composition(Xf::'a,Xg))) & \ | |
| 2370 | \ (\\<forall>Xh Xs2 Xf2 Xs1 Xf1. homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) --> closed(Xs1::'a,Xf1)) & \ | |
| 2371 | \ (\\<forall>Xh Xs1 Xf1 Xs2 Xf2. homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) --> closed(Xs2::'a,Xf2)) & \ | |
| 2372 | \ (\\<forall>Xf1 Xf2 Xh Xs1 Xs2. homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) --> maps(Xh::'a,Xs1,Xs2)) & \ | |
| 2373 | \ (\\<forall>Xs2 Xs1 Xf1 Xf2 X Xh Y. homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) & member(X::'a,Xs1) & member(Y::'a,Xs1) --> equal(apply(Xh::'a,apply_to_two_arguments(Xf1::'a,X,Y)),apply_to_two_arguments(Xf2::'a,apply(Xh::'a,X),apply(Xh::'a,Y)))) & \ | |
| 2374 | \ (\\<forall>Xh Xf1 Xs2 Xf2 Xs1. closed(Xs1::'a,Xf1) & closed(Xs2::'a,Xf2) & maps(Xh::'a,Xs1,Xs2) --> homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) | member(f32(Xh::'a,Xs1,Xf1,Xs2,Xf2),Xs1)) & \ | |
| 2375 | \ (\\<forall>Xh Xf1 Xs2 Xf2 Xs1. closed(Xs1::'a,Xf1) & closed(Xs2::'a,Xf2) & maps(Xh::'a,Xs1,Xs2) --> homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) | member(f33(Xh::'a,Xs1,Xf1,Xs2,Xf2),Xs1)) & \ | |
| 2376 | \ (\\<forall>Xh Xs1 Xf1 Xs2 Xf2. closed(Xs1::'a,Xf1) & closed(Xs2::'a,Xf2) & maps(Xh::'a,Xs1,Xs2) & equal(apply(Xh::'a,apply_to_two_arguments(Xf1::'a,f32(Xh::'a,Xs1,Xf1,Xs2,Xf2),f33(Xh::'a,Xs1,Xf1,Xs2,Xf2))),apply_to_two_arguments(Xf2::'a,apply(Xh::'a,f32(Xh::'a,Xs1,Xf1,Xs2,Xf2)),apply(Xh::'a,f33(Xh::'a,Xs1,Xf1,Xs2,Xf2)))) --> homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2)) & \ | |
| 2377 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(f1(A::'a,C),f1(B::'a,C))) & \ | |
| 2378 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(f1(F'::'a,D),f1(F'::'a,E))) & \ | |
| 2379 | \ (\\<forall>A2 B2. equal(A2::'a,B2) --> equal(f2(A2),f2(B2))) & \ | |
| 2380 | \ (\\<forall>G4 H4. equal(G4::'a,H4) --> equal(f3(G4),f3(H4))) & \ | |
| 2381 | \ (\\<forall>O7 P7 Q7. equal(O7::'a,P7) --> equal(f4(O7::'a,Q7),f4(P7::'a,Q7))) & \ | |
| 2382 | \ (\\<forall>R7 T7 S7. equal(R7::'a,S7) --> equal(f4(T7::'a,R7),f4(T7::'a,S7))) & \ | |
| 2383 | \ (\\<forall>U7 V7 W7. equal(U7::'a,V7) --> equal(f5(U7::'a,W7),f5(V7::'a,W7))) & \ | |
| 2384 | \ (\\<forall>X7 Z7 Y7. equal(X7::'a,Y7) --> equal(f5(Z7::'a,X7),f5(Z7::'a,Y7))) & \ | |
| 2385 | \ (\\<forall>A8 B8 C8. equal(A8::'a,B8) --> equal(f6(A8::'a,C8),f6(B8::'a,C8))) & \ | |
| 2386 | \ (\\<forall>D8 F8 E8. equal(D8::'a,E8) --> equal(f6(F8::'a,D8),f6(F8::'a,E8))) & \ | |
| 2387 | \ (\\<forall>G8 H8 I8. equal(G8::'a,H8) --> equal(f7(G8::'a,I8),f7(H8::'a,I8))) & \ | |
| 2388 | \ (\\<forall>J8 L8 K8. equal(J8::'a,K8) --> equal(f7(L8::'a,J8),f7(L8::'a,K8))) & \ | |
| 2389 | \ (\\<forall>M8 N8 O8. equal(M8::'a,N8) --> equal(f8(M8::'a,O8),f8(N8::'a,O8))) & \ | |
| 2390 | \ (\\<forall>P8 R8 Q8. equal(P8::'a,Q8) --> equal(f8(R8::'a,P8),f8(R8::'a,Q8))) & \ | |
| 2391 | \ (\\<forall>S8 T8 U8. equal(S8::'a,T8) --> equal(f9(S8::'a,U8),f9(T8::'a,U8))) & \ | |
| 2392 | \ (\\<forall>V8 X8 W8. equal(V8::'a,W8) --> equal(f9(X8::'a,V8),f9(X8::'a,W8))) & \ | |
| 2393 | \ (\\<forall>G H I'. equal(G::'a,H) --> equal(f10(G::'a,I'),f10(H::'a,I'))) & \ | |
| 2394 | \ (\\<forall>J L K'. equal(J::'a,K') --> equal(f10(L::'a,J),f10(L::'a,K'))) & \ | |
| 2395 | \ (\\<forall>M N O_. equal(M::'a,N) --> equal(f11(M::'a,O_),f11(N::'a,O_))) & \ | |
| 2396 | \ (\\<forall>P R Q. equal(P::'a,Q) --> equal(f11(R::'a,P),f11(R::'a,Q))) & \ | |
| 2397 | \ (\\<forall>S' T' U. equal(S'::'a,T') --> equal(f12(S'::'a,U),f12(T'::'a,U))) & \ | |
| 2398 | \ (\\<forall>V X W. equal(V::'a,W) --> equal(f12(X::'a,V),f12(X::'a,W))) & \ | |
| 2399 | \ (\\<forall>Y Z A1. equal(Y::'a,Z) --> equal(f13(Y::'a,A1),f13(Z::'a,A1))) & \ | |
| 2400 | \ (\\<forall>B1 D1 C1. equal(B1::'a,C1) --> equal(f13(D1::'a,B1),f13(D1::'a,C1))) & \ | |
| 2401 | \ (\\<forall>E1 F1 G1. equal(E1::'a,F1) --> equal(f14(E1::'a,G1),f14(F1::'a,G1))) & \ | |
| 2402 | \ (\\<forall>H1 J1 I1. equal(H1::'a,I1) --> equal(f14(J1::'a,H1),f14(J1::'a,I1))) & \ | |
| 2403 | \ (\\<forall>K1 L1 M1. equal(K1::'a,L1) --> equal(f16(K1::'a,M1),f16(L1::'a,M1))) & \ | |
| 2404 | \ (\\<forall>N1 P1 O1. equal(N1::'a,O1) --> equal(f16(P1::'a,N1),f16(P1::'a,O1))) & \ | |
| 2405 | \ (\\<forall>Q1 R1 S1. equal(Q1::'a,R1) --> equal(f17(Q1::'a,S1),f17(R1::'a,S1))) & \ | |
| 2406 | \ (\\<forall>T1 V1 U1. equal(T1::'a,U1) --> equal(f17(V1::'a,T1),f17(V1::'a,U1))) & \ | |
| 2407 | \ (\\<forall>W1 X1. equal(W1::'a,X1) --> equal(f18(W1),f18(X1))) & \ | |
| 2408 | \ (\\<forall>Y1 Z1. equal(Y1::'a,Z1) --> equal(f19(Y1),f19(Z1))) & \ | |
| 2409 | \ (\\<forall>C2 D2. equal(C2::'a,D2) --> equal(f20(C2),f20(D2))) & \ | |
| 2410 | \ (\\<forall>E2 F2. equal(E2::'a,F2) --> equal(f21(E2),f21(F2))) & \ | |
| 2411 | \ (\\<forall>G2 H2 I2 J2. equal(G2::'a,H2) --> equal(f22(G2::'a,I2,J2),f22(H2::'a,I2,J2))) & \ | |
| 2412 | \ (\\<forall>K2 M2 L2 N2. equal(K2::'a,L2) --> equal(f22(M2::'a,K2,N2),f22(M2::'a,L2,N2))) & \ | |
| 2413 | \ (\\<forall>O2 Q2 R2 P2. equal(O2::'a,P2) --> equal(f22(Q2::'a,R2,O2),f22(Q2::'a,R2,P2))) & \ | |
| 2414 | \ (\\<forall>S2 T2 U2. equal(S2::'a,T2) --> equal(f23(S2::'a,U2),f23(T2::'a,U2))) & \ | |
| 2415 | \ (\\<forall>V2 X2 W2. equal(V2::'a,W2) --> equal(f23(X2::'a,V2),f23(X2::'a,W2))) & \ | |
| 2416 | \ (\\<forall>Y2 Z2. equal(Y2::'a,Z2) --> equal(f24(Y2),f24(Z2))) & \ | |
| 2417 | \ (\\<forall>A3 B3. equal(A3::'a,B3) --> equal(f26(A3),f26(B3))) & \ | |
| 2418 | \ (\\<forall>C3 D3 E3. equal(C3::'a,D3) --> equal(f27(C3::'a,E3),f27(D3::'a,E3))) & \ | |
| 2419 | \ (\\<forall>F3 H3 G3. equal(F3::'a,G3) --> equal(f27(H3::'a,F3),f27(H3::'a,G3))) & \ | |
| 2420 | \ (\\<forall>I3 J3 K3 L3. equal(I3::'a,J3) --> equal(f28(I3::'a,K3,L3),f28(J3::'a,K3,L3))) & \ | |
| 2421 | \ (\\<forall>M3 O3 N3 P3. equal(M3::'a,N3) --> equal(f28(O3::'a,M3,P3),f28(O3::'a,N3,P3))) & \ | |
| 2422 | \ (\\<forall>Q3 S3 T3 R3. equal(Q3::'a,R3) --> equal(f28(S3::'a,T3,Q3),f28(S3::'a,T3,R3))) & \ | |
| 2423 | \ (\\<forall>U3 V3 W3 X3. equal(U3::'a,V3) --> equal(f29(U3::'a,W3,X3),f29(V3::'a,W3,X3))) & \ | |
| 2424 | \ (\\<forall>Y3 A4 Z3 B4. equal(Y3::'a,Z3) --> equal(f29(A4::'a,Y3,B4),f29(A4::'a,Z3,B4))) & \ | |
| 2425 | \ (\\<forall>C4 E4 F4 D4. equal(C4::'a,D4) --> equal(f29(E4::'a,F4,C4),f29(E4::'a,F4,D4))) & \ | |
| 2426 | \ (\\<forall>I4 J4 K4 L4. equal(I4::'a,J4) --> equal(f30(I4::'a,K4,L4),f30(J4::'a,K4,L4))) & \ | |
| 2427 | \ (\\<forall>M4 O4 N4 P4. equal(M4::'a,N4) --> equal(f30(O4::'a,M4,P4),f30(O4::'a,N4,P4))) & \ | |
| 2428 | \ (\\<forall>Q4 S4 T4 R4. equal(Q4::'a,R4) --> equal(f30(S4::'a,T4,Q4),f30(S4::'a,T4,R4))) & \ | |
| 2429 | \ (\\<forall>U4 V4 W4 X4. equal(U4::'a,V4) --> equal(f31(U4::'a,W4,X4),f31(V4::'a,W4,X4))) & \ | |
| 2430 | \ (\\<forall>Y4 A5 Z4 B5. equal(Y4::'a,Z4) --> equal(f31(A5::'a,Y4,B5),f31(A5::'a,Z4,B5))) & \ | |
| 2431 | \ (\\<forall>C5 E5 F5 D5. equal(C5::'a,D5) --> equal(f31(E5::'a,F5,C5),f31(E5::'a,F5,D5))) & \ | |
| 2432 | \ (\\<forall>G5 H5 I5 J5 K5 L5. equal(G5::'a,H5) --> equal(f32(G5::'a,I5,J5,K5,L5),f32(H5::'a,I5,J5,K5,L5))) & \ | |
| 2433 | \ (\\<forall>M5 O5 N5 P5 Q5 R5. equal(M5::'a,N5) --> equal(f32(O5::'a,M5,P5,Q5,R5),f32(O5::'a,N5,P5,Q5,R5))) & \ | |
| 2434 | \ (\\<forall>S5 U5 V5 T5 W5 X5. equal(S5::'a,T5) --> equal(f32(U5::'a,V5,S5,W5,X5),f32(U5::'a,V5,T5,W5,X5))) & \ | |
| 2435 | \ (\\<forall>Y5 A6 B6 C6 Z5 D6. equal(Y5::'a,Z5) --> equal(f32(A6::'a,B6,C6,Y5,D6),f32(A6::'a,B6,C6,Z5,D6))) & \ | |
| 2436 | \ (\\<forall>E6 G6 H6 I6 J6 F6. equal(E6::'a,F6) --> equal(f32(G6::'a,H6,I6,J6,E6),f32(G6::'a,H6,I6,J6,F6))) & \ | |
| 2437 | \ (\\<forall>K6 L6 M6 N6 O6 P6. equal(K6::'a,L6) --> equal(f33(K6::'a,M6,N6,O6,P6),f33(L6::'a,M6,N6,O6,P6))) & \ | |
| 2438 | \ (\\<forall>Q6 S6 R6 T6 U6 V6. equal(Q6::'a,R6) --> equal(f33(S6::'a,Q6,T6,U6,V6),f33(S6::'a,R6,T6,U6,V6))) & \ | |
| 2439 | \ (\\<forall>W6 Y6 Z6 X6 A7 B7. equal(W6::'a,X6) --> equal(f33(Y6::'a,Z6,W6,A7,B7),f33(Y6::'a,Z6,X6,A7,B7))) & \ | |
| 2440 | \ (\\<forall>C7 E7 F7 G7 D7 H7. equal(C7::'a,D7) --> equal(f33(E7::'a,F7,G7,C7,H7),f33(E7::'a,F7,G7,D7,H7))) & \ | |
| 2441 | \ (\\<forall>I7 K7 L7 M7 N7 J7. equal(I7::'a,J7) --> equal(f33(K7::'a,L7,M7,N7,I7),f33(K7::'a,L7,M7,N7,J7))) & \ | |
| 2442 | \ (\\<forall>A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & \ | |
| 2443 | \ (\\<forall>D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & \ | |
| 2444 | \ (\\<forall>G H I' J. equal(G::'a,H) --> equal(apply_to_two_arguments(G::'a,I',J),apply_to_two_arguments(H::'a,I',J))) & \ | |
| 2445 | \ (\\<forall>K' M L N. equal(K'::'a,L) --> equal(apply_to_two_arguments(M::'a,K',N),apply_to_two_arguments(M::'a,L,N))) & \ | |
| 2446 | \ (\\<forall>O_ Q R P. equal(O_::'a,P) --> equal(apply_to_two_arguments(Q::'a,R,O_),apply_to_two_arguments(Q::'a,R,P))) & \ | |
| 2447 | \ (\\<forall>S' T'. equal(S'::'a,T') --> equal(complement(S'),complement(T'))) & \ | |
| 2448 | \ (\\<forall>U V W. equal(U::'a,V) --> equal(composition(U::'a,W),composition(V::'a,W))) & \ | |
| 2449 | \ (\\<forall>X Z Y. equal(X::'a,Y) --> equal(composition(Z::'a,X),composition(Z::'a,Y))) & \ | |
| 2450 | \ (\\<forall>A1 B1. equal(A1::'a,B1) --> equal(inv1 A1,inv1 B1)) & \ | |
| 2451 | \ (\\<forall>C1 D1 E1. equal(C1::'a,D1) --> equal(cross_product(C1::'a,E1),cross_product(D1::'a,E1))) & \ | |
| 2452 | \ (\\<forall>F1 H1 G1. equal(F1::'a,G1) --> equal(cross_product(H1::'a,F1),cross_product(H1::'a,G1))) & \ | |
| 2453 | \ (\\<forall>I1 J1. equal(I1::'a,J1) --> equal(domain_of(I1),domain_of(J1))) & \ | |
| 2454 | \ (\\<forall>I10 J10. equal(I10::'a,J10) --> equal(first(I10),first(J10))) & \ | |
| 2455 | \ (\\<forall>Q10 R10. equal(Q10::'a,R10) --> equal(flip_range_of(Q10),flip_range_of(R10))) & \ | |
| 2456 | \ (\\<forall>S10 T10 U10. equal(S10::'a,T10) --> equal(image_(S10::'a,U10),image_(T10::'a,U10))) & \ | |
| 2457 | \ (\\<forall>V10 X10 W10. equal(V10::'a,W10) --> equal(image_(X10::'a,V10),image_(X10::'a,W10))) & \ | |
| 2458 | \ (\\<forall>Y10 Z10 A11. equal(Y10::'a,Z10) --> equal(intersection(Y10::'a,A11),intersection(Z10::'a,A11))) & \ | |
| 2459 | \ (\\<forall>B11 D11 C11. equal(B11::'a,C11) --> equal(intersection(D11::'a,B11),intersection(D11::'a,C11))) & \ | |
| 2460 | \ (\\<forall>E11 F11 G11. equal(E11::'a,F11) --> equal(non_ordered_pair(E11::'a,G11),non_ordered_pair(F11::'a,G11))) & \ | |
| 2461 | \ (\\<forall>H11 J11 I11. equal(H11::'a,I11) --> equal(non_ordered_pair(J11::'a,H11),non_ordered_pair(J11::'a,I11))) & \ | |
| 2462 | \ (\\<forall>K11 L11 M11. equal(K11::'a,L11) --> equal(ordered_pair(K11::'a,M11),ordered_pair(L11::'a,M11))) & \ | |
| 2463 | \ (\\<forall>N11 P11 O11. equal(N11::'a,O11) --> equal(ordered_pair(P11::'a,N11),ordered_pair(P11::'a,O11))) & \ | |
| 2464 | \ (\\<forall>Q11 R11. equal(Q11::'a,R11) --> equal(powerset(Q11),powerset(R11))) & \ | |
| 2465 | \ (\\<forall>S11 T11. equal(S11::'a,T11) --> equal(range_of(S11),range_of(T11))) & \ | |
| 2466 | \ (\\<forall>U11 V11 W11. equal(U11::'a,V11) --> equal(restrct(U11::'a,W11),restrct(V11::'a,W11))) & \ | |
| 2467 | \ (\\<forall>X11 Z11 Y11. equal(X11::'a,Y11) --> equal(restrct(Z11::'a,X11),restrct(Z11::'a,Y11))) & \ | |
| 15306 | 2468 | \ (\\<forall>A12 B12. equal(A12::'a,B12) --> equal(rot_right(A12),rot_right(B12))) & \ | 
| 14183 | 2469 | \ (\\<forall>C12 D12. equal(C12::'a,D12) --> equal(second(C12),second(D12))) & \ | 
| 2470 | \ (\\<forall>K12 L12. equal(K12::'a,L12) --> equal(sigma(K12),sigma(L12))) & \ | |
| 2471 | \ (\\<forall>M12 N12. equal(M12::'a,N12) --> equal(singleton_set(M12),singleton_set(N12))) & \ | |
| 2472 | \ (\\<forall>O12 P12. equal(O12::'a,P12) --> equal(successor(O12),successor(P12))) & \ | |
| 2473 | \ (\\<forall>Q12 R12 S12. equal(Q12::'a,R12) --> equal(union(Q12::'a,S12),union(R12::'a,S12))) & \ | |
| 2474 | \ (\\<forall>T12 V12 U12. equal(T12::'a,U12) --> equal(union(V12::'a,T12),union(V12::'a,U12))) & \ | |
| 2475 | \ (\\<forall>W12 X12 Y12. equal(W12::'a,X12) & closed(W12::'a,Y12) --> closed(X12::'a,Y12)) & \ | |
| 2476 | \ (\\<forall>Z12 B13 A13. equal(Z12::'a,A13) & closed(B13::'a,Z12) --> closed(B13::'a,A13)) & \ | |
| 2477 | \ (\\<forall>C13 D13 E13. equal(C13::'a,D13) & disjoint(C13::'a,E13) --> disjoint(D13::'a,E13)) & \ | |
| 2478 | \ (\\<forall>F13 H13 G13. equal(F13::'a,G13) & disjoint(H13::'a,F13) --> disjoint(H13::'a,G13)) & \ | |
| 2479 | \ (\\<forall>I13 J13. equal(I13::'a,J13) & function(I13) --> function(J13)) & \ | |
| 2480 | \ (\\<forall>K13 L13 M13 N13 O13 P13. equal(K13::'a,L13) & homomorphism(K13::'a,M13,N13,O13,P13) --> homomorphism(L13::'a,M13,N13,O13,P13)) & \ | |
| 2481 | \ (\\<forall>Q13 S13 R13 T13 U13 V13. equal(Q13::'a,R13) & homomorphism(S13::'a,Q13,T13,U13,V13) --> homomorphism(S13::'a,R13,T13,U13,V13)) & \ | |
| 2482 | \ (\\<forall>W13 Y13 Z13 X13 A14 B14. equal(W13::'a,X13) & homomorphism(Y13::'a,Z13,W13,A14,B14) --> homomorphism(Y13::'a,Z13,X13,A14,B14)) & \ | |
| 2483 | \ (\\<forall>C14 E14 F14 G14 D14 H14. equal(C14::'a,D14) & homomorphism(E14::'a,F14,G14,C14,H14) --> homomorphism(E14::'a,F14,G14,D14,H14)) & \ | |
| 2484 | \ (\\<forall>I14 K14 L14 M14 N14 J14. equal(I14::'a,J14) & homomorphism(K14::'a,L14,M14,N14,I14) --> homomorphism(K14::'a,L14,M14,N14,J14)) & \ | |
| 2485 | \ (\\<forall>O14 P14. equal(O14::'a,P14) & little_set(O14) --> little_set(P14)) & \ | |
| 2486 | \ (\\<forall>Q14 R14 S14 T14. equal(Q14::'a,R14) & maps(Q14::'a,S14,T14) --> maps(R14::'a,S14,T14)) & \ | |
| 2487 | \ (\\<forall>U14 W14 V14 X14. equal(U14::'a,V14) & maps(W14::'a,U14,X14) --> maps(W14::'a,V14,X14)) & \ | |
| 2488 | \ (\\<forall>Y14 A15 B15 Z14. equal(Y14::'a,Z14) & maps(A15::'a,B15,Y14) --> maps(A15::'a,B15,Z14)) & \ | |
| 2489 | \ (\\<forall>C15 D15 E15. equal(C15::'a,D15) & member(C15::'a,E15) --> member(D15::'a,E15)) & \ | |
| 2490 | \ (\\<forall>F15 H15 G15. equal(F15::'a,G15) & member(H15::'a,F15) --> member(H15::'a,G15)) & \ | |
| 2491 | \ (\\<forall>I15 J15. equal(I15::'a,J15) & one_to_one_function(I15) --> one_to_one_function(J15)) & \ | |
| 2492 | \ (\\<forall>K15 L15. equal(K15::'a,L15) & ordered_pair_predicate(K15) --> ordered_pair_predicate(L15)) & \ | |
| 2493 | \ (\\<forall>M15 N15 O15. equal(M15::'a,N15) & proper_subset(M15::'a,O15) --> proper_subset(N15::'a,O15)) & \ | |
| 2494 | \ (\\<forall>P15 R15 Q15. equal(P15::'a,Q15) & proper_subset(R15::'a,P15) --> proper_subset(R15::'a,Q15)) & \ | |
| 2495 | \ (\\<forall>S15 T15. equal(S15::'a,T15) & relation(S15) --> relation(T15)) & \ | |
| 2496 | \ (\\<forall>U15 V15. equal(U15::'a,V15) & single_valued_set(U15) --> single_valued_set(V15)) & \ | |
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2497 | \ (\\<forall>W15 X15 Y15. equal(W15::'a,X15) & ssubset(W15::'a,Y15) --> ssubset(X15::'a,Y15)) & \ | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
19277diff
changeset | 2498 | \ (\\<forall>Z15 B16 A16. equal(Z15::'a,A16) & ssubset(B16::'a,Z15) --> ssubset(B16::'a,A16)) & \ | 
| 8557 | 2499 | \ (~little_set(ordered_pair(a::'a,b))) --> False", | 
| 9841 | 2500 | meson_tac 1); | 
| 8557 | 2501 | |
| 2502 | ||
| 2503 | (*13 inferences so far. Searching to depth 8. 0 secs*) | |
| 2504 | val SET046_5 = prove | |
| 14183 | 2505 |  ("(\\<forall>Y X. ~(element(X::'a,a) & element(X::'a,Y) & element(Y::'a,X))) &     \
 | 
| 2506 | \ (\\<forall>X. element(X::'a,f(X)) | element(X::'a,a)) & \ | |
| 2507 | \ (\\<forall>X. element(f(X),X) | element(X::'a,a)) --> False", | |
| 9841 | 2508 | meson_tac 1); | 
| 8557 | 2509 | |
| 2510 | (*33 inferences so far. Searching to depth 9. 0.2 secs*) | |
| 2511 | val SET047_5 = prove | |
| 14183 | 2512 |  ("(\\<forall>X Z Y. set_equal(X::'a,Y) & element(Z::'a,X) --> element(Z::'a,Y)) &  \
 | 
| 2513 | \ (\\<forall>Y Z X. set_equal(X::'a,Y) & element(Z::'a,Y) --> element(Z::'a,X)) & \ | |
| 2514 | \ (\\<forall>X Y. element(f(X::'a,Y),X) | element(f(X::'a,Y),Y) | set_equal(X::'a,Y)) & \ | |
| 2515 | \ (\\<forall>X Y. element(f(X::'a,Y),Y) & element(f(X::'a,Y),X) --> set_equal(X::'a,Y)) & \ | |
| 8557 | 2516 | \ (set_equal(a::'a,b) | set_equal(b::'a,a)) & \ | 
| 2517 | \ (~(set_equal(b::'a,a) & set_equal(a::'a,b))) --> False", | |
| 9841 | 2518 | meson_tac 1); | 
| 8557 | 2519 | |
| 2520 | (*311 inferences so far. Searching to depth 12. 0.1 secs*) | |
| 2521 | val SYN034_1 = prove | |
| 14183 | 2522 |  ("(\\<forall>A. p(A::'a,a) | p(A::'a,f(A))) & \
 | 
| 2523 | \ (\\<forall>A. p(A::'a,a) | p(f(A),A)) & \ | |
| 2524 | \ (\\<forall>A B. ~(p(A::'a,B) & p(B::'a,A) & p(B::'a,a))) --> False", | |
| 9841 | 2525 | meson_tac 1); | 
| 8557 | 2526 | |
| 2527 | (*30 inferences so far. Searching to depth 6. 0.2 secs*) | |
| 2528 | val SYN071_1 = prove | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2529 | (EQU001_0_ax ^ " & \ | 
| 8557 | 2530 | \ (equal(a::'a,b) | equal(c::'a,d)) & \ | 
| 2531 | \ (equal(a::'a,c) | equal(b::'a,d)) & \ | |
| 2532 | \ (~equal(a::'a,d)) & \ | |
| 2533 | \ (~equal(b::'a,c)) --> False", | |
| 9841 | 2534 | meson_tac 1); | 
| 8557 | 2535 | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2536 | (*1897410 inferences so far. Searching to depth 48 | 
| 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2537 | 206s, nearly 4 mins on griffon.*) | 
| 8557 | 2538 | val SYN349_1 = prove_hard | 
| 14183 | 2539 |  ("(\\<forall>X Y. f(w(X),g(X::'a,Y)) --> f(X::'a,g(X::'a,Y))) &    \
 | 
| 2540 | \ (\\<forall>X Y. f(X::'a,g(X::'a,Y)) --> f(w(X),g(X::'a,Y))) & \ | |
| 2541 | \ (\\<forall>Y X. f(X::'a,g(X::'a,Y)) & f(Y::'a,g(X::'a,Y)) --> f(g(X::'a,Y),Y) | f(g(X::'a,Y),w(X))) & \ | |
| 2542 | \ (\\<forall>Y X. f(g(X::'a,Y),Y) & f(Y::'a,g(X::'a,Y)) --> f(X::'a,g(X::'a,Y)) | f(g(X::'a,Y),w(X))) & \ | |
| 2543 | \ (\\<forall>Y X. f(X::'a,g(X::'a,Y)) | f(g(X::'a,Y),Y) | f(Y::'a,g(X::'a,Y)) | f(g(X::'a,Y),w(X))) & \ | |
| 2544 | \ (\\<forall>Y X. f(X::'a,g(X::'a,Y)) & f(g(X::'a,Y),Y) --> f(Y::'a,g(X::'a,Y)) | f(g(X::'a,Y),w(X))) & \ | |
| 2545 | \ (\\<forall>Y X. f(X::'a,g(X::'a,Y)) & f(g(X::'a,Y),w(X)) --> f(g(X::'a,Y),Y) | f(Y::'a,g(X::'a,Y))) & \ | |
| 2546 | \ (\\<forall>Y X. f(g(X::'a,Y),Y) & f(g(X::'a,Y),w(X)) --> f(X::'a,g(X::'a,Y)) | f(Y::'a,g(X::'a,Y))) & \ | |
| 2547 | \ (\\<forall>Y X. f(Y::'a,g(X::'a,Y)) & f(g(X::'a,Y),w(X)) --> f(X::'a,g(X::'a,Y)) | f(g(X::'a,Y),Y)) & \ | |
| 2548 | \ (\\<forall>Y X. ~(f(X::'a,g(X::'a,Y)) & f(g(X::'a,Y),Y) & f(Y::'a,g(X::'a,Y)) & f(g(X::'a,Y),w(X)))) --> False", | |
| 9841 | 2549 | meson_tac 1); | 
| 8557 | 2550 | |
| 2551 | (*398 inferences so far. Searching to depth 12. 0.4 secs*) | |
| 2552 | val SYN352_1 = prove | |
| 2553 |  ("(f(a::'a,b)) &   \
 | |
| 14183 | 2554 | \ (\\<forall>X Y. f(X::'a,Y) --> f(b::'a,z(X::'a,Y)) | f(Y::'a,z(X::'a,Y))) & \ | 
| 2555 | \ (\\<forall>X Y. f(X::'a,Y) | f(z(X::'a,Y),z(X::'a,Y))) & \ | |
| 2556 | \ (\\<forall>X Y. f(b::'a,z(X::'a,Y)) | f(X::'a,z(X::'a,Y)) | f(z(X::'a,Y),z(X::'a,Y))) & \ | |
| 2557 | \ (\\<forall>X Y. f(b::'a,z(X::'a,Y)) & f(X::'a,z(X::'a,Y)) --> f(z(X::'a,Y),z(X::'a,Y))) & \ | |
| 2558 | \ (\\<forall>X Y. ~(f(X::'a,Y) & f(X::'a,z(X::'a,Y)) & f(Y::'a,z(X::'a,Y)))) & \ | |
| 2559 | \ (\\<forall>X Y. f(X::'a,Y) --> f(X::'a,z(X::'a,Y)) | f(Y::'a,z(X::'a,Y))) --> False", | |
| 9841 | 2560 | meson_tac 1); | 
| 8557 | 2561 | |
| 2562 | (*5336 inferences so far. Searching to depth 15. 5.3 secs*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2563 | val TOP001_2 = prove | 
| 14183 | 2564 |  ("(\\<forall>Vf U. element_of_set(U::'a,union_of_members(Vf)) --> element_of_set(U::'a,f1(Vf::'a,U))) &    \
 | 
| 2565 | \ (\\<forall>U Vf. element_of_set(U::'a,union_of_members(Vf)) --> element_of_collection(f1(Vf::'a,U),Vf)) & \ | |
| 2566 | \ (\\<forall>U Uu1 Vf. element_of_set(U::'a,Uu1) & element_of_collection(Uu1::'a,Vf) --> element_of_set(U::'a,union_of_members(Vf))) & \ | |
| 2567 | \ (\\<forall>Vf X. basis(X::'a,Vf) --> equal_sets(union_of_members(Vf),X)) & \ | |
| 2568 | \ (\\<forall>Vf U X. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_set(X::'a,f10(Vf::'a,U,X))) & \ | |
| 2569 | \ (\\<forall>U X Vf. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_collection(f10(Vf::'a,U,X),Vf)) & \ | |
| 2570 | \ (\\<forall>X. subset_sets(X::'a,X)) & \ | |
| 2571 | \ (\\<forall>X U Y. subset_sets(X::'a,Y) & element_of_set(U::'a,X) --> element_of_set(U::'a,Y)) & \ | |
| 2572 | \ (\\<forall>X Y. equal_sets(X::'a,Y) --> subset_sets(X::'a,Y)) & \ | |
| 2573 | \ (\\<forall>Y X. subset_sets(X::'a,Y) | element_of_set(in_1st_set(X::'a,Y),X)) & \ | |
| 2574 | \ (\\<forall>X Y. element_of_set(in_1st_set(X::'a,Y),Y) --> subset_sets(X::'a,Y)) & \ | |
| 8557 | 2575 | \ (basis(cx::'a,f)) & \ | 
| 2576 | \ (~subset_sets(union_of_members(top_of_basis(f)),cx)) --> False", | |
| 9841 | 2577 | meson_tac 1); | 
| 8557 | 2578 | |
| 2579 | (*0 inferences so far. Searching to depth 0. 0 secs*) | |
| 2580 | val TOP002_2 = prove | |
| 14183 | 2581 |  ("(\\<forall>Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & \
 | 
| 2582 | \ (\\<forall>X. ~element_of_set(X::'a,empty_set)) & \ | |
| 8557 | 2583 | \ (~element_of_collection(empty_set::'a,top_of_basis(f))) --> False", | 
| 9841 | 2584 | meson_tac 1); | 
| 8557 | 2585 | |
| 2586 | (*0 inferences so far. Searching to depth 0. 6.5 secs. BIG*) | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2587 | val TOP004_1 = prove | 
| 14183 | 2588 |  ("(\\<forall>Vf U. element_of_set(U::'a,union_of_members(Vf)) --> element_of_set(U::'a,f1(Vf::'a,U))) &    \
 | 
| 2589 | \ (\\<forall>U Vf. element_of_set(U::'a,union_of_members(Vf)) --> element_of_collection(f1(Vf::'a,U),Vf)) & \ | |
| 2590 | \ (\\<forall>U Uu1 Vf. element_of_set(U::'a,Uu1) & element_of_collection(Uu1::'a,Vf) --> element_of_set(U::'a,union_of_members(Vf))) & \ | |
| 2591 | \ (\\<forall>Vf U Va. element_of_set(U::'a,intersection_of_members(Vf)) & element_of_collection(Va::'a,Vf) --> element_of_set(U::'a,Va)) & \ | |
| 2592 | \ (\\<forall>U Vf. element_of_set(U::'a,intersection_of_members(Vf)) | element_of_collection(f2(Vf::'a,U),Vf)) & \ | |
| 2593 | \ (\\<forall>Vf U. element_of_set(U::'a,f2(Vf::'a,U)) --> element_of_set(U::'a,intersection_of_members(Vf))) & \ | |
| 2594 | \ (\\<forall>Vt X. topological_space(X::'a,Vt) --> equal_sets(union_of_members(Vt),X)) & \ | |
| 2595 | \ (\\<forall>X Vt. topological_space(X::'a,Vt) --> element_of_collection(empty_set::'a,Vt)) & \ | |
| 2596 | \ (\\<forall>X Vt. topological_space(X::'a,Vt) --> element_of_collection(X::'a,Vt)) & \ | |
| 2597 | \ (\\<forall>X Y Z Vt. topological_space(X::'a,Vt) & element_of_collection(Y::'a,Vt) & element_of_collection(Z::'a,Vt) --> element_of_collection(intersection_of_sets(Y::'a,Z),Vt)) & \ | |
| 2598 | \ (\\<forall>X Vf Vt. topological_space(X::'a,Vt) & subset_collections(Vf::'a,Vt) --> element_of_collection(union_of_members(Vf),Vt)) & \ | |
| 2599 | \ (\\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) --> topological_space(X::'a,Vt) | element_of_collection(f3(X::'a,Vt),Vt) | subset_collections(f5(X::'a,Vt),Vt)) & \ | |
| 2600 | \ (\\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) & element_of_collection(union_of_members(f5(X::'a,Vt)),Vt) --> topological_space(X::'a,Vt) | element_of_collection(f3(X::'a,Vt),Vt)) & \ | |
| 2601 | \ (\\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) --> topological_space(X::'a,Vt) | element_of_collection(f4(X::'a,Vt),Vt) | subset_collections(f5(X::'a,Vt),Vt)) & \ | |
| 2602 | \ (\\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) & element_of_collection(union_of_members(f5(X::'a,Vt)),Vt) --> topological_space(X::'a,Vt) | element_of_collection(f4(X::'a,Vt),Vt)) & \ | |
| 2603 | \ (\\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) & element_of_collection(intersection_of_sets(f3(X::'a,Vt),f4(X::'a,Vt)),Vt) --> topological_space(X::'a,Vt) | subset_collections(f5(X::'a,Vt),Vt)) & \ | |
| 2604 | \ (\\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) & element_of_collection(intersection_of_sets(f3(X::'a,Vt),f4(X::'a,Vt)),Vt) & element_of_collection(union_of_members(f5(X::'a,Vt)),Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2605 | \ (\\<forall>U X Vt. open(U::'a,X,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2606 | \ (\\<forall>X U Vt. open(U::'a,X,Vt) --> element_of_collection(U::'a,Vt)) & \ | |
| 2607 | \ (\\<forall>X U Vt. topological_space(X::'a,Vt) & element_of_collection(U::'a,Vt) --> open(U::'a,X,Vt)) & \ | |
| 2608 | \ (\\<forall>U X Vt. closed(U::'a,X,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2609 | \ (\\<forall>U X Vt. closed(U::'a,X,Vt) --> open(relative_complement_sets(U::'a,X),X,Vt)) & \ | |
| 2610 | \ (\\<forall>U X Vt. topological_space(X::'a,Vt) & open(relative_complement_sets(U::'a,X),X,Vt) --> closed(U::'a,X,Vt)) & \ | |
| 2611 | \ (\\<forall>Vs X Vt. finer(Vt::'a,Vs,X) --> topological_space(X::'a,Vt)) & \ | |
| 2612 | \ (\\<forall>Vt X Vs. finer(Vt::'a,Vs,X) --> topological_space(X::'a,Vs)) & \ | |
| 2613 | \ (\\<forall>X Vs Vt. finer(Vt::'a,Vs,X) --> subset_collections(Vs::'a,Vt)) & \ | |
| 2614 | \ (\\<forall>X Vs Vt. topological_space(X::'a,Vt) & topological_space(X::'a,Vs) & subset_collections(Vs::'a,Vt) --> finer(Vt::'a,Vs,X)) & \ | |
| 2615 | \ (\\<forall>Vf X. basis(X::'a,Vf) --> equal_sets(union_of_members(Vf),X)) & \ | |
| 2616 | \ (\\<forall>X Vf Y Vb1 Vb2. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> element_of_set(Y::'a,f6(X::'a,Vf,Y,Vb1,Vb2))) & \ | |
| 2617 | \ (\\<forall>X Y Vb1 Vb2 Vf. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> element_of_collection(f6(X::'a,Vf,Y,Vb1,Vb2),Vf)) & \ | |
| 2618 | \ (\\<forall>X Vf Y Vb1 Vb2. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> subset_sets(f6(X::'a,Vf,Y,Vb1,Vb2),intersection_of_sets(Vb1::'a,Vb2))) & \ | |
| 2619 | \ (\\<forall>Vf X. equal_sets(union_of_members(Vf),X) --> basis(X::'a,Vf) | element_of_set(f7(X::'a,Vf),X)) & \ | |
| 2620 | \ (\\<forall>X Vf. equal_sets(union_of_members(Vf),X) --> basis(X::'a,Vf) | element_of_collection(f8(X::'a,Vf),Vf)) & \ | |
| 2621 | \ (\\<forall>X Vf. equal_sets(union_of_members(Vf),X) --> basis(X::'a,Vf) | element_of_collection(f9(X::'a,Vf),Vf)) & \ | |
| 2622 | \ (\\<forall>X Vf. equal_sets(union_of_members(Vf),X) --> basis(X::'a,Vf) | element_of_set(f7(X::'a,Vf),intersection_of_sets(f8(X::'a,Vf),f9(X::'a,Vf)))) & \ | |
| 2623 | \ (\\<forall>Uu9 X Vf. equal_sets(union_of_members(Vf),X) & element_of_set(f7(X::'a,Vf),Uu9) & element_of_collection(Uu9::'a,Vf) & subset_sets(Uu9::'a,intersection_of_sets(f8(X::'a,Vf),f9(X::'a,Vf))) --> basis(X::'a,Vf)) & \ | |
| 2624 | \ (\\<forall>Vf U X. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_set(X::'a,f10(Vf::'a,U,X))) & \ | |
| 2625 | \ (\\<forall>U X Vf. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_collection(f10(Vf::'a,U,X),Vf)) & \ | |
| 2626 | \ (\\<forall>Vf X U. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> subset_sets(f10(Vf::'a,U,X),U)) & \ | |
| 2627 | \ (\\<forall>Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & \ | |
| 2628 | \ (\\<forall>Vf Uu11 U. element_of_set(f11(Vf::'a,U),Uu11) & element_of_collection(Uu11::'a,Vf) & subset_sets(Uu11::'a,U) --> element_of_collection(U::'a,top_of_basis(Vf))) & \ | |
| 2629 | \ (\\<forall>U Y X Vt. element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y)) --> topological_space(X::'a,Vt)) & \ | |
| 2630 | \ (\\<forall>U Vt Y X. element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y)) --> subset_sets(Y::'a,X)) & \ | |
| 2631 | \ (\\<forall>X Y U Vt. element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y)) --> element_of_collection(f12(X::'a,Vt,Y,U),Vt)) & \ | |
| 2632 | \ (\\<forall>X Vt Y U. element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y)) --> equal_sets(U::'a,intersection_of_sets(Y::'a,f12(X::'a,Vt,Y,U)))) & \ | |
| 2633 | \ (\\<forall>X Vt U Y Uu12. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) & element_of_collection(Uu12::'a,Vt) & equal_sets(U::'a,intersection_of_sets(Y::'a,Uu12)) --> element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y))) & \ | |
| 2634 | \ (\\<forall>U Y X Vt. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> topological_space(X::'a,Vt)) & \ | |
| 2635 | \ (\\<forall>U Vt Y X. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> subset_sets(Y::'a,X)) & \ | |
| 2636 | \ (\\<forall>Y X Vt U. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> element_of_set(U::'a,f13(Y::'a,X,Vt,U))) & \ | |
| 2637 | \ (\\<forall>X Vt U Y. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> subset_sets(f13(Y::'a,X,Vt,U),Y)) & \ | |
| 2638 | \ (\\<forall>Y U X Vt. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> open(f13(Y::'a,X,Vt,U),X,Vt)) & \ | |
| 2639 | \ (\\<forall>U Y Uu13 X Vt. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) & element_of_set(U::'a,Uu13) & subset_sets(Uu13::'a,Y) & open(Uu13::'a,X,Vt) --> element_of_set(U::'a,interior(Y::'a,X,Vt))) & \ | |
| 2640 | \ (\\<forall>U Y X Vt. element_of_set(U::'a,closure(Y::'a,X,Vt)) --> topological_space(X::'a,Vt)) & \ | |
| 2641 | \ (\\<forall>U Vt Y X. element_of_set(U::'a,closure(Y::'a,X,Vt)) --> subset_sets(Y::'a,X)) & \ | |
| 2642 | \ (\\<forall>Y X Vt U V. element_of_set(U::'a,closure(Y::'a,X,Vt)) & subset_sets(Y::'a,V) & closed(V::'a,X,Vt) --> element_of_set(U::'a,V)) & \ | |
| 2643 | \ (\\<forall>Y X Vt U. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) --> element_of_set(U::'a,closure(Y::'a,X,Vt)) | subset_sets(Y::'a,f14(Y::'a,X,Vt,U))) & \ | |
| 2644 | \ (\\<forall>Y U X Vt. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) --> element_of_set(U::'a,closure(Y::'a,X,Vt)) | closed(f14(Y::'a,X,Vt,U),X,Vt)) & \ | |
| 2645 | \ (\\<forall>Y X Vt U. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) & element_of_set(U::'a,f14(Y::'a,X,Vt,U)) --> element_of_set(U::'a,closure(Y::'a,X,Vt))) & \ | |
| 2646 | \ (\\<forall>U Y X Vt. neighborhood(U::'a,Y,X,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2647 | \ (\\<forall>Y U X Vt. neighborhood(U::'a,Y,X,Vt) --> open(U::'a,X,Vt)) & \ | |
| 2648 | \ (\\<forall>X Vt Y U. neighborhood(U::'a,Y,X,Vt) --> element_of_set(Y::'a,U)) & \ | |
| 2649 | \ (\\<forall>X Vt Y U. topological_space(X::'a,Vt) & open(U::'a,X,Vt) & element_of_set(Y::'a,U) --> neighborhood(U::'a,Y,X,Vt)) & \ | |
| 2650 | \ (\\<forall>Z Y X Vt. limit_point(Z::'a,Y,X,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2651 | \ (\\<forall>Z Vt Y X. limit_point(Z::'a,Y,X,Vt) --> subset_sets(Y::'a,X)) & \ | |
| 2652 | \ (\\<forall>Z X Vt U Y. limit_point(Z::'a,Y,X,Vt) & neighborhood(U::'a,Z,X,Vt) --> element_of_set(f15(Z::'a,Y,X,Vt,U),intersection_of_sets(U::'a,Y))) & \ | |
| 2653 | \ (\\<forall>Y X Vt U Z. ~(limit_point(Z::'a,Y,X,Vt) & neighborhood(U::'a,Z,X,Vt) & eq_p(f15(Z::'a,Y,X,Vt,U),Z))) & \ | |
| 2654 | \ (\\<forall>Y Z X Vt. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) --> limit_point(Z::'a,Y,X,Vt) | neighborhood(f16(Z::'a,Y,X,Vt),Z,X,Vt)) & \ | |
| 2655 | \ (\\<forall>X Vt Y Uu16 Z. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) & element_of_set(Uu16::'a,intersection_of_sets(f16(Z::'a,Y,X,Vt),Y)) --> limit_point(Z::'a,Y,X,Vt) | eq_p(Uu16::'a,Z)) & \ | |
| 2656 | \ (\\<forall>U Y X Vt. element_of_set(U::'a,boundary(Y::'a,X,Vt)) --> topological_space(X::'a,Vt)) & \ | |
| 2657 | \ (\\<forall>U Y X Vt. element_of_set(U::'a,boundary(Y::'a,X,Vt)) --> element_of_set(U::'a,closure(Y::'a,X,Vt))) & \ | |
| 2658 | \ (\\<forall>U Y X Vt. element_of_set(U::'a,boundary(Y::'a,X,Vt)) --> element_of_set(U::'a,closure(relative_complement_sets(Y::'a,X),X,Vt))) & \ | |
| 2659 | \ (\\<forall>U Y X Vt. topological_space(X::'a,Vt) & element_of_set(U::'a,closure(Y::'a,X,Vt)) & element_of_set(U::'a,closure(relative_complement_sets(Y::'a,X),X,Vt)) --> element_of_set(U::'a,boundary(Y::'a,X,Vt))) & \ | |
| 2660 | \ (\\<forall>X Vt. hausdorff(X::'a,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2661 | \ (\\<forall>X_2 X_1 X Vt. hausdorff(X::'a,Vt) & element_of_set(X_1::'a,X) & element_of_set(X_2::'a,X) --> eq_p(X_1::'a,X_2) | neighborhood(f17(X::'a,Vt,X_1,X_2),X_1,X,Vt)) & \ | |
| 2662 | \ (\\<forall>X_1 X_2 X Vt. hausdorff(X::'a,Vt) & element_of_set(X_1::'a,X) & element_of_set(X_2::'a,X) --> eq_p(X_1::'a,X_2) | neighborhood(f18(X::'a,Vt,X_1,X_2),X_2,X,Vt)) & \ | |
| 2663 | \ (\\<forall>X Vt X_1 X_2. hausdorff(X::'a,Vt) & element_of_set(X_1::'a,X) & element_of_set(X_2::'a,X) --> eq_p(X_1::'a,X_2) | disjoint_s(f17(X::'a,Vt,X_1,X_2),f18(X::'a,Vt,X_1,X_2))) & \ | |
| 2664 | \ (\\<forall>Vt X. topological_space(X::'a,Vt) --> hausdorff(X::'a,Vt) | element_of_set(f19(X::'a,Vt),X)) & \ | |
| 2665 | \ (\\<forall>Vt X. topological_space(X::'a,Vt) --> hausdorff(X::'a,Vt) | element_of_set(f20(X::'a,Vt),X)) & \ | |
| 2666 | \ (\\<forall>X Vt. topological_space(X::'a,Vt) & eq_p(f19(X::'a,Vt),f20(X::'a,Vt)) --> hausdorff(X::'a,Vt)) & \ | |
| 2667 | \ (\\<forall>X Vt Uu19 Uu20. topological_space(X::'a,Vt) & neighborhood(Uu19::'a,f19(X::'a,Vt),X,Vt) & neighborhood(Uu20::'a,f20(X::'a,Vt),X,Vt) & disjoint_s(Uu19::'a,Uu20) --> hausdorff(X::'a,Vt)) & \ | |
| 2668 | \ (\\<forall>Va1 Va2 X Vt. separation(Va1::'a,Va2,X,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2669 | \ (\\<forall>Va2 X Vt Va1. ~(separation(Va1::'a,Va2,X,Vt) & equal_sets(Va1::'a,empty_set))) & \ | |
| 2670 | \ (\\<forall>Va1 X Vt Va2. ~(separation(Va1::'a,Va2,X,Vt) & equal_sets(Va2::'a,empty_set))) & \ | |
| 2671 | \ (\\<forall>Va2 X Va1 Vt. separation(Va1::'a,Va2,X,Vt) --> element_of_collection(Va1::'a,Vt)) & \ | |
| 2672 | \ (\\<forall>Va1 X Va2 Vt. separation(Va1::'a,Va2,X,Vt) --> element_of_collection(Va2::'a,Vt)) & \ | |
| 2673 | \ (\\<forall>Vt Va1 Va2 X. separation(Va1::'a,Va2,X,Vt) --> equal_sets(union_of_sets(Va1::'a,Va2),X)) & \ | |
| 2674 | \ (\\<forall>X Vt Va1 Va2. separation(Va1::'a,Va2,X,Vt) --> disjoint_s(Va1::'a,Va2)) & \ | |
| 2675 | \ (\\<forall>Vt X Va1 Va2. topological_space(X::'a,Vt) & element_of_collection(Va1::'a,Vt) & element_of_collection(Va2::'a,Vt) & equal_sets(union_of_sets(Va1::'a,Va2),X) & disjoint_s(Va1::'a,Va2) --> separation(Va1::'a,Va2,X,Vt) | equal_sets(Va1::'a,empty_set) | equal_sets(Va2::'a,empty_set)) & \ | |
| 2676 | \ (\\<forall>X Vt. connected_space(X::'a,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2677 | \ (\\<forall>Va1 Va2 X Vt. ~(connected_space(X::'a,Vt) & separation(Va1::'a,Va2,X,Vt))) & \ | |
| 2678 | \ (\\<forall>X Vt. topological_space(X::'a,Vt) --> connected_space(X::'a,Vt) | separation(f21(X::'a,Vt),f22(X::'a,Vt),X,Vt)) & \ | |
| 2679 | \ (\\<forall>Va X Vt. connected_set(Va::'a,X,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2680 | \ (\\<forall>Vt Va X. connected_set(Va::'a,X,Vt) --> subset_sets(Va::'a,X)) & \ | |
| 2681 | \ (\\<forall>X Vt Va. connected_set(Va::'a,X,Vt) --> connected_space(Va::'a,subspace_topology(X::'a,Vt,Va))) & \ | |
| 2682 | \ (\\<forall>X Vt Va. topological_space(X::'a,Vt) & subset_sets(Va::'a,X) & connected_space(Va::'a,subspace_topology(X::'a,Vt,Va)) --> connected_set(Va::'a,X,Vt)) & \ | |
| 2683 | \ (\\<forall>Vf X Vt. open_covering(Vf::'a,X,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 2684 | \ (\\<forall>X Vf Vt. open_covering(Vf::'a,X,Vt) --> subset_collections(Vf::'a,Vt)) & \ | |
| 2685 | \ (\\<forall>Vt Vf X. open_covering(Vf::'a,X,Vt) --> equal_sets(union_of_members(Vf),X)) & \ | |
| 2686 | \ (\\<forall>Vt Vf X. topological_space(X::'a,Vt) & subset_collections(Vf::'a,Vt) & equal_sets(union_of_members(Vf),X) --> open_covering(Vf::'a,X,Vt)) & \ | |
| 2687 | \ (\\<forall>X Vt. compact_space(X::'a,Vt) --> topological_space(X::'a,Vt)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2688 | \ (\\<forall>X Vt Vf1. compact_space(X::'a,Vt) & open_covering(Vf1::'a,X,Vt) --> finite'(f23(X::'a,Vt,Vf1))) & \ | 
| 14183 | 2689 | \ (\\<forall>X Vt Vf1. compact_space(X::'a,Vt) & open_covering(Vf1::'a,X,Vt) --> subset_collections(f23(X::'a,Vt,Vf1),Vf1)) & \ | 
| 2690 | \ (\\<forall>Vf1 X Vt. compact_space(X::'a,Vt) & open_covering(Vf1::'a,X,Vt) --> open_covering(f23(X::'a,Vt,Vf1),X,Vt)) & \ | |
| 2691 | \ (\\<forall>X Vt. topological_space(X::'a,Vt) --> compact_space(X::'a,Vt) | open_covering(f24(X::'a,Vt),X,Vt)) & \ | |
| 15285 
ce83b7e74a91
Renamed some variables to eliminate conflicts with constants.
 paulson parents: 
14220diff
changeset | 2692 | \ (\\<forall>Uu24 X Vt. topological_space(X::'a,Vt) & finite'(Uu24) & subset_collections(Uu24::'a,f24(X::'a,Vt)) & open_covering(Uu24::'a,X,Vt) --> compact_space(X::'a,Vt)) & \ | 
| 14183 | 2693 | \ (\\<forall>Va X Vt. compact_set(Va::'a,X,Vt) --> topological_space(X::'a,Vt)) & \ | 
| 2694 | \ (\\<forall>Vt Va X. compact_set(Va::'a,X,Vt) --> subset_sets(Va::'a,X)) & \ | |
| 2695 | \ (\\<forall>X Vt Va. compact_set(Va::'a,X,Vt) --> compact_space(Va::'a,subspace_topology(X::'a,Vt,Va))) & \ | |
| 2696 | \ (\\<forall>X Vt Va. topological_space(X::'a,Vt) & subset_sets(Va::'a,X) & compact_space(Va::'a,subspace_topology(X::'a,Vt,Va)) --> compact_set(Va::'a,X,Vt)) & \ | |
| 8557 | 2697 | \ (basis(cx::'a,f)) & \ | 
| 14183 | 2698 | \ (\\<forall>U. element_of_collection(U::'a,top_of_basis(f))) & \ | 
| 2699 | \ (\\<forall>V. element_of_collection(V::'a,top_of_basis(f))) & \ | |
| 2700 | \ (\\<forall>U V. ~element_of_collection(intersection_of_sets(U::'a,V),top_of_basis(f))) --> False", | |
| 9841 | 2701 | meson_tac 1); | 
| 8557 | 2702 | |
| 2703 | ||
| 2704 | (*0 inferences so far. Searching to depth 0. 0.8 secs*) | |
| 2705 | val TOP004_2 = prove | |
| 14183 | 2706 |  ("(\\<forall>U Uu1 Vf. element_of_set(U::'a,Uu1) & element_of_collection(Uu1::'a,Vf) --> element_of_set(U::'a,union_of_members(Vf))) &     \
 | 
| 2707 | \ (\\<forall>Vf X. basis(X::'a,Vf) --> equal_sets(union_of_members(Vf),X)) & \ | |
| 2708 | \ (\\<forall>X Vf Y Vb1 Vb2. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> element_of_set(Y::'a,f6(X::'a,Vf,Y,Vb1,Vb2))) & \ | |
| 2709 | \ (\\<forall>X Y Vb1 Vb2 Vf. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> element_of_collection(f6(X::'a,Vf,Y,Vb1,Vb2),Vf)) & \ | |
| 2710 | \ (\\<forall>X Vf Y Vb1 Vb2. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> subset_sets(f6(X::'a,Vf,Y,Vb1,Vb2),intersection_of_sets(Vb1::'a,Vb2))) & \ | |
| 2711 | \ (\\<forall>Vf U X. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_set(X::'a,f10(Vf::'a,U,X))) & \ | |
| 2712 | \ (\\<forall>U X Vf. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_collection(f10(Vf::'a,U,X),Vf)) & \ | |
| 2713 | \ (\\<forall>Vf X U. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> subset_sets(f10(Vf::'a,U,X),U)) & \ | |
| 2714 | \ (\\<forall>Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & \ | |
| 2715 | \ (\\<forall>Vf Uu11 U. element_of_set(f11(Vf::'a,U),Uu11) & element_of_collection(Uu11::'a,Vf) & subset_sets(Uu11::'a,U) --> element_of_collection(U::'a,top_of_basis(Vf))) & \ | |
| 2716 | \ (\\<forall>Y X Z. subset_sets(X::'a,Y) & subset_sets(Y::'a,Z) --> subset_sets(X::'a,Z)) & \ | |
| 2717 | \ (\\<forall>Y Z X. element_of_set(Z::'a,intersection_of_sets(X::'a,Y)) --> element_of_set(Z::'a,X)) & \ | |
| 2718 | \ (\\<forall>X Z Y. element_of_set(Z::'a,intersection_of_sets(X::'a,Y)) --> element_of_set(Z::'a,Y)) & \ | |
| 2719 | \ (\\<forall>X Z Y. element_of_set(Z::'a,X) & element_of_set(Z::'a,Y) --> element_of_set(Z::'a,intersection_of_sets(X::'a,Y))) & \ | |
| 2720 | \ (\\<forall>X U Y V. subset_sets(X::'a,Y) & subset_sets(U::'a,V) --> subset_sets(intersection_of_sets(X::'a,U),intersection_of_sets(Y::'a,V))) & \ | |
| 2721 | \ (\\<forall>X Z Y. equal_sets(X::'a,Y) & element_of_set(Z::'a,X) --> element_of_set(Z::'a,Y)) & \ | |
| 2722 | \ (\\<forall>Y X. equal_sets(intersection_of_sets(X::'a,Y),intersection_of_sets(Y::'a,X))) & \ | |
| 8557 | 2723 | \ (basis(cx::'a,f)) & \ | 
| 14183 | 2724 | \ (\\<forall>U. element_of_collection(U::'a,top_of_basis(f))) & \ | 
| 2725 | \ (\\<forall>V. element_of_collection(V::'a,top_of_basis(f))) & \ | |
| 2726 | \ (\\<forall>U V. ~element_of_collection(intersection_of_sets(U::'a,V),top_of_basis(f))) --> False", | |
| 9841 | 2727 | meson_tac 1); | 
| 8557 | 2728 | |
| 2729 | (*53777 inferences so far. Searching to depth 20. 68.7 secs*) | |
| 2730 | val TOP005_2 = prove_hard | |
| 14183 | 2731 |  ("(\\<forall>Vf U. element_of_set(U::'a,union_of_members(Vf)) --> element_of_set(U::'a,f1(Vf::'a,U))) &    \
 | 
| 2732 | \ (\\<forall>U Vf. element_of_set(U::'a,union_of_members(Vf)) --> element_of_collection(f1(Vf::'a,U),Vf)) & \ | |
| 2733 | \ (\\<forall>Vf U X. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_set(X::'a,f10(Vf::'a,U,X))) & \ | |
| 2734 | \ (\\<forall>U X Vf. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_collection(f10(Vf::'a,U,X),Vf)) & \ | |
| 2735 | \ (\\<forall>Vf X U. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> subset_sets(f10(Vf::'a,U,X),U)) & \ | |
| 2736 | \ (\\<forall>Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & \ | |
| 2737 | \ (\\<forall>Vf Uu11 U. element_of_set(f11(Vf::'a,U),Uu11) & element_of_collection(Uu11::'a,Vf) & subset_sets(Uu11::'a,U) --> element_of_collection(U::'a,top_of_basis(Vf))) & \ | |
| 2738 | \ (\\<forall>X U Y. element_of_set(U::'a,X) --> subset_sets(X::'a,Y) | element_of_set(U::'a,Y)) & \ | |
| 2739 | \ (\\<forall>Y X Z. subset_sets(X::'a,Y) & element_of_collection(Y::'a,Z) --> subset_sets(X::'a,union_of_members(Z))) & \ | |
| 2740 | \ (\\<forall>X U Y. subset_collections(X::'a,Y) & element_of_collection(U::'a,X) --> element_of_collection(U::'a,Y)) & \ | |
| 8557 | 2741 | \ (subset_collections(g::'a,top_of_basis(f))) & \ | 
| 2742 | \ (~element_of_collection(union_of_members(g),top_of_basis(f))) --> False", | |
| 9841 | 2743 | meson_tac 1); | 
| 8557 | 2744 | |
| 2745 |