| author | wenzelm | 
| Sun, 04 Sep 2011 19:36:19 +0200 | |
| changeset 44706 | fe319b45315c | 
| parent 44433 | 9fbee4aab115 | 
| child 44848 | f4d0b060c7ca | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35036diff
changeset | 1 | (* Title: HOL/Groups.thy | 
| 29269 
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
 wenzelm parents: 
28823diff
changeset | 2 | Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad | 
| 14738 | 3 | *) | 
| 4 | ||
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35036diff
changeset | 5 | header {* Groups, also combined with orderings *}
 | 
| 14738 | 6 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35036diff
changeset | 7 | theory Groups | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 8 | imports Orderings | 
| 37986 
3b3187adf292
use file names relative to master directory of theory source -- Proof General can now handle that due to the ThyLoad.add_path deception (cf. 3ceccd415145);
 wenzelm parents: 
37889diff
changeset | 9 | uses ("Tools/abel_cancel.ML")
 | 
| 15131 | 10 | begin | 
| 14738 | 11 | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 12 | subsection {* Fact collections *}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 13 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 14 | ML {*
 | 
| 36343 | 15 | structure Ac_Simps = Named_Thms( | 
| 16 | val name = "ac_simps" | |
| 17 | val description = "associativity and commutativity simplification rules" | |
| 18 | ) | |
| 19 | *} | |
| 20 | ||
| 21 | setup Ac_Simps.setup | |
| 22 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 23 | text{* The rewrites accumulated in @{text algebra_simps} deal with the
 | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 24 | classical algebraic structures of groups, rings and family. They simplify | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 25 | terms by multiplying everything out (in case of a ring) and bringing sums and | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 26 | products into a canonical form (by ordered rewriting). As a result it decides | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 27 | group and ring equalities but also helps with inequalities. | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 28 | |
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 29 | Of course it also works for fields, but it knows nothing about multiplicative | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 30 | inverses or division. This is catered for by @{text field_simps}. *}
 | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 31 | |
| 36343 | 32 | ML {*
 | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 33 | structure Algebra_Simps = Named_Thms( | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 34 | val name = "algebra_simps" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 35 | val description = "algebra simplification rules" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 36 | ) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 37 | *} | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 38 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 39 | setup Algebra_Simps.setup | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 40 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 41 | text{* Lemmas @{text field_simps} multiply with denominators in (in)equations
 | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 42 | if they can be proved to be non-zero (for equations) or positive/negative | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 43 | (for inequations). Can be too aggressive and is therefore separate from the | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 44 | more benign @{text algebra_simps}. *}
 | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 45 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 46 | ML {*
 | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 47 | structure Field_Simps = Named_Thms( | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 48 | val name = "field_simps" | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 49 | val description = "algebra simplification rules for fields" | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 50 | ) | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 51 | *} | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 52 | |
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 53 | setup Field_Simps.setup | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 54 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 55 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 56 | subsection {* Abstract structures *}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 57 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 58 | text {*
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 59 | These locales provide basic structures for interpretation into | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 60 | bigger structures; extensions require careful thinking, otherwise | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 61 | undesired effects may occur due to interpretation. | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 62 | *} | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 63 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 64 | locale semigroup = | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 65 | fixes f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 66 | assumes assoc [ac_simps]: "a * b * c = a * (b * c)" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 67 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 68 | locale abel_semigroup = semigroup + | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 69 | assumes commute [ac_simps]: "a * b = b * a" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 70 | begin | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 71 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 72 | lemma left_commute [ac_simps]: | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 73 | "b * (a * c) = a * (b * c)" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 74 | proof - | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 75 | have "(b * a) * c = (a * b) * c" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 76 | by (simp only: commute) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 77 | then show ?thesis | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 78 | by (simp only: assoc) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 79 | qed | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 80 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 81 | end | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 82 | |
| 35720 | 83 | locale monoid = semigroup + | 
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 84 |   fixes z :: 'a ("1")
 | 
| 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 85 | assumes left_neutral [simp]: "1 * a = a" | 
| 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 86 | assumes right_neutral [simp]: "a * 1 = a" | 
| 35720 | 87 | |
| 88 | locale comm_monoid = abel_semigroup + | |
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 89 |   fixes z :: 'a ("1")
 | 
| 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 90 | assumes comm_neutral: "a * 1 = a" | 
| 35720 | 91 | |
| 92 | sublocale comm_monoid < monoid proof | |
| 93 | qed (simp_all add: commute comm_neutral) | |
| 94 | ||
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 95 | |
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 96 | subsection {* Generic operations *}
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 97 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 98 | class zero = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 99 |   fixes zero :: 'a  ("0")
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 100 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 101 | class one = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 102 |   fixes one  :: 'a  ("1")
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 103 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 104 | hide_const (open) zero one | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 105 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 106 | lemma Let_0 [simp]: "Let 0 f = f 0" | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 107 | unfolding Let_def .. | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 108 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 109 | lemma Let_1 [simp]: "Let 1 f = f 1" | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 110 | unfolding Let_def .. | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 111 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 112 | setup {*
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 113 | Reorient_Proc.add | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 114 |     (fn Const(@{const_name Groups.zero}, _) => true
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 115 |       | Const(@{const_name Groups.one}, _) => true
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 116 | | _ => false) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 117 | *} | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 118 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 119 | simproc_setup reorient_zero ("0 = x") = Reorient_Proc.proc
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 120 | simproc_setup reorient_one ("1 = x") = Reorient_Proc.proc
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 121 | |
| 39134 
917b4b6ba3d2
turned show_sorts/show_types into proper configuration options;
 wenzelm parents: 
37986diff
changeset | 122 | typed_print_translation (advanced) {*
 | 
| 42247 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 123 | let | 
| 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 124 | fun tr' c = (c, fn ctxt => fn T => fn ts => | 
| 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 125 | if not (null ts) orelse T = dummyT | 
| 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 126 | orelse not (Config.get ctxt show_types) andalso can Term.dest_Type T | 
| 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 127 | then raise Match | 
| 42248 | 128 | else | 
| 129 |         Syntax.const @{syntax_const "_constrain"} $ Syntax.const c $
 | |
| 130 | Syntax_Phases.term_of_typ ctxt T); | |
| 42247 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 131 |   in map tr' [@{const_syntax Groups.one}, @{const_syntax Groups.zero}] end;
 | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 132 | *} -- {* show types that are presumably too general *}
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 133 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 134 | class plus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 135 | fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 136 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 137 | class minus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 138 | fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 139 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 140 | class uminus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 141 |   fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 142 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 143 | class times = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 144 | fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 145 | |
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 146 | |
| 23085 | 147 | subsection {* Semigroups and Monoids *}
 | 
| 14738 | 148 | |
| 22390 | 149 | class semigroup_add = plus + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 150 | assumes add_assoc [algebra_simps, field_simps]: "(a + b) + c = a + (b + c)" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 151 | |
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 152 | sublocale semigroup_add < add!: semigroup plus proof | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 153 | qed (fact add_assoc) | 
| 22390 | 154 | |
| 155 | class ab_semigroup_add = semigroup_add + | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 156 | assumes add_commute [algebra_simps, field_simps]: "a + b = b + a" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 157 | |
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 158 | sublocale ab_semigroup_add < add!: abel_semigroup plus proof | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 159 | qed (fact add_commute) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 160 | |
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 161 | context ab_semigroup_add | 
| 25062 | 162 | begin | 
| 14738 | 163 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 164 | lemmas add_left_commute [algebra_simps, field_simps] = add.left_commute | 
| 25062 | 165 | |
| 166 | theorems add_ac = add_assoc add_commute add_left_commute | |
| 167 | ||
| 168 | end | |
| 14738 | 169 | |
| 170 | theorems add_ac = add_assoc add_commute add_left_commute | |
| 171 | ||
| 22390 | 172 | class semigroup_mult = times + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 173 | assumes mult_assoc [algebra_simps, field_simps]: "(a * b) * c = a * (b * c)" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 174 | |
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 175 | sublocale semigroup_mult < mult!: semigroup times proof | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 176 | qed (fact mult_assoc) | 
| 14738 | 177 | |
| 22390 | 178 | class ab_semigroup_mult = semigroup_mult + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 179 | assumes mult_commute [algebra_simps, field_simps]: "a * b = b * a" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 180 | |
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 181 | sublocale ab_semigroup_mult < mult!: abel_semigroup times proof | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 182 | qed (fact mult_commute) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 183 | |
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 184 | context ab_semigroup_mult | 
| 23181 | 185 | begin | 
| 14738 | 186 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 187 | lemmas mult_left_commute [algebra_simps, field_simps] = mult.left_commute | 
| 25062 | 188 | |
| 189 | theorems mult_ac = mult_assoc mult_commute mult_left_commute | |
| 23181 | 190 | |
| 191 | end | |
| 14738 | 192 | |
| 193 | theorems mult_ac = mult_assoc mult_commute mult_left_commute | |
| 194 | ||
| 23085 | 195 | class monoid_add = zero + semigroup_add + | 
| 35720 | 196 | assumes add_0_left: "0 + a = a" | 
| 197 | and add_0_right: "a + 0 = a" | |
| 198 | ||
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 199 | sublocale monoid_add < add!: monoid plus 0 proof | 
| 35720 | 200 | qed (fact add_0_left add_0_right)+ | 
| 23085 | 201 | |
| 26071 | 202 | lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0" | 
| 29667 | 203 | by (rule eq_commute) | 
| 26071 | 204 | |
| 22390 | 205 | class comm_monoid_add = zero + ab_semigroup_add + | 
| 25062 | 206 | assumes add_0: "0 + a = a" | 
| 23085 | 207 | |
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 208 | sublocale comm_monoid_add < add!: comm_monoid plus 0 proof | 
| 35720 | 209 | qed (insert add_0, simp add: ac_simps) | 
| 25062 | 210 | |
| 35720 | 211 | subclass (in comm_monoid_add) monoid_add proof | 
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 212 | qed (fact add.left_neutral add.right_neutral)+ | 
| 14738 | 213 | |
| 22390 | 214 | class monoid_mult = one + semigroup_mult + | 
| 35720 | 215 | assumes mult_1_left: "1 * a = a" | 
| 216 | and mult_1_right: "a * 1 = a" | |
| 217 | ||
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 218 | sublocale monoid_mult < mult!: monoid times 1 proof | 
| 35720 | 219 | qed (fact mult_1_left mult_1_right)+ | 
| 14738 | 220 | |
| 26071 | 221 | lemma one_reorient: "1 = x \<longleftrightarrow> x = 1" | 
| 29667 | 222 | by (rule eq_commute) | 
| 26071 | 223 | |
| 22390 | 224 | class comm_monoid_mult = one + ab_semigroup_mult + | 
| 25062 | 225 | assumes mult_1: "1 * a = a" | 
| 14738 | 226 | |
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 227 | sublocale comm_monoid_mult < mult!: comm_monoid times 1 proof | 
| 35720 | 228 | qed (insert mult_1, simp add: ac_simps) | 
| 25062 | 229 | |
| 35720 | 230 | subclass (in comm_monoid_mult) monoid_mult proof | 
| 35723 
b6cf98f25c3f
tuned monoid locales and prefix of sublocale interpretations
 haftmann parents: 
35720diff
changeset | 231 | qed (fact mult.left_neutral mult.right_neutral)+ | 
| 14738 | 232 | |
| 22390 | 233 | class cancel_semigroup_add = semigroup_add + | 
| 25062 | 234 | assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | 
| 235 | assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c" | |
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 236 | begin | 
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 237 | |
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 238 | lemma add_left_cancel [simp]: | 
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 239 | "a + b = a + c \<longleftrightarrow> b = c" | 
| 29667 | 240 | by (blast dest: add_left_imp_eq) | 
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 241 | |
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 242 | lemma add_right_cancel [simp]: | 
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 243 | "b + a = c + a \<longleftrightarrow> b = c" | 
| 29667 | 244 | by (blast dest: add_right_imp_eq) | 
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 245 | |
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 246 | end | 
| 14738 | 247 | |
| 22390 | 248 | class cancel_ab_semigroup_add = ab_semigroup_add + | 
| 25062 | 249 | assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | 
| 25267 | 250 | begin | 
| 14738 | 251 | |
| 25267 | 252 | subclass cancel_semigroup_add | 
| 28823 | 253 | proof | 
| 22390 | 254 | fix a b c :: 'a | 
| 255 | assume "a + b = a + c" | |
| 256 | then show "b = c" by (rule add_imp_eq) | |
| 257 | next | |
| 14738 | 258 | fix a b c :: 'a | 
| 259 | assume "b + a = c + a" | |
| 22390 | 260 | then have "a + b = a + c" by (simp only: add_commute) | 
| 261 | then show "b = c" by (rule add_imp_eq) | |
| 14738 | 262 | qed | 
| 263 | ||
| 25267 | 264 | end | 
| 265 | ||
| 29904 | 266 | class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add | 
| 267 | ||
| 268 | ||
| 23085 | 269 | subsection {* Groups *}
 | 
| 270 | ||
| 25762 | 271 | class group_add = minus + uminus + monoid_add + | 
| 25062 | 272 | assumes left_minus [simp]: "- a + a = 0" | 
| 273 | assumes diff_minus: "a - b = a + (- b)" | |
| 274 | begin | |
| 23085 | 275 | |
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 276 | lemma minus_unique: | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 277 | assumes "a + b = 0" shows "- a = b" | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 278 | proof - | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 279 | have "- a = - a + (a + b)" using assms by simp | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 280 | also have "\<dots> = b" by (simp add: add_assoc [symmetric]) | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 281 | finally show ?thesis . | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 282 | qed | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 283 | |
| 40368 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 284 | |
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 285 | lemmas equals_zero_I = minus_unique (* legacy name *) | 
| 14738 | 286 | |
| 25062 | 287 | lemma minus_zero [simp]: "- 0 = 0" | 
| 14738 | 288 | proof - | 
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 289 | have "0 + 0 = 0" by (rule add_0_right) | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 290 | thus "- 0 = 0" by (rule minus_unique) | 
| 14738 | 291 | qed | 
| 292 | ||
| 25062 | 293 | lemma minus_minus [simp]: "- (- a) = a" | 
| 23085 | 294 | proof - | 
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 295 | have "- a + a = 0" by (rule left_minus) | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 296 | thus "- (- a) = a" by (rule minus_unique) | 
| 23085 | 297 | qed | 
| 14738 | 298 | |
| 25062 | 299 | lemma right_minus [simp]: "a + - a = 0" | 
| 14738 | 300 | proof - | 
| 25062 | 301 | have "a + - a = - (- a) + - a" by simp | 
| 302 | also have "\<dots> = 0" by (rule left_minus) | |
| 14738 | 303 | finally show ?thesis . | 
| 304 | qed | |
| 305 | ||
| 40368 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 306 | subclass cancel_semigroup_add | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 307 | proof | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 308 | fix a b c :: 'a | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 309 | assume "a + b = a + c" | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 310 | then have "- a + a + b = - a + a + c" | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 311 | unfolding add_assoc by simp | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 312 | then show "b = c" by simp | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 313 | next | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 314 | fix a b c :: 'a | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 315 | assume "b + a = c + a" | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 316 | then have "b + a + - a = c + a + - a" by simp | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 317 | then show "b = c" unfolding add_assoc by simp | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 318 | qed | 
| 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 319 | |
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 320 | lemma minus_add_cancel: "- a + (a + b) = b" | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 321 | by (simp add: add_assoc [symmetric]) | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 322 | |
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 323 | lemma add_minus_cancel: "a + (- a + b) = b" | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 324 | by (simp add: add_assoc [symmetric]) | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 325 | |
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 326 | lemma minus_add: "- (a + b) = - b + - a" | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 327 | proof - | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 328 | have "(a + b) + (- b + - a) = 0" | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 329 | by (simp add: add_assoc add_minus_cancel) | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 330 | thus "- (a + b) = - b + - a" | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 331 | by (rule minus_unique) | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 332 | qed | 
| 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 333 | |
| 25062 | 334 | lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b" | 
| 14738 | 335 | proof | 
| 23085 | 336 | assume "a - b = 0" | 
| 337 | have "a = (a - b) + b" by (simp add:diff_minus add_assoc) | |
| 338 | also have "\<dots> = b" using `a - b = 0` by simp | |
| 339 | finally show "a = b" . | |
| 14738 | 340 | next | 
| 23085 | 341 | assume "a = b" thus "a - b = 0" by (simp add: diff_minus) | 
| 14738 | 342 | qed | 
| 343 | ||
| 25062 | 344 | lemma diff_self [simp]: "a - a = 0" | 
| 29667 | 345 | by (simp add: diff_minus) | 
| 14738 | 346 | |
| 25062 | 347 | lemma diff_0 [simp]: "0 - a = - a" | 
| 29667 | 348 | by (simp add: diff_minus) | 
| 14738 | 349 | |
| 25062 | 350 | lemma diff_0_right [simp]: "a - 0 = a" | 
| 29667 | 351 | by (simp add: diff_minus) | 
| 14738 | 352 | |
| 25062 | 353 | lemma diff_minus_eq_add [simp]: "a - - b = a + b" | 
| 29667 | 354 | by (simp add: diff_minus) | 
| 14738 | 355 | |
| 25062 | 356 | lemma neg_equal_iff_equal [simp]: | 
| 357 | "- a = - b \<longleftrightarrow> a = b" | |
| 14738 | 358 | proof | 
| 359 | assume "- a = - b" | |
| 29667 | 360 | hence "- (- a) = - (- b)" by simp | 
| 25062 | 361 | thus "a = b" by simp | 
| 14738 | 362 | next | 
| 25062 | 363 | assume "a = b" | 
| 364 | thus "- a = - b" by simp | |
| 14738 | 365 | qed | 
| 366 | ||
| 25062 | 367 | lemma neg_equal_0_iff_equal [simp]: | 
| 368 | "- a = 0 \<longleftrightarrow> a = 0" | |
| 29667 | 369 | by (subst neg_equal_iff_equal [symmetric], simp) | 
| 14738 | 370 | |
| 25062 | 371 | lemma neg_0_equal_iff_equal [simp]: | 
| 372 | "0 = - a \<longleftrightarrow> 0 = a" | |
| 29667 | 373 | by (subst neg_equal_iff_equal [symmetric], simp) | 
| 14738 | 374 | |
| 375 | text{*The next two equations can make the simplifier loop!*}
 | |
| 376 | ||
| 25062 | 377 | lemma equation_minus_iff: | 
| 378 | "a = - b \<longleftrightarrow> b = - a" | |
| 14738 | 379 | proof - | 
| 25062 | 380 | have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal) | 
| 381 | thus ?thesis by (simp add: eq_commute) | |
| 382 | qed | |
| 383 | ||
| 384 | lemma minus_equation_iff: | |
| 385 | "- a = b \<longleftrightarrow> - b = a" | |
| 386 | proof - | |
| 387 | have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal) | |
| 14738 | 388 | thus ?thesis by (simp add: eq_commute) | 
| 389 | qed | |
| 390 | ||
| 28130 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 huffman parents: 
27516diff
changeset | 391 | lemma diff_add_cancel: "a - b + b = a" | 
| 29667 | 392 | by (simp add: diff_minus add_assoc) | 
| 28130 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 huffman parents: 
27516diff
changeset | 393 | |
| 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 huffman parents: 
27516diff
changeset | 394 | lemma add_diff_cancel: "a + b - b = a" | 
| 29667 | 395 | by (simp add: diff_minus add_assoc) | 
| 396 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 397 | declare diff_minus[symmetric, algebra_simps, field_simps] | 
| 28130 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 huffman parents: 
27516diff
changeset | 398 | |
| 29914 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 399 | lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0" | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 400 | proof | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 401 | assume "a = - b" then show "a + b = 0" by simp | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 402 | next | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 403 | assume "a + b = 0" | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 404 | moreover have "a + (b + - b) = (a + b) + - b" | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 405 | by (simp only: add_assoc) | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 406 | ultimately show "a = - b" by simp | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 407 | qed | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 408 | |
| 44348 | 409 | lemma add_eq_0_iff: "x + y = 0 \<longleftrightarrow> y = - x" | 
| 410 | unfolding eq_neg_iff_add_eq_0 [symmetric] | |
| 411 | by (rule equation_minus_iff) | |
| 412 | ||
| 25062 | 413 | end | 
| 414 | ||
| 25762 | 415 | class ab_group_add = minus + uminus + comm_monoid_add + | 
| 25062 | 416 | assumes ab_left_minus: "- a + a = 0" | 
| 417 | assumes ab_diff_minus: "a - b = a + (- b)" | |
| 25267 | 418 | begin | 
| 25062 | 419 | |
| 25267 | 420 | subclass group_add | 
| 28823 | 421 | proof qed (simp_all add: ab_left_minus ab_diff_minus) | 
| 25062 | 422 | |
| 29904 | 423 | subclass cancel_comm_monoid_add | 
| 28823 | 424 | proof | 
| 25062 | 425 | fix a b c :: 'a | 
| 426 | assume "a + b = a + c" | |
| 427 | then have "- a + a + b = - a + a + c" | |
| 428 | unfolding add_assoc by simp | |
| 429 | then show "b = c" by simp | |
| 430 | qed | |
| 431 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 432 | lemma uminus_add_conv_diff[algebra_simps, field_simps]: | 
| 25062 | 433 | "- a + b = b - a" | 
| 29667 | 434 | by (simp add:diff_minus add_commute) | 
| 25062 | 435 | |
| 436 | lemma minus_add_distrib [simp]: | |
| 437 | "- (a + b) = - a + - b" | |
| 34146 
14595e0c27e8
rename equals_zero_I to minus_unique (keep old name too)
 huffman parents: 
33364diff
changeset | 438 | by (rule minus_unique) (simp add: add_ac) | 
| 25062 | 439 | |
| 440 | lemma minus_diff_eq [simp]: | |
| 441 | "- (a - b) = b - a" | |
| 29667 | 442 | by (simp add: diff_minus add_commute) | 
| 25077 | 443 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 444 | lemma add_diff_eq[algebra_simps, field_simps]: "a + (b - c) = (a + b) - c" | 
| 29667 | 445 | by (simp add: diff_minus add_ac) | 
| 25077 | 446 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 447 | lemma diff_add_eq[algebra_simps, field_simps]: "(a - b) + c = (a + c) - b" | 
| 29667 | 448 | by (simp add: diff_minus add_ac) | 
| 25077 | 449 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 450 | lemma diff_eq_eq[algebra_simps, field_simps]: "a - b = c \<longleftrightarrow> a = c + b" | 
| 29667 | 451 | by (auto simp add: diff_minus add_assoc) | 
| 25077 | 452 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 453 | lemma eq_diff_eq[algebra_simps, field_simps]: "a = c - b \<longleftrightarrow> a + b = c" | 
| 29667 | 454 | by (auto simp add: diff_minus add_assoc) | 
| 25077 | 455 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 456 | lemma diff_diff_eq[algebra_simps, field_simps]: "(a - b) - c = a - (b + c)" | 
| 29667 | 457 | by (simp add: diff_minus add_ac) | 
| 25077 | 458 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 459 | lemma diff_diff_eq2[algebra_simps, field_simps]: "a - (b - c) = (a + c) - b" | 
| 29667 | 460 | by (simp add: diff_minus add_ac) | 
| 25077 | 461 | |
| 462 | lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0" | |
| 29667 | 463 | by (simp add: algebra_simps) | 
| 25077 | 464 | |
| 35216 | 465 | (* FIXME: duplicates right_minus_eq from class group_add *) | 
| 466 | (* but only this one is declared as a simp rule. *) | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35723diff
changeset | 467 | lemma diff_eq_0_iff_eq [simp, no_atp]: "a - b = 0 \<longleftrightarrow> a = b" | 
| 44348 | 468 | by (rule right_minus_eq) | 
| 30629 | 469 | |
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 470 | lemma diff_eq_diff_eq: | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 471 | "a - b = c - d \<Longrightarrow> a = b \<longleftrightarrow> c = d" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 472 | by (auto simp add: algebra_simps) | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 473 | |
| 25062 | 474 | end | 
| 14738 | 475 | |
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 476 | |
| 14738 | 477 | subsection {* (Partially) Ordered Groups *} 
 | 
| 478 | ||
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 479 | text {*
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 480 | The theory of partially ordered groups is taken from the books: | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 481 |   \begin{itemize}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 482 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 483 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 484 |   \end{itemize}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 485 | Most of the used notions can also be looked up in | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 486 |   \begin{itemize}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 487 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 488 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 489 |   \end{itemize}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 490 | *} | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 491 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 492 | class ordered_ab_semigroup_add = order + ab_semigroup_add + | 
| 25062 | 493 | assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b" | 
| 494 | begin | |
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 495 | |
| 25062 | 496 | lemma add_right_mono: | 
| 497 | "a \<le> b \<Longrightarrow> a + c \<le> b + c" | |
| 29667 | 498 | by (simp add: add_commute [of _ c] add_left_mono) | 
| 14738 | 499 | |
| 500 | text {* non-strict, in both arguments *}
 | |
| 501 | lemma add_mono: | |
| 25062 | 502 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d" | 
| 14738 | 503 | apply (erule add_right_mono [THEN order_trans]) | 
| 504 | apply (simp add: add_commute add_left_mono) | |
| 505 | done | |
| 506 | ||
| 25062 | 507 | end | 
| 508 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 509 | class ordered_cancel_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 510 | ordered_ab_semigroup_add + cancel_ab_semigroup_add | 
| 25062 | 511 | begin | 
| 512 | ||
| 14738 | 513 | lemma add_strict_left_mono: | 
| 25062 | 514 | "a < b \<Longrightarrow> c + a < c + b" | 
| 29667 | 515 | by (auto simp add: less_le add_left_mono) | 
| 14738 | 516 | |
| 517 | lemma add_strict_right_mono: | |
| 25062 | 518 | "a < b \<Longrightarrow> a + c < b + c" | 
| 29667 | 519 | by (simp add: add_commute [of _ c] add_strict_left_mono) | 
| 14738 | 520 | |
| 521 | text{*Strict monotonicity in both arguments*}
 | |
| 25062 | 522 | lemma add_strict_mono: | 
| 523 | "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | |
| 524 | apply (erule add_strict_right_mono [THEN less_trans]) | |
| 14738 | 525 | apply (erule add_strict_left_mono) | 
| 526 | done | |
| 527 | ||
| 528 | lemma add_less_le_mono: | |
| 25062 | 529 | "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d" | 
| 530 | apply (erule add_strict_right_mono [THEN less_le_trans]) | |
| 531 | apply (erule add_left_mono) | |
| 14738 | 532 | done | 
| 533 | ||
| 534 | lemma add_le_less_mono: | |
| 25062 | 535 | "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | 
| 536 | apply (erule add_right_mono [THEN le_less_trans]) | |
| 14738 | 537 | apply (erule add_strict_left_mono) | 
| 538 | done | |
| 539 | ||
| 25062 | 540 | end | 
| 541 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 542 | class ordered_ab_semigroup_add_imp_le = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 543 | ordered_cancel_ab_semigroup_add + | 
| 25062 | 544 | assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b" | 
| 545 | begin | |
| 546 | ||
| 14738 | 547 | lemma add_less_imp_less_left: | 
| 29667 | 548 | assumes less: "c + a < c + b" shows "a < b" | 
| 14738 | 549 | proof - | 
| 550 | from less have le: "c + a <= c + b" by (simp add: order_le_less) | |
| 551 | have "a <= b" | |
| 552 | apply (insert le) | |
| 553 | apply (drule add_le_imp_le_left) | |
| 554 | by (insert le, drule add_le_imp_le_left, assumption) | |
| 555 | moreover have "a \<noteq> b" | |
| 556 | proof (rule ccontr) | |
| 557 | assume "~(a \<noteq> b)" | |
| 558 | then have "a = b" by simp | |
| 559 | then have "c + a = c + b" by simp | |
| 560 | with less show "False"by simp | |
| 561 | qed | |
| 562 | ultimately show "a < b" by (simp add: order_le_less) | |
| 563 | qed | |
| 564 | ||
| 565 | lemma add_less_imp_less_right: | |
| 25062 | 566 | "a + c < b + c \<Longrightarrow> a < b" | 
| 14738 | 567 | apply (rule add_less_imp_less_left [of c]) | 
| 568 | apply (simp add: add_commute) | |
| 569 | done | |
| 570 | ||
| 571 | lemma add_less_cancel_left [simp]: | |
| 25062 | 572 | "c + a < c + b \<longleftrightarrow> a < b" | 
| 29667 | 573 | by (blast intro: add_less_imp_less_left add_strict_left_mono) | 
| 14738 | 574 | |
| 575 | lemma add_less_cancel_right [simp]: | |
| 25062 | 576 | "a + c < b + c \<longleftrightarrow> a < b" | 
| 29667 | 577 | by (blast intro: add_less_imp_less_right add_strict_right_mono) | 
| 14738 | 578 | |
| 579 | lemma add_le_cancel_left [simp]: | |
| 25062 | 580 | "c + a \<le> c + b \<longleftrightarrow> a \<le> b" | 
| 29667 | 581 | by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) | 
| 14738 | 582 | |
| 583 | lemma add_le_cancel_right [simp]: | |
| 25062 | 584 | "a + c \<le> b + c \<longleftrightarrow> a \<le> b" | 
| 29667 | 585 | by (simp add: add_commute [of a c] add_commute [of b c]) | 
| 14738 | 586 | |
| 587 | lemma add_le_imp_le_right: | |
| 25062 | 588 | "a + c \<le> b + c \<Longrightarrow> a \<le> b" | 
| 29667 | 589 | by simp | 
| 25062 | 590 | |
| 25077 | 591 | lemma max_add_distrib_left: | 
| 592 | "max x y + z = max (x + z) (y + z)" | |
| 593 | unfolding max_def by auto | |
| 594 | ||
| 595 | lemma min_add_distrib_left: | |
| 596 | "min x y + z = min (x + z) (y + z)" | |
| 597 | unfolding min_def by auto | |
| 598 | ||
| 25062 | 599 | end | 
| 600 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 601 | subsection {* Support for reasoning about signs *}
 | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 602 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 603 | class ordered_comm_monoid_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 604 | ordered_cancel_ab_semigroup_add + comm_monoid_add | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 605 | begin | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 606 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 607 | lemma add_pos_nonneg: | 
| 29667 | 608 | assumes "0 < a" and "0 \<le> b" shows "0 < a + b" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 609 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 610 | have "0 + 0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 611 | using assms by (rule add_less_le_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 612 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 613 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 614 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 615 | lemma add_pos_pos: | 
| 29667 | 616 | assumes "0 < a" and "0 < b" shows "0 < a + b" | 
| 617 | by (rule add_pos_nonneg) (insert assms, auto) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 618 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 619 | lemma add_nonneg_pos: | 
| 29667 | 620 | assumes "0 \<le> a" and "0 < b" shows "0 < a + b" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 621 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 622 | have "0 + 0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 623 | using assms by (rule add_le_less_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 624 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 625 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 626 | |
| 36977 
71c8973a604b
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
 huffman parents: 
36348diff
changeset | 627 | lemma add_nonneg_nonneg [simp]: | 
| 29667 | 628 | assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 629 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 630 | have "0 + 0 \<le> a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 631 | using assms by (rule add_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 632 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 633 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 634 | |
| 30691 | 635 | lemma add_neg_nonpos: | 
| 29667 | 636 | assumes "a < 0" and "b \<le> 0" shows "a + b < 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 637 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 638 | have "a + b < 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 639 | using assms by (rule add_less_le_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 640 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 641 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 642 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 643 | lemma add_neg_neg: | 
| 29667 | 644 | assumes "a < 0" and "b < 0" shows "a + b < 0" | 
| 645 | by (rule add_neg_nonpos) (insert assms, auto) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 646 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 647 | lemma add_nonpos_neg: | 
| 29667 | 648 | assumes "a \<le> 0" and "b < 0" shows "a + b < 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 649 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 650 | have "a + b < 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 651 | using assms by (rule add_le_less_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 652 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 653 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 654 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 655 | lemma add_nonpos_nonpos: | 
| 29667 | 656 | assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 657 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 658 | have "a + b \<le> 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 659 | using assms by (rule add_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 660 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 661 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 662 | |
| 30691 | 663 | lemmas add_sign_intros = | 
| 664 | add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg | |
| 665 | add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos | |
| 666 | ||
| 29886 | 667 | lemma add_nonneg_eq_0_iff: | 
| 668 | assumes x: "0 \<le> x" and y: "0 \<le> y" | |
| 669 | shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | |
| 670 | proof (intro iffI conjI) | |
| 671 | have "x = x + 0" by simp | |
| 672 | also have "x + 0 \<le> x + y" using y by (rule add_left_mono) | |
| 673 | also assume "x + y = 0" | |
| 674 | also have "0 \<le> x" using x . | |
| 675 | finally show "x = 0" . | |
| 676 | next | |
| 677 | have "y = 0 + y" by simp | |
| 678 | also have "0 + y \<le> x + y" using x by (rule add_right_mono) | |
| 679 | also assume "x + y = 0" | |
| 680 | also have "0 \<le> y" using y . | |
| 681 | finally show "y = 0" . | |
| 682 | next | |
| 683 | assume "x = 0 \<and> y = 0" | |
| 684 | then show "x + y = 0" by simp | |
| 685 | qed | |
| 686 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 687 | end | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 688 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 689 | class ordered_ab_group_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 690 | ab_group_add + ordered_ab_semigroup_add | 
| 25062 | 691 | begin | 
| 692 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 693 | subclass ordered_cancel_ab_semigroup_add .. | 
| 25062 | 694 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 695 | subclass ordered_ab_semigroup_add_imp_le | 
| 28823 | 696 | proof | 
| 25062 | 697 | fix a b c :: 'a | 
| 698 | assume "c + a \<le> c + b" | |
| 699 | hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono) | |
| 700 | hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc) | |
| 701 | thus "a \<le> b" by simp | |
| 702 | qed | |
| 703 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 704 | subclass ordered_comm_monoid_add .. | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 705 | |
| 25077 | 706 | lemma max_diff_distrib_left: | 
| 707 | shows "max x y - z = max (x - z) (y - z)" | |
| 29667 | 708 | by (simp add: diff_minus, rule max_add_distrib_left) | 
| 25077 | 709 | |
| 710 | lemma min_diff_distrib_left: | |
| 711 | shows "min x y - z = min (x - z) (y - z)" | |
| 29667 | 712 | by (simp add: diff_minus, rule min_add_distrib_left) | 
| 25077 | 713 | |
| 714 | lemma le_imp_neg_le: | |
| 29667 | 715 | assumes "a \<le> b" shows "-b \<le> -a" | 
| 25077 | 716 | proof - | 
| 29667 | 717 | have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono) | 
| 718 | hence "0 \<le> -a+b" by simp | |
| 719 | hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono) | |
| 720 | thus ?thesis by (simp add: add_assoc) | |
| 25077 | 721 | qed | 
| 722 | ||
| 723 | lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b" | |
| 724 | proof | |
| 725 | assume "- b \<le> - a" | |
| 29667 | 726 | hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le) | 
| 25077 | 727 | thus "a\<le>b" by simp | 
| 728 | next | |
| 729 | assume "a\<le>b" | |
| 730 | thus "-b \<le> -a" by (rule le_imp_neg_le) | |
| 731 | qed | |
| 732 | ||
| 733 | lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 29667 | 734 | by (subst neg_le_iff_le [symmetric], simp) | 
| 25077 | 735 | |
| 736 | lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 29667 | 737 | by (subst neg_le_iff_le [symmetric], simp) | 
| 25077 | 738 | |
| 739 | lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b" | |
| 29667 | 740 | by (force simp add: less_le) | 
| 25077 | 741 | |
| 742 | lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a" | |
| 29667 | 743 | by (subst neg_less_iff_less [symmetric], simp) | 
| 25077 | 744 | |
| 745 | lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0" | |
| 29667 | 746 | by (subst neg_less_iff_less [symmetric], simp) | 
| 25077 | 747 | |
| 748 | text{*The next several equations can make the simplifier loop!*}
 | |
| 749 | ||
| 750 | lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a" | |
| 751 | proof - | |
| 752 | have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less) | |
| 753 | thus ?thesis by simp | |
| 754 | qed | |
| 755 | ||
| 756 | lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a" | |
| 757 | proof - | |
| 758 | have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less) | |
| 759 | thus ?thesis by simp | |
| 760 | qed | |
| 761 | ||
| 762 | lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a" | |
| 763 | proof - | |
| 764 | have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff) | |
| 765 | have "(- (- a) <= -b) = (b <= - a)" | |
| 766 | apply (auto simp only: le_less) | |
| 767 | apply (drule mm) | |
| 768 | apply (simp_all) | |
| 769 | apply (drule mm[simplified], assumption) | |
| 770 | done | |
| 771 | then show ?thesis by simp | |
| 772 | qed | |
| 773 | ||
| 774 | lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a" | |
| 29667 | 775 | by (auto simp add: le_less minus_less_iff) | 
| 25077 | 776 | |
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 777 | lemma diff_less_0_iff_less [simp, no_atp]: | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 778 | "a - b < 0 \<longleftrightarrow> a < b" | 
| 25077 | 779 | proof - | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 780 | have "a - b < 0 \<longleftrightarrow> a + (- b) < b + (- b)" by (simp add: diff_minus) | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 781 | also have "... \<longleftrightarrow> a < b" by (simp only: add_less_cancel_right) | 
| 25077 | 782 | finally show ?thesis . | 
| 783 | qed | |
| 784 | ||
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 785 | lemmas less_iff_diff_less_0 = diff_less_0_iff_less [symmetric] | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 786 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 787 | lemma diff_less_eq[algebra_simps, field_simps]: "a - b < c \<longleftrightarrow> a < c + b" | 
| 25077 | 788 | apply (subst less_iff_diff_less_0 [of a]) | 
| 789 | apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst]) | |
| 790 | apply (simp add: diff_minus add_ac) | |
| 791 | done | |
| 792 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 793 | lemma less_diff_eq[algebra_simps, field_simps]: "a < c - b \<longleftrightarrow> a + b < c" | 
| 36302 | 794 | apply (subst less_iff_diff_less_0 [of "a + b"]) | 
| 25077 | 795 | apply (subst less_iff_diff_less_0 [of a]) | 
| 796 | apply (simp add: diff_minus add_ac) | |
| 797 | done | |
| 798 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 799 | lemma diff_le_eq[algebra_simps, field_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b" | 
| 29667 | 800 | by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel) | 
| 25077 | 801 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 802 | lemma le_diff_eq[algebra_simps, field_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c" | 
| 29667 | 803 | by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel) | 
| 25077 | 804 | |
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 805 | lemma diff_le_0_iff_le [simp, no_atp]: | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 806 | "a - b \<le> 0 \<longleftrightarrow> a \<le> b" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 807 | by (simp add: algebra_simps) | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 808 | |
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 809 | lemmas le_iff_diff_le_0 = diff_le_0_iff_le [symmetric] | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 810 | |
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 811 | lemma diff_eq_diff_less: | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 812 | "a - b = c - d \<Longrightarrow> a < b \<longleftrightarrow> c < d" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 813 | by (auto simp only: less_iff_diff_less_0 [of a b] less_iff_diff_less_0 [of c d]) | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 814 | |
| 37889 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 815 | lemma diff_eq_diff_less_eq: | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 816 | "a - b = c - d \<Longrightarrow> a \<le> b \<longleftrightarrow> c \<le> d" | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 817 | by (auto simp only: le_iff_diff_le_0 [of a b] le_iff_diff_le_0 [of c d]) | 
| 25077 | 818 | |
| 819 | end | |
| 820 | ||
| 37986 
3b3187adf292
use file names relative to master directory of theory source -- Proof General can now handle that due to the ThyLoad.add_path deception (cf. 3ceccd415145);
 wenzelm parents: 
37889diff
changeset | 821 | use "Tools/abel_cancel.ML" | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 822 | |
| 37889 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 823 | simproc_setup abel_cancel_sum | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 824 |   ("a + b::'a::ab_group_add" | "a - b::'a::ab_group_add") =
 | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 825 |   {* fn phi => Abel_Cancel.sum_proc *}
 | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 826 | |
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 827 | simproc_setup abel_cancel_relation | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 828 |   ("a < (b::'a::ordered_ab_group_add)" | "a \<le> (b::'a::ordered_ab_group_add)" | "c = (d::'b::ab_group_add)") =
 | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 829 |   {* fn phi => Abel_Cancel.rel_proc *}
 | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 830 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 831 | class linordered_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 832 | linorder + ordered_ab_semigroup_add | 
| 25062 | 833 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 834 | class linordered_cancel_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 835 | linorder + ordered_cancel_ab_semigroup_add | 
| 25267 | 836 | begin | 
| 25062 | 837 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 838 | subclass linordered_ab_semigroup_add .. | 
| 25062 | 839 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 840 | subclass ordered_ab_semigroup_add_imp_le | 
| 28823 | 841 | proof | 
| 25062 | 842 | fix a b c :: 'a | 
| 843 | assume le: "c + a <= c + b" | |
| 844 | show "a <= b" | |
| 845 | proof (rule ccontr) | |
| 846 | assume w: "~ a \<le> b" | |
| 847 | hence "b <= a" by (simp add: linorder_not_le) | |
| 848 | hence le2: "c + b <= c + a" by (rule add_left_mono) | |
| 849 | have "a = b" | |
| 850 | apply (insert le) | |
| 851 | apply (insert le2) | |
| 852 | apply (drule antisym, simp_all) | |
| 853 | done | |
| 854 | with w show False | |
| 855 | by (simp add: linorder_not_le [symmetric]) | |
| 856 | qed | |
| 857 | qed | |
| 858 | ||
| 25267 | 859 | end | 
| 860 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 861 | class linordered_ab_group_add = linorder + ordered_ab_group_add | 
| 25267 | 862 | begin | 
| 25230 | 863 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 864 | subclass linordered_cancel_ab_semigroup_add .. | 
| 25230 | 865 | |
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 866 | lemma neg_less_eq_nonneg [simp]: | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 867 | "- a \<le> a \<longleftrightarrow> 0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 868 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 869 | assume A: "- a \<le> a" show "0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 870 | proof (rule classical) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 871 | assume "\<not> 0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 872 | then have "a < 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 873 | with A have "- a < 0" by (rule le_less_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 874 | then show ?thesis by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 875 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 876 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 877 | assume A: "0 \<le> a" show "- a \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 878 | proof (rule order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 879 | show "- a \<le> 0" using A by (simp add: minus_le_iff) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 880 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 881 | show "0 \<le> a" using A . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 882 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 883 | qed | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 884 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 885 | lemma neg_less_nonneg [simp]: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 886 | "- a < a \<longleftrightarrow> 0 < a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 887 | proof | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 888 | assume A: "- a < a" show "0 < a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 889 | proof (rule classical) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 890 | assume "\<not> 0 < a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 891 | then have "a \<le> 0" by auto | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 892 | with A have "- a < 0" by (rule less_le_trans) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 893 | then show ?thesis by auto | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 894 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 895 | next | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 896 | assume A: "0 < a" show "- a < a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 897 | proof (rule less_trans) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 898 | show "- a < 0" using A by (simp add: minus_le_iff) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 899 | next | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 900 | show "0 < a" using A . | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 901 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 902 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 903 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 904 | lemma less_eq_neg_nonpos [simp]: | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 905 | "a \<le> - a \<longleftrightarrow> a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 906 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 907 | assume A: "a \<le> - a" show "a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 908 | proof (rule classical) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 909 | assume "\<not> a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 910 | then have "0 < a" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 911 | then have "0 < - a" using A by (rule less_le_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 912 | then show ?thesis by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 913 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 914 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 915 | assume A: "a \<le> 0" show "a \<le> - a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 916 | proof (rule order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 917 | show "0 \<le> - a" using A by (simp add: minus_le_iff) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 918 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 919 | show "a \<le> 0" using A . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 920 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 921 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 922 | |
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 923 | lemma equal_neg_zero [simp]: | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 924 | "a = - a \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 925 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 926 | assume "a = 0" then show "a = - a" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 927 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 928 | assume A: "a = - a" show "a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 929 | proof (cases "0 \<le> a") | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 930 | case True with A have "0 \<le> - a" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 931 | with le_minus_iff have "a \<le> 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 932 | with True show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 933 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 934 | case False then have B: "a \<le> 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 935 | with A have "- a \<le> 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 936 | with B show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 937 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 938 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 939 | |
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 940 | lemma neg_equal_zero [simp]: | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 941 | "- a = a \<longleftrightarrow> a = 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 942 | by (auto dest: sym) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 943 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 944 | lemma double_zero [simp]: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 945 | "a + a = 0 \<longleftrightarrow> a = 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 946 | proof | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 947 | assume assm: "a + a = 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 948 | then have a: "- a = a" by (rule minus_unique) | 
| 35216 | 949 | then show "a = 0" by (simp only: neg_equal_zero) | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 950 | qed simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 951 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 952 | lemma double_zero_sym [simp]: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 953 | "0 = a + a \<longleftrightarrow> a = 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 954 | by (rule, drule sym) simp_all | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 955 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 956 | lemma zero_less_double_add_iff_zero_less_single_add [simp]: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 957 | "0 < a + a \<longleftrightarrow> 0 < a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 958 | proof | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 959 | assume "0 < a + a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 960 | then have "0 - a < a" by (simp only: diff_less_eq) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 961 | then have "- a < a" by simp | 
| 35216 | 962 | then show "0 < a" by (simp only: neg_less_nonneg) | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 963 | next | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 964 | assume "0 < a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 965 | with this have "0 + 0 < a + a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 966 | by (rule add_strict_mono) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 967 | then show "0 < a + a" by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 968 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 969 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 970 | lemma zero_le_double_add_iff_zero_le_single_add [simp]: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 971 | "0 \<le> a + a \<longleftrightarrow> 0 \<le> a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 972 | by (auto simp add: le_less) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 973 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 974 | lemma double_add_less_zero_iff_single_add_less_zero [simp]: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 975 | "a + a < 0 \<longleftrightarrow> a < 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 976 | proof - | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 977 | have "\<not> a + a < 0 \<longleftrightarrow> \<not> a < 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 978 | by (simp add: not_less) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 979 | then show ?thesis by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 980 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 981 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 982 | lemma double_add_le_zero_iff_single_add_le_zero [simp]: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 983 | "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 984 | proof - | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 985 | have "\<not> a + a \<le> 0 \<longleftrightarrow> \<not> a \<le> 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 986 | by (simp add: not_le) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 987 | then show ?thesis by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 988 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 989 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 990 | lemma le_minus_self_iff: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 991 | "a \<le> - a \<longleftrightarrow> a \<le> 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 992 | proof - | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 993 | from add_le_cancel_left [of "- a" "a + a" 0] | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 994 | have "a \<le> - a \<longleftrightarrow> a + a \<le> 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 995 | by (simp add: add_assoc [symmetric]) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 996 | thus ?thesis by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 997 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 998 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 999 | lemma minus_le_self_iff: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1000 | "- a \<le> a \<longleftrightarrow> 0 \<le> a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1001 | proof - | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1002 | from add_le_cancel_left [of "- a" 0 "a + a"] | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1003 | have "- a \<le> a \<longleftrightarrow> 0 \<le> a + a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1004 | by (simp add: add_assoc [symmetric]) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1005 | thus ?thesis by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1006 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1007 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1008 | lemma minus_max_eq_min: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1009 | "- max x y = min (-x) (-y)" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1010 | by (auto simp add: max_def min_def) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1011 | |
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1012 | lemma minus_min_eq_max: | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1013 | "- min x y = max (-x) (-y)" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1014 | by (auto simp add: max_def min_def) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1015 | |
| 25267 | 1016 | end | 
| 1017 | ||
| 36302 | 1018 | context ordered_comm_monoid_add | 
| 1019 | begin | |
| 14738 | 1020 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1021 | lemma add_increasing: | 
| 36302 | 1022 | "0 \<le> a \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> a + c" | 
| 1023 | by (insert add_mono [of 0 a b c], simp) | |
| 14738 | 1024 | |
| 15539 | 1025 | lemma add_increasing2: | 
| 36302 | 1026 | "0 \<le> c \<Longrightarrow> b \<le> a \<Longrightarrow> b \<le> a + c" | 
| 1027 | by (simp add: add_increasing add_commute [of a]) | |
| 15539 | 1028 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1029 | lemma add_strict_increasing: | 
| 36302 | 1030 | "0 < a \<Longrightarrow> b \<le> c \<Longrightarrow> b < a + c" | 
| 1031 | by (insert add_less_le_mono [of 0 a b c], simp) | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1032 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1033 | lemma add_strict_increasing2: | 
| 36302 | 1034 | "0 \<le> a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | 
| 1035 | by (insert add_le_less_mono [of 0 a b c], simp) | |
| 1036 | ||
| 1037 | end | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1038 | |
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1039 | class abs = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1040 | fixes abs :: "'a \<Rightarrow> 'a" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1041 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1042 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1043 | notation (xsymbols) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1044 |   abs  ("\<bar>_\<bar>")
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1045 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1046 | notation (HTML output) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1047 |   abs  ("\<bar>_\<bar>")
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1048 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1049 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1050 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1051 | class sgn = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1052 | fixes sgn :: "'a \<Rightarrow> 'a" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1053 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1054 | class abs_if = minus + uminus + ord + zero + abs + | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1055 | assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1056 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1057 | class sgn_if = minus + uminus + zero + one + ord + sgn + | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1058 | assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1059 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1060 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1061 | lemma sgn0 [simp]: "sgn 0 = 0" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1062 | by (simp add:sgn_if) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1063 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1064 | end | 
| 14738 | 1065 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1066 | class ordered_ab_group_add_abs = ordered_ab_group_add + abs + | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1067 | assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1068 | and abs_ge_self: "a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1069 | and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1070 | and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1071 | and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1072 | begin | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1073 | |
| 25307 | 1074 | lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0" | 
| 1075 | unfolding neg_le_0_iff_le by simp | |
| 1076 | ||
| 1077 | lemma abs_of_nonneg [simp]: | |
| 29667 | 1078 | assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a" | 
| 25307 | 1079 | proof (rule antisym) | 
| 1080 | from nonneg le_imp_neg_le have "- a \<le> 0" by simp | |
| 1081 | from this nonneg have "- a \<le> a" by (rule order_trans) | |
| 1082 | then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI) | |
| 1083 | qed (rule abs_ge_self) | |
| 1084 | ||
| 1085 | lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>" | |
| 29667 | 1086 | by (rule antisym) | 
| 36302 | 1087 | (auto intro!: abs_ge_self abs_leI order_trans [of "- \<bar>a\<bar>" 0 "\<bar>a\<bar>"]) | 
| 25307 | 1088 | |
| 1089 | lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0" | |
| 1090 | proof - | |
| 1091 | have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0" | |
| 1092 | proof (rule antisym) | |
| 1093 | assume zero: "\<bar>a\<bar> = 0" | |
| 1094 | with abs_ge_self show "a \<le> 0" by auto | |
| 1095 | from zero have "\<bar>-a\<bar> = 0" by simp | |
| 36302 | 1096 | with abs_ge_self [of "- a"] have "- a \<le> 0" by auto | 
| 25307 | 1097 | with neg_le_0_iff_le show "0 \<le> a" by auto | 
| 1098 | qed | |
| 1099 | then show ?thesis by auto | |
| 1100 | qed | |
| 1101 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1102 | lemma abs_zero [simp]: "\<bar>0\<bar> = 0" | 
| 29667 | 1103 | by simp | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1104 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35723diff
changeset | 1105 | lemma abs_0_eq [simp, no_atp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1106 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1107 | have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1108 | thus ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1109 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1110 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1111 | lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1112 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1113 | assume "\<bar>a\<bar> \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1114 | then have "\<bar>a\<bar> = 0" by (rule antisym) simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1115 | thus "a = 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1116 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1117 | assume "a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1118 | thus "\<bar>a\<bar> \<le> 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1119 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1120 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1121 | lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0" | 
| 29667 | 1122 | by (simp add: less_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1123 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1124 | lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1125 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1126 | have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1127 | show ?thesis by (simp add: a) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1128 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1129 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1130 | lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1131 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1132 | have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1133 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1134 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1135 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1136 | lemma abs_minus_commute: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1137 | "\<bar>a - b\<bar> = \<bar>b - a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1138 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1139 | have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1140 | also have "... = \<bar>b - a\<bar>" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1141 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1142 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1143 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1144 | lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a" | 
| 29667 | 1145 | by (rule abs_of_nonneg, rule less_imp_le) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1146 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1147 | lemma abs_of_nonpos [simp]: | 
| 29667 | 1148 | assumes "a \<le> 0" shows "\<bar>a\<bar> = - a" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1149 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1150 | let ?b = "- a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1151 | have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1152 | unfolding abs_minus_cancel [of "?b"] | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1153 | unfolding neg_le_0_iff_le [of "?b"] | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1154 | unfolding minus_minus by (erule abs_of_nonneg) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1155 | then show ?thesis using assms by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1156 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1157 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1158 | lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a" | 
| 29667 | 1159 | by (rule abs_of_nonpos, rule less_imp_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1160 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1161 | lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b" | 
| 29667 | 1162 | by (insert abs_ge_self, blast intro: order_trans) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1163 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1164 | lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b" | 
| 36302 | 1165 | by (insert abs_le_D1 [of "- a"], simp) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1166 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1167 | lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b" | 
| 29667 | 1168 | by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1169 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1170 | lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>" | 
| 36302 | 1171 | proof - | 
| 1172 | have "\<bar>a\<bar> = \<bar>b + (a - b)\<bar>" | |
| 1173 | by (simp add: algebra_simps add_diff_cancel) | |
| 1174 | then have "\<bar>a\<bar> \<le> \<bar>b\<bar> + \<bar>a - b\<bar>" | |
| 1175 | by (simp add: abs_triangle_ineq) | |
| 1176 | then show ?thesis | |
| 1177 | by (simp add: algebra_simps) | |
| 1178 | qed | |
| 1179 | ||
| 1180 | lemma abs_triangle_ineq2_sym: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>b - a\<bar>" | |
| 1181 | by (simp only: abs_minus_commute [of b] abs_triangle_ineq2) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1182 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1183 | lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>" | 
| 36302 | 1184 | by (simp add: abs_le_iff abs_triangle_ineq2 abs_triangle_ineq2_sym) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1185 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1186 | lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1187 | proof - | 
| 36302 | 1188 | have "\<bar>a - b\<bar> = \<bar>a + - b\<bar>" by (subst diff_minus, rule refl) | 
| 1189 | also have "... \<le> \<bar>a\<bar> + \<bar>- b\<bar>" by (rule abs_triangle_ineq) | |
| 29667 | 1190 | finally show ?thesis by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1191 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1192 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1193 | lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1194 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1195 | have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1196 | also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1197 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1198 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1199 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1200 | lemma abs_add_abs [simp]: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1201 | "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R") | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1202 | proof (rule antisym) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1203 | show "?L \<ge> ?R" by(rule abs_ge_self) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1204 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1205 | have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1206 | also have "\<dots> = ?R" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1207 | finally show "?L \<le> ?R" . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1208 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1209 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1210 | end | 
| 14738 | 1211 | |
| 15178 | 1212 | |
| 25090 | 1213 | subsection {* Tools setup *}
 | 
| 1214 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35723diff
changeset | 1215 | lemma add_mono_thms_linordered_semiring [no_atp]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1216 | fixes i j k :: "'a\<Colon>ordered_ab_semigroup_add" | 
| 25077 | 1217 | shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | 
| 1218 | and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 1219 | and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l" | |
| 1220 | and "i = j \<and> k = l \<Longrightarrow> i + k = j + l" | |
| 1221 | by (rule add_mono, clarify+)+ | |
| 1222 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35723diff
changeset | 1223 | lemma add_mono_thms_linordered_field [no_atp]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1224 | fixes i j k :: "'a\<Colon>ordered_cancel_ab_semigroup_add" | 
| 25077 | 1225 | shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l" | 
| 1226 | and "i = j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1227 | and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l" | |
| 1228 | and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1229 | and "i < j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1230 | by (auto intro: add_strict_right_mono add_strict_left_mono | |
| 1231 | add_less_le_mono add_le_less_mono add_strict_mono) | |
| 1232 | ||
| 33364 | 1233 | code_modulename SML | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35036diff
changeset | 1234 | Groups Arith | 
| 33364 | 1235 | |
| 1236 | code_modulename OCaml | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35036diff
changeset | 1237 | Groups Arith | 
| 33364 | 1238 | |
| 1239 | code_modulename Haskell | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35036diff
changeset | 1240 | Groups Arith | 
| 33364 | 1241 | |
| 37889 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 1242 | |
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 1243 | text {* Legacy *}
 | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 1244 | |
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 1245 | lemmas diff_def = diff_minus | 
| 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 1246 | |
| 14738 | 1247 | end |