| author | wenzelm | 
| Sun, 04 Sep 2011 19:36:19 +0200 | |
| changeset 44706 | fe319b45315c | 
| parent 41550 | efa734d9b221 | 
| child 45231 | d85a2fdc586c | 
| permissions | -rw-r--r-- | 
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 1 | (* Title: HOL/Power.thy | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 3 | Copyright 1997 University of Cambridge | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 4 | *) | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 5 | |
| 30960 | 6 | header {* Exponentiation *}
 | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 7 | |
| 15131 | 8 | theory Power | 
| 21413 | 9 | imports Nat | 
| 15131 | 10 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 11 | |
| 30960 | 12 | subsection {* Powers for Arbitrary Monoids *}
 | 
| 13 | ||
| 30996 | 14 | class power = one + times | 
| 30960 | 15 | begin | 
| 24996 | 16 | |
| 30960 | 17 | primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where | 
| 18 | power_0: "a ^ 0 = 1" | |
| 19 | | power_Suc: "a ^ Suc n = a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 20 | |
| 30996 | 21 | notation (latex output) | 
| 22 |   power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 23 | ||
| 24 | notation (HTML output) | |
| 25 |   power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 26 | ||
| 30960 | 27 | end | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 28 | |
| 30996 | 29 | context monoid_mult | 
| 30 | begin | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 31 | |
| 39438 
c5ece2a7a86e
Isar "default" step needs to fail for solved problems, for clear distinction of '.' and '..' for example -- amending lapse introduced in 9de4d64eee3b (April 2004);
 wenzelm parents: 
36409diff
changeset | 32 | subclass power . | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 33 | |
| 30996 | 34 | lemma power_one [simp]: | 
| 35 | "1 ^ n = 1" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 36 | by (induct n) simp_all | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 37 | |
| 30996 | 38 | lemma power_one_right [simp]: | 
| 31001 | 39 | "a ^ 1 = a" | 
| 30996 | 40 | by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 41 | |
| 30996 | 42 | lemma power_commutes: | 
| 43 | "a ^ n * a = a * a ^ n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 44 | by (induct n) (simp_all add: mult_assoc) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
17149diff
changeset | 45 | |
| 30996 | 46 | lemma power_Suc2: | 
| 47 | "a ^ Suc n = a ^ n * a" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 48 | by (simp add: power_commutes) | 
| 28131 
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
 huffman parents: 
25874diff
changeset | 49 | |
| 30996 | 50 | lemma power_add: | 
| 51 | "a ^ (m + n) = a ^ m * a ^ n" | |
| 52 | by (induct m) (simp_all add: algebra_simps) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 53 | |
| 30996 | 54 | lemma power_mult: | 
| 55 | "a ^ (m * n) = (a ^ m) ^ n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 56 | by (induct n) (simp_all add: power_add) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 57 | |
| 30996 | 58 | end | 
| 59 | ||
| 60 | context comm_monoid_mult | |
| 61 | begin | |
| 62 | ||
| 63 | lemma power_mult_distrib: | |
| 64 | "(a * b) ^ n = (a ^ n) * (b ^ n)" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 65 | by (induct n) (simp_all add: mult_ac) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 66 | |
| 30996 | 67 | end | 
| 68 | ||
| 69 | context semiring_1 | |
| 70 | begin | |
| 71 | ||
| 72 | lemma of_nat_power: | |
| 73 | "of_nat (m ^ n) = of_nat m ^ n" | |
| 74 | by (induct n) (simp_all add: of_nat_mult) | |
| 75 | ||
| 76 | end | |
| 77 | ||
| 78 | context comm_semiring_1 | |
| 79 | begin | |
| 80 | ||
| 81 | text {* The divides relation *}
 | |
| 82 | ||
| 83 | lemma le_imp_power_dvd: | |
| 84 | assumes "m \<le> n" shows "a ^ m dvd a ^ n" | |
| 85 | proof | |
| 86 | have "a ^ n = a ^ (m + (n - m))" | |
| 87 | using `m \<le> n` by simp | |
| 88 | also have "\<dots> = a ^ m * a ^ (n - m)" | |
| 89 | by (rule power_add) | |
| 90 | finally show "a ^ n = a ^ m * a ^ (n - m)" . | |
| 91 | qed | |
| 92 | ||
| 93 | lemma power_le_dvd: | |
| 94 | "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" | |
| 95 | by (rule dvd_trans [OF le_imp_power_dvd]) | |
| 96 | ||
| 97 | lemma dvd_power_same: | |
| 98 | "x dvd y \<Longrightarrow> x ^ n dvd y ^ n" | |
| 99 | by (induct n) (auto simp add: mult_dvd_mono) | |
| 100 | ||
| 101 | lemma dvd_power_le: | |
| 102 | "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" | |
| 103 | by (rule power_le_dvd [OF dvd_power_same]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 104 | |
| 30996 | 105 | lemma dvd_power [simp]: | 
| 106 | assumes "n > (0::nat) \<or> x = 1" | |
| 107 | shows "x dvd (x ^ n)" | |
| 108 | using assms proof | |
| 109 | assume "0 < n" | |
| 110 | then have "x ^ n = x ^ Suc (n - 1)" by simp | |
| 111 | then show "x dvd (x ^ n)" by simp | |
| 112 | next | |
| 113 | assume "x = 1" | |
| 114 | then show "x dvd (x ^ n)" by simp | |
| 115 | qed | |
| 116 | ||
| 117 | end | |
| 118 | ||
| 119 | context ring_1 | |
| 120 | begin | |
| 121 | ||
| 122 | lemma power_minus: | |
| 123 | "(- a) ^ n = (- 1) ^ n * a ^ n" | |
| 124 | proof (induct n) | |
| 125 | case 0 show ?case by simp | |
| 126 | next | |
| 127 | case (Suc n) then show ?case | |
| 128 | by (simp del: power_Suc add: power_Suc2 mult_assoc) | |
| 129 | qed | |
| 130 | ||
| 131 | end | |
| 132 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 133 | context linordered_semidom | 
| 30996 | 134 | begin | 
| 135 | ||
| 136 | lemma zero_less_power [simp]: | |
| 137 | "0 < a \<Longrightarrow> 0 < a ^ n" | |
| 138 | by (induct n) (simp_all add: mult_pos_pos) | |
| 139 | ||
| 140 | lemma zero_le_power [simp]: | |
| 141 | "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" | |
| 142 | by (induct n) (simp_all add: mult_nonneg_nonneg) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 143 | |
| 25874 | 144 | lemma one_le_power[simp]: | 
| 30996 | 145 | "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" | 
| 146 | apply (induct n) | |
| 147 | apply simp_all | |
| 148 | apply (rule order_trans [OF _ mult_mono [of 1 _ 1]]) | |
| 149 | apply (simp_all add: order_trans [OF zero_le_one]) | |
| 150 | done | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 151 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 152 | lemma power_gt1_lemma: | 
| 30996 | 153 | assumes gt1: "1 < a" | 
| 154 | shows "1 < a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 155 | proof - | 
| 30996 | 156 | from gt1 have "0 \<le> a" | 
| 157 | by (fact order_trans [OF zero_le_one less_imp_le]) | |
| 158 | have "1 * 1 < a * 1" using gt1 by simp | |
| 159 | also have "\<dots> \<le> a * a ^ n" using gt1 | |
| 160 | by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le | |
| 14577 | 161 | zero_le_one order_refl) | 
| 162 | finally show ?thesis by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 163 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 164 | |
| 30996 | 165 | lemma power_gt1: | 
| 166 | "1 < a \<Longrightarrow> 1 < a ^ Suc n" | |
| 167 | by (simp add: power_gt1_lemma) | |
| 24376 | 168 | |
| 30996 | 169 | lemma one_less_power [simp]: | 
| 170 | "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" | |
| 171 | by (cases n) (simp_all add: power_gt1_lemma) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 172 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 173 | lemma power_le_imp_le_exp: | 
| 30996 | 174 | assumes gt1: "1 < a" | 
| 175 | shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" | |
| 176 | proof (induct m arbitrary: n) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 177 | case 0 | 
| 14577 | 178 | show ?case by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 179 | next | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 180 | case (Suc m) | 
| 14577 | 181 | show ?case | 
| 182 | proof (cases n) | |
| 183 | case 0 | |
| 30996 | 184 | with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp | 
| 14577 | 185 | with gt1 show ?thesis | 
| 186 | by (force simp only: power_gt1_lemma | |
| 30996 | 187 | not_less [symmetric]) | 
| 14577 | 188 | next | 
| 189 | case (Suc n) | |
| 30996 | 190 | with Suc.prems Suc.hyps show ?thesis | 
| 14577 | 191 | by (force dest: mult_left_le_imp_le | 
| 30996 | 192 | simp add: less_trans [OF zero_less_one gt1]) | 
| 14577 | 193 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 194 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 195 | |
| 14577 | 196 | text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
 | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 197 | lemma power_inject_exp [simp]: | 
| 30996 | 198 | "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" | 
| 14577 | 199 | by (force simp add: order_antisym power_le_imp_le_exp) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 200 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 201 | text{*Can relax the first premise to @{term "0<a"} in the case of the
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 202 | natural numbers.*} | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 203 | lemma power_less_imp_less_exp: | 
| 30996 | 204 | "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" | 
| 205 | by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] | |
| 206 | power_le_imp_le_exp) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 207 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 208 | lemma power_mono: | 
| 30996 | 209 | "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" | 
| 210 | by (induct n) | |
| 211 | (auto intro: mult_mono order_trans [of 0 a b]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 212 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 213 | lemma power_strict_mono [rule_format]: | 
| 30996 | 214 | "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" | 
| 215 | by (induct n) | |
| 216 | (auto simp add: mult_strict_mono le_less_trans [of 0 a b]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 217 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 218 | text{*Lemma for @{text power_strict_decreasing}*}
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 219 | lemma power_Suc_less: | 
| 30996 | 220 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" | 
| 221 | by (induct n) | |
| 222 | (auto simp add: mult_strict_left_mono) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 223 | |
| 30996 | 224 | lemma power_strict_decreasing [rule_format]: | 
| 225 | "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" | |
| 226 | proof (induct N) | |
| 227 | case 0 then show ?case by simp | |
| 228 | next | |
| 229 | case (Suc N) then show ?case | |
| 230 | apply (auto simp add: power_Suc_less less_Suc_eq) | |
| 231 | apply (subgoal_tac "a * a^N < 1 * a^n") | |
| 232 | apply simp | |
| 233 | apply (rule mult_strict_mono) apply auto | |
| 234 | done | |
| 235 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 236 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 237 | text{*Proof resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 238 | lemma power_decreasing [rule_format]: | 
| 239 | "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" | |
| 240 | proof (induct N) | |
| 241 | case 0 then show ?case by simp | |
| 242 | next | |
| 243 | case (Suc N) then show ?case | |
| 244 | apply (auto simp add: le_Suc_eq) | |
| 245 | apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) | |
| 246 | apply (rule mult_mono) apply auto | |
| 247 | done | |
| 248 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 249 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 250 | lemma power_Suc_less_one: | 
| 30996 | 251 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" | 
| 252 | using power_strict_decreasing [of 0 "Suc n" a] by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 253 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 254 | text{*Proof again resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 255 | lemma power_increasing [rule_format]: | 
| 256 | "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" | |
| 257 | proof (induct N) | |
| 258 | case 0 then show ?case by simp | |
| 259 | next | |
| 260 | case (Suc N) then show ?case | |
| 261 | apply (auto simp add: le_Suc_eq) | |
| 262 | apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) | |
| 263 | apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) | |
| 264 | done | |
| 265 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 266 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 267 | text{*Lemma for @{text power_strict_increasing}*}
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 268 | lemma power_less_power_Suc: | 
| 30996 | 269 | "1 < a \<Longrightarrow> a ^ n < a * a ^ n" | 
| 270 | by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 271 | |
| 30996 | 272 | lemma power_strict_increasing [rule_format]: | 
| 273 | "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" | |
| 274 | proof (induct N) | |
| 275 | case 0 then show ?case by simp | |
| 276 | next | |
| 277 | case (Suc N) then show ?case | |
| 278 | apply (auto simp add: power_less_power_Suc less_Suc_eq) | |
| 279 | apply (subgoal_tac "1 * a^n < a * a^N", simp) | |
| 280 | apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) | |
| 281 | done | |
| 282 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 283 | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 284 | lemma power_increasing_iff [simp]: | 
| 30996 | 285 | "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" | 
| 286 | by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) | |
| 15066 | 287 | |
| 288 | lemma power_strict_increasing_iff [simp]: | |
| 30996 | 289 | "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 290 | by (blast intro: power_less_imp_less_exp power_strict_increasing) | 
| 15066 | 291 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 292 | lemma power_le_imp_le_base: | 
| 30996 | 293 | assumes le: "a ^ Suc n \<le> b ^ Suc n" | 
| 294 | and ynonneg: "0 \<le> b" | |
| 295 | shows "a \<le> b" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 296 | proof (rule ccontr) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 297 | assume "~ a \<le> b" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 298 | then have "b < a" by (simp only: linorder_not_le) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 299 | then have "b ^ Suc n < a ^ Suc n" | 
| 41550 | 300 | by (simp only: assms power_strict_mono) | 
| 30996 | 301 | from le and this show False | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 302 | by (simp add: linorder_not_less [symmetric]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 303 | qed | 
| 14577 | 304 | |
| 22853 | 305 | lemma power_less_imp_less_base: | 
| 306 | assumes less: "a ^ n < b ^ n" | |
| 307 | assumes nonneg: "0 \<le> b" | |
| 308 | shows "a < b" | |
| 309 | proof (rule contrapos_pp [OF less]) | |
| 310 | assume "~ a < b" | |
| 311 | hence "b \<le> a" by (simp only: linorder_not_less) | |
| 312 | hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) | |
| 30996 | 313 | thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) | 
| 22853 | 314 | qed | 
| 315 | ||
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 316 | lemma power_inject_base: | 
| 30996 | 317 | "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" | 
| 318 | by (blast intro: power_le_imp_le_base antisym eq_refl sym) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 319 | |
| 22955 | 320 | lemma power_eq_imp_eq_base: | 
| 30996 | 321 | "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" | 
| 322 | by (cases n) (simp_all del: power_Suc, rule power_inject_base) | |
| 22955 | 323 | |
| 30996 | 324 | end | 
| 325 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 326 | context linordered_idom | 
| 30996 | 327 | begin | 
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 328 | |
| 30996 | 329 | lemma power_abs: | 
| 330 | "abs (a ^ n) = abs a ^ n" | |
| 331 | by (induct n) (auto simp add: abs_mult) | |
| 332 | ||
| 333 | lemma abs_power_minus [simp]: | |
| 334 | "abs ((-a) ^ n) = abs (a ^ n)" | |
| 35216 | 335 | by (simp add: power_abs) | 
| 30996 | 336 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35216diff
changeset | 337 | lemma zero_less_power_abs_iff [simp, no_atp]: | 
| 30996 | 338 | "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" | 
| 339 | proof (induct n) | |
| 340 | case 0 show ?case by simp | |
| 341 | next | |
| 342 | case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) | |
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 343 | qed | 
| 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 344 | |
| 30996 | 345 | lemma zero_le_power_abs [simp]: | 
| 346 | "0 \<le> abs a ^ n" | |
| 347 | by (rule zero_le_power [OF abs_ge_zero]) | |
| 348 | ||
| 349 | end | |
| 350 | ||
| 351 | context ring_1_no_zero_divisors | |
| 352 | begin | |
| 353 | ||
| 354 | lemma field_power_not_zero: | |
| 355 | "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" | |
| 356 | by (induct n) auto | |
| 357 | ||
| 358 | end | |
| 359 | ||
| 360 | context division_ring | |
| 361 | begin | |
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 362 | |
| 30997 | 363 | text {* FIXME reorient or rename to @{text nonzero_inverse_power} *}
 | 
| 30996 | 364 | lemma nonzero_power_inverse: | 
| 365 | "a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n" | |
| 366 | by (induct n) | |
| 367 | (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 368 | |
| 30996 | 369 | end | 
| 370 | ||
| 371 | context field | |
| 372 | begin | |
| 373 | ||
| 374 | lemma nonzero_power_divide: | |
| 375 | "b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n" | |
| 376 | by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) | |
| 377 | ||
| 378 | end | |
| 379 | ||
| 380 | lemma power_0_Suc [simp]: | |
| 381 |   "(0::'a::{power, semiring_0}) ^ Suc n = 0"
 | |
| 382 | by simp | |
| 30313 | 383 | |
| 30996 | 384 | text{*It looks plausible as a simprule, but its effect can be strange.*}
 | 
| 385 | lemma power_0_left: | |
| 386 |   "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))"
 | |
| 387 | by (induct n) simp_all | |
| 388 | ||
| 389 | lemma power_eq_0_iff [simp]: | |
| 390 | "a ^ n = 0 \<longleftrightarrow> | |
| 391 |      a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0"
 | |
| 392 | by (induct n) | |
| 393 | (auto simp add: no_zero_divisors elim: contrapos_pp) | |
| 394 | ||
| 36409 | 395 | lemma (in field) power_diff: | 
| 30996 | 396 | assumes nz: "a \<noteq> 0" | 
| 397 | shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" | |
| 36409 | 398 | by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) | 
| 30313 | 399 | |
| 30996 | 400 | text{*Perhaps these should be simprules.*}
 | 
| 401 | lemma power_inverse: | |
| 36409 | 402 | fixes a :: "'a::division_ring_inverse_zero" | 
| 403 | shows "inverse (a ^ n) = inverse a ^ n" | |
| 30996 | 404 | apply (cases "a = 0") | 
| 405 | apply (simp add: power_0_left) | |
| 406 | apply (simp add: nonzero_power_inverse) | |
| 407 | done (* TODO: reorient or rename to inverse_power *) | |
| 408 | ||
| 409 | lemma power_one_over: | |
| 36409 | 410 |   "1 / (a::'a::{field_inverse_zero, power}) ^ n =  (1 / a) ^ n"
 | 
| 30996 | 411 | by (simp add: divide_inverse) (rule power_inverse) | 
| 412 | ||
| 413 | lemma power_divide: | |
| 36409 | 414 | "(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n" | 
| 30996 | 415 | apply (cases "b = 0") | 
| 416 | apply (simp add: power_0_left) | |
| 417 | apply (rule nonzero_power_divide) | |
| 418 | apply assumption | |
| 30313 | 419 | done | 
| 420 | ||
| 421 | ||
| 30960 | 422 | subsection {* Exponentiation for the Natural Numbers *}
 | 
| 14577 | 423 | |
| 30996 | 424 | lemma nat_one_le_power [simp]: | 
| 425 | "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" | |
| 426 | by (rule one_le_power [of i n, unfolded One_nat_def]) | |
| 23305 | 427 | |
| 30996 | 428 | lemma nat_zero_less_power_iff [simp]: | 
| 429 | "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" | |
| 430 | by (induct n) auto | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 431 | |
| 30056 | 432 | lemma nat_power_eq_Suc_0_iff [simp]: | 
| 30996 | 433 | "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" | 
| 434 | by (induct m) auto | |
| 30056 | 435 | |
| 30996 | 436 | lemma power_Suc_0 [simp]: | 
| 437 | "Suc 0 ^ n = Suc 0" | |
| 438 | by simp | |
| 30056 | 439 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 440 | text{*Valid for the naturals, but what if @{text"0<i<1"}?
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 441 | Premises cannot be weakened: consider the case where @{term "i=0"},
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 442 | @{term "m=1"} and @{term "n=0"}.*}
 | 
| 21413 | 443 | lemma nat_power_less_imp_less: | 
| 444 | assumes nonneg: "0 < (i\<Colon>nat)" | |
| 30996 | 445 | assumes less: "i ^ m < i ^ n" | 
| 21413 | 446 | shows "m < n" | 
| 447 | proof (cases "i = 1") | |
| 448 | case True with less power_one [where 'a = nat] show ?thesis by simp | |
| 449 | next | |
| 450 | case False with nonneg have "1 < i" by auto | |
| 451 | from power_strict_increasing_iff [OF this] less show ?thesis .. | |
| 452 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 453 | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 454 | lemma power_dvd_imp_le: | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 455 | "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 456 | apply (rule power_le_imp_le_exp, assumption) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 457 | apply (erule dvd_imp_le, simp) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 458 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 459 | |
| 31155 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 460 | |
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 461 | subsection {* Code generator tweak *}
 | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 462 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31155diff
changeset | 463 | lemma power_power_power [code, code_unfold, code_inline del]: | 
| 31155 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 464 |   "power = power.power (1::'a::{power}) (op *)"
 | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 465 | unfolding power_def power.power_def .. | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 466 | |
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 467 | declare power.power.simps [code] | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 468 | |
| 33364 | 469 | code_modulename SML | 
| 470 | Power Arith | |
| 471 | ||
| 472 | code_modulename OCaml | |
| 473 | Power Arith | |
| 474 | ||
| 475 | code_modulename Haskell | |
| 476 | Power Arith | |
| 477 | ||
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 478 | end |