|
60804
|
1 |
(* Title: HOL/Number_Theory/Factorial_Ring.thy
|
|
|
2 |
Author: Florian Haftmann, TU Muenchen
|
|
|
3 |
*)
|
|
|
4 |
|
|
|
5 |
section \<open>Factorial (semi)rings\<close>
|
|
|
6 |
|
|
|
7 |
theory Factorial_Ring
|
|
62499
|
8 |
imports Main Primes "~~/src/HOL/Library/Multiset"
|
|
|
9 |
begin
|
|
|
10 |
|
|
|
11 |
context algebraic_semidom
|
|
60804
|
12 |
begin
|
|
|
13 |
|
|
62499
|
14 |
lemma dvd_mult_imp_div:
|
|
|
15 |
assumes "a * c dvd b"
|
|
|
16 |
shows "a dvd b div c"
|
|
|
17 |
proof (cases "c = 0")
|
|
|
18 |
case True then show ?thesis by simp
|
|
|
19 |
next
|
|
|
20 |
case False
|
|
|
21 |
from \<open>a * c dvd b\<close> obtain d where "b = a * c * d" ..
|
|
|
22 |
with False show ?thesis by (simp add: mult.commute [of a] mult.assoc)
|
|
|
23 |
qed
|
|
|
24 |
|
|
|
25 |
end
|
|
|
26 |
|
|
60804
|
27 |
class factorial_semiring = normalization_semidom +
|
|
|
28 |
assumes finite_divisors: "a \<noteq> 0 \<Longrightarrow> finite {b. b dvd a \<and> normalize b = b}"
|
|
|
29 |
fixes is_prime :: "'a \<Rightarrow> bool"
|
|
|
30 |
assumes not_is_prime_zero [simp]: "\<not> is_prime 0"
|
|
|
31 |
and is_prime_not_unit: "is_prime p \<Longrightarrow> \<not> is_unit p"
|
|
62499
|
32 |
and no_prime_divisorsI2: "(\<And>b. b dvd a \<Longrightarrow> \<not> is_prime b) \<Longrightarrow> is_unit a"
|
|
60804
|
33 |
assumes is_primeI: "p \<noteq> 0 \<Longrightarrow> \<not> is_unit p \<Longrightarrow> (\<And>a. a dvd p \<Longrightarrow> \<not> is_unit a \<Longrightarrow> p dvd a) \<Longrightarrow> is_prime p"
|
|
|
34 |
and is_primeD: "is_prime p \<Longrightarrow> p dvd a * b \<Longrightarrow> p dvd a \<or> p dvd b"
|
|
|
35 |
begin
|
|
|
36 |
|
|
|
37 |
lemma not_is_prime_one [simp]:
|
|
|
38 |
"\<not> is_prime 1"
|
|
|
39 |
by (auto dest: is_prime_not_unit)
|
|
|
40 |
|
|
|
41 |
lemma is_prime_not_zeroI:
|
|
|
42 |
assumes "is_prime p"
|
|
|
43 |
shows "p \<noteq> 0"
|
|
|
44 |
using assms by (auto intro: ccontr)
|
|
|
45 |
|
|
|
46 |
lemma is_prime_multD:
|
|
|
47 |
assumes "is_prime (a * b)"
|
|
|
48 |
shows "is_unit a \<or> is_unit b"
|
|
|
49 |
proof -
|
|
|
50 |
from assms have "a \<noteq> 0" "b \<noteq> 0" by auto
|
|
|
51 |
moreover from assms is_primeD [of "a * b"] have "a * b dvd a \<or> a * b dvd b"
|
|
|
52 |
by auto
|
|
|
53 |
ultimately show ?thesis
|
|
|
54 |
using dvd_times_left_cancel_iff [of a b 1]
|
|
|
55 |
dvd_times_right_cancel_iff [of b a 1]
|
|
|
56 |
by auto
|
|
|
57 |
qed
|
|
|
58 |
|
|
|
59 |
lemma is_primeD2:
|
|
|
60 |
assumes "is_prime p" and "a dvd p" and "\<not> is_unit a"
|
|
|
61 |
shows "p dvd a"
|
|
|
62 |
proof -
|
|
|
63 |
from \<open>a dvd p\<close> obtain b where "p = a * b" ..
|
|
|
64 |
with \<open>is_prime p\<close> is_prime_multD \<open>\<not> is_unit a\<close> have "is_unit b" by auto
|
|
|
65 |
with \<open>p = a * b\<close> show ?thesis
|
|
|
66 |
by (auto simp add: mult_unit_dvd_iff)
|
|
|
67 |
qed
|
|
|
68 |
|
|
|
69 |
lemma is_prime_mult_unit_left:
|
|
|
70 |
assumes "is_prime p"
|
|
|
71 |
and "is_unit a"
|
|
|
72 |
shows "is_prime (a * p)"
|
|
|
73 |
proof (rule is_primeI)
|
|
|
74 |
from assms show "a * p \<noteq> 0" "\<not> is_unit (a * p)"
|
|
|
75 |
by (auto simp add: is_unit_mult_iff is_prime_not_unit)
|
|
|
76 |
show "a * p dvd b" if "b dvd a * p" "\<not> is_unit b" for b
|
|
|
77 |
proof -
|
|
|
78 |
from that \<open>is_unit a\<close> have "b dvd p"
|
|
|
79 |
using dvd_mult_unit_iff [of a b p] by (simp add: ac_simps)
|
|
|
80 |
with \<open>is_prime p\<close> \<open>\<not> is_unit b\<close> have "p dvd b"
|
|
|
81 |
using is_primeD2 [of p b] by auto
|
|
|
82 |
with \<open>is_unit a\<close> show ?thesis
|
|
|
83 |
using mult_unit_dvd_iff [of a p b] by (simp add: ac_simps)
|
|
|
84 |
qed
|
|
|
85 |
qed
|
|
|
86 |
|
|
|
87 |
lemma is_primeI2:
|
|
|
88 |
assumes "p \<noteq> 0"
|
|
|
89 |
assumes "\<not> is_unit p"
|
|
|
90 |
assumes P: "\<And>a b. p dvd a * b \<Longrightarrow> p dvd a \<or> p dvd b"
|
|
|
91 |
shows "is_prime p"
|
|
|
92 |
using \<open>p \<noteq> 0\<close> \<open>\<not> is_unit p\<close> proof (rule is_primeI)
|
|
|
93 |
fix a
|
|
|
94 |
assume "a dvd p"
|
|
|
95 |
then obtain b where "p = a * b" ..
|
|
|
96 |
with \<open>p \<noteq> 0\<close> have "b \<noteq> 0" by simp
|
|
|
97 |
moreover from \<open>p = a * b\<close> P have "p dvd a \<or> p dvd b" by auto
|
|
|
98 |
moreover assume "\<not> is_unit a"
|
|
|
99 |
ultimately show "p dvd a"
|
|
|
100 |
using dvd_times_right_cancel_iff [of b a 1] \<open>p = a * b\<close> by auto
|
|
|
101 |
qed
|
|
|
102 |
|
|
|
103 |
lemma not_is_prime_divisorE:
|
|
|
104 |
assumes "a \<noteq> 0" and "\<not> is_unit a" and "\<not> is_prime a"
|
|
|
105 |
obtains b where "b dvd a" and "\<not> is_unit b" and "\<not> a dvd b"
|
|
|
106 |
proof -
|
|
|
107 |
from assms have "\<exists>b. b dvd a \<and> \<not> is_unit b \<and> \<not> a dvd b"
|
|
|
108 |
by (auto intro: is_primeI)
|
|
|
109 |
with that show thesis by blast
|
|
|
110 |
qed
|
|
|
111 |
|
|
|
112 |
lemma is_prime_normalize_iff [simp]:
|
|
|
113 |
"is_prime (normalize p) \<longleftrightarrow> is_prime p" (is "?P \<longleftrightarrow> ?Q")
|
|
|
114 |
proof
|
|
|
115 |
assume ?Q show ?P
|
|
|
116 |
by (rule is_primeI) (insert \<open>?Q\<close>, simp_all add: is_prime_not_zeroI is_prime_not_unit is_primeD2)
|
|
|
117 |
next
|
|
|
118 |
assume ?P show ?Q
|
|
|
119 |
by (rule is_primeI)
|
|
|
120 |
(insert is_prime_not_zeroI [of "normalize p"] is_prime_not_unit [of "normalize p"] is_primeD2 [of "normalize p"] \<open>?P\<close>, simp_all)
|
|
|
121 |
qed
|
|
|
122 |
|
|
62499
|
123 |
lemma no_prime_divisorsI:
|
|
|
124 |
assumes "\<And>b. b dvd a \<Longrightarrow> normalize b = b \<Longrightarrow> \<not> is_prime b"
|
|
|
125 |
shows "is_unit a"
|
|
|
126 |
proof (rule no_prime_divisorsI2)
|
|
|
127 |
fix b
|
|
|
128 |
assume "b dvd a"
|
|
|
129 |
then have "normalize b dvd a"
|
|
|
130 |
by simp
|
|
|
131 |
moreover have "normalize (normalize b) = normalize b"
|
|
|
132 |
by simp
|
|
|
133 |
ultimately have "\<not> is_prime (normalize b)"
|
|
|
134 |
by (rule assms)
|
|
|
135 |
then show "\<not> is_prime b"
|
|
|
136 |
by simp
|
|
|
137 |
qed
|
|
|
138 |
|
|
|
139 |
lemma prime_divisorE:
|
|
|
140 |
assumes "a \<noteq> 0" and "\<not> is_unit a"
|
|
|
141 |
obtains p where "is_prime p" and "p dvd a"
|
|
|
142 |
using assms no_prime_divisorsI [of a] by blast
|
|
|
143 |
|
|
|
144 |
lemma is_prime_associated:
|
|
|
145 |
assumes "is_prime p" and "is_prime q" and "q dvd p"
|
|
|
146 |
shows "normalize q = normalize p"
|
|
|
147 |
using \<open>q dvd p\<close> proof (rule associatedI)
|
|
|
148 |
from \<open>is_prime q\<close> have "\<not> is_unit q"
|
|
|
149 |
by (simp add: is_prime_not_unit)
|
|
|
150 |
with \<open>is_prime p\<close> \<open>q dvd p\<close> show "p dvd q"
|
|
|
151 |
by (blast intro: is_primeD2)
|
|
|
152 |
qed
|
|
|
153 |
|
|
|
154 |
lemma prime_dvd_mult_iff:
|
|
|
155 |
assumes "is_prime p"
|
|
|
156 |
shows "p dvd a * b \<longleftrightarrow> p dvd a \<or> p dvd b"
|
|
|
157 |
using assms by (auto dest: is_primeD)
|
|
|
158 |
|
|
|
159 |
lemma prime_dvd_msetprod:
|
|
|
160 |
assumes "is_prime p"
|
|
|
161 |
assumes dvd: "p dvd msetprod A"
|
|
|
162 |
obtains a where "a \<in># A" and "p dvd a"
|
|
|
163 |
proof -
|
|
|
164 |
from dvd have "\<exists>a. a \<in># A \<and> p dvd a"
|
|
|
165 |
proof (induct A)
|
|
|
166 |
case empty then show ?case
|
|
|
167 |
using \<open>is_prime p\<close> by (simp add: is_prime_not_unit)
|
|
|
168 |
next
|
|
|
169 |
case (add A a)
|
|
|
170 |
then have "p dvd msetprod A * a" by simp
|
|
|
171 |
with \<open>is_prime p\<close> consider (A) "p dvd msetprod A" | (B) "p dvd a"
|
|
|
172 |
by (blast dest: is_primeD)
|
|
|
173 |
then show ?case proof cases
|
|
|
174 |
case B then show ?thesis by auto
|
|
|
175 |
next
|
|
|
176 |
case A
|
|
|
177 |
with add.hyps obtain b where "b \<in># A" "p dvd b"
|
|
|
178 |
by auto
|
|
|
179 |
then show ?thesis by auto
|
|
|
180 |
qed
|
|
|
181 |
qed
|
|
|
182 |
with that show thesis by blast
|
|
|
183 |
qed
|
|
|
184 |
|
|
|
185 |
lemma msetprod_eq_iff:
|
|
|
186 |
assumes "\<forall>p\<in>set_mset P. is_prime p \<and> normalize p = p" and "\<forall>p\<in>set_mset Q. is_prime p \<and> normalize p = p"
|
|
|
187 |
shows "msetprod P = msetprod Q \<longleftrightarrow> P = Q" (is "?R \<longleftrightarrow> ?S")
|
|
|
188 |
proof
|
|
|
189 |
assume ?S then show ?R by simp
|
|
|
190 |
next
|
|
|
191 |
assume ?R then show ?S using assms proof (induct P arbitrary: Q)
|
|
|
192 |
case empty then have Q: "msetprod Q = 1" by simp
|
|
|
193 |
have "Q = {#}"
|
|
|
194 |
proof (rule ccontr)
|
|
|
195 |
assume "Q \<noteq> {#}"
|
|
|
196 |
then obtain r R where "Q = R + {#r#}"
|
|
|
197 |
using multi_nonempty_split by blast
|
|
|
198 |
moreover with empty have "is_prime r" by simp
|
|
|
199 |
ultimately have "msetprod Q = msetprod R * r"
|
|
|
200 |
by simp
|
|
|
201 |
with Q have "msetprod R * r = 1"
|
|
|
202 |
by simp
|
|
|
203 |
then have "is_unit r"
|
|
|
204 |
by (metis local.dvd_triv_right)
|
|
|
205 |
with \<open>is_prime r\<close> show False by (simp add: is_prime_not_unit)
|
|
|
206 |
qed
|
|
|
207 |
then show ?case by simp
|
|
|
208 |
next
|
|
|
209 |
case (add P p)
|
|
|
210 |
then have "is_prime p" and "normalize p = p"
|
|
|
211 |
and "msetprod Q = msetprod P * p" and "p dvd msetprod Q"
|
|
|
212 |
by auto (metis local.dvd_triv_right)
|
|
|
213 |
with prime_dvd_msetprod
|
|
|
214 |
obtain q where "q \<in># Q" and "p dvd q"
|
|
|
215 |
by blast
|
|
|
216 |
with add.prems have "is_prime q" and "normalize q = q"
|
|
|
217 |
by simp_all
|
|
|
218 |
from \<open>is_prime p\<close> have "p \<noteq> 0"
|
|
|
219 |
by auto
|
|
|
220 |
from \<open>is_prime q\<close> \<open>is_prime p\<close> \<open>p dvd q\<close>
|
|
|
221 |
have "normalize p = normalize q"
|
|
|
222 |
by (rule is_prime_associated)
|
|
|
223 |
from \<open>normalize p = p\<close> \<open>normalize q = q\<close> have "p = q"
|
|
|
224 |
unfolding \<open>normalize p = normalize q\<close> by simp
|
|
|
225 |
with \<open>q \<in># Q\<close> have "p \<in># Q" by simp
|
|
|
226 |
have "msetprod P = msetprod (Q - {#p#})"
|
|
|
227 |
using \<open>p \<in># Q\<close> \<open>p \<noteq> 0\<close> \<open>msetprod Q = msetprod P * p\<close>
|
|
|
228 |
by (simp add: msetprod_minus)
|
|
|
229 |
then have "P = Q - {#p#}"
|
|
|
230 |
using add.prems(2-3)
|
|
|
231 |
by (auto intro: add.hyps dest: in_diffD)
|
|
|
232 |
with \<open>p \<in># Q\<close> show ?case by simp
|
|
|
233 |
qed
|
|
|
234 |
qed
|
|
|
235 |
|
|
|
236 |
lemma prime_dvd_power_iff:
|
|
|
237 |
assumes "is_prime p"
|
|
|
238 |
shows "p dvd a ^ n \<longleftrightarrow> p dvd a \<and> n > 0"
|
|
|
239 |
using assms by (induct n) (auto dest: is_prime_not_unit is_primeD)
|
|
|
240 |
|
|
|
241 |
lemma prime_power_dvd_multD:
|
|
|
242 |
assumes "is_prime p"
|
|
|
243 |
assumes "p ^ n dvd a * b" and "n > 0" and "\<not> p dvd a"
|
|
|
244 |
shows "p ^ n dvd b"
|
|
|
245 |
using \<open>p ^ n dvd a * b\<close> and \<open>n > 0\<close> proof (induct n arbitrary: b)
|
|
|
246 |
case 0 then show ?case by simp
|
|
|
247 |
next
|
|
|
248 |
case (Suc n) show ?case
|
|
|
249 |
proof (cases "n = 0")
|
|
|
250 |
case True with Suc \<open>is_prime p\<close> \<open>\<not> p dvd a\<close> show ?thesis
|
|
|
251 |
by (simp add: prime_dvd_mult_iff)
|
|
|
252 |
next
|
|
|
253 |
case False then have "n > 0" by simp
|
|
|
254 |
from \<open>is_prime p\<close> have "p \<noteq> 0" by auto
|
|
|
255 |
from Suc.prems have *: "p * p ^ n dvd a * b"
|
|
|
256 |
by simp
|
|
|
257 |
then have "p dvd a * b"
|
|
|
258 |
by (rule dvd_mult_left)
|
|
|
259 |
with Suc \<open>is_prime p\<close> \<open>\<not> p dvd a\<close> have "p dvd b"
|
|
|
260 |
by (simp add: prime_dvd_mult_iff)
|
|
|
261 |
moreover def c \<equiv> "b div p"
|
|
|
262 |
ultimately have b: "b = p * c" by simp
|
|
|
263 |
with * have "p * p ^ n dvd p * (a * c)"
|
|
|
264 |
by (simp add: ac_simps)
|
|
|
265 |
with \<open>p \<noteq> 0\<close> have "p ^ n dvd a * c"
|
|
|
266 |
by simp
|
|
|
267 |
with Suc.hyps \<open>n > 0\<close> have "p ^ n dvd c"
|
|
|
268 |
by blast
|
|
|
269 |
with \<open>p \<noteq> 0\<close> show ?thesis
|
|
|
270 |
by (simp add: b)
|
|
|
271 |
qed
|
|
|
272 |
qed
|
|
|
273 |
|
|
60804
|
274 |
lemma is_prime_inj_power:
|
|
|
275 |
assumes "is_prime p"
|
|
|
276 |
shows "inj (op ^ p)"
|
|
|
277 |
proof (rule injI, rule ccontr)
|
|
|
278 |
fix m n :: nat
|
|
|
279 |
have [simp]: "p ^ q = 1 \<longleftrightarrow> q = 0" (is "?P \<longleftrightarrow> ?Q") for q
|
|
|
280 |
proof
|
|
|
281 |
assume ?Q then show ?P by simp
|
|
|
282 |
next
|
|
|
283 |
assume ?P then have "is_unit (p ^ q)" by simp
|
|
|
284 |
with assms show ?Q by (auto simp add: is_unit_power_iff is_prime_not_unit)
|
|
|
285 |
qed
|
|
|
286 |
have *: False if "p ^ m = p ^ n" and "m > n" for m n
|
|
|
287 |
proof -
|
|
|
288 |
from assms have "p \<noteq> 0"
|
|
|
289 |
by (rule is_prime_not_zeroI)
|
|
|
290 |
then have "p ^ n \<noteq> 0"
|
|
|
291 |
by (induct n) simp_all
|
|
|
292 |
from that have "m = n + (m - n)" and "m - n > 0" by arith+
|
|
|
293 |
then obtain q where "m = n + q" and "q > 0" ..
|
|
|
294 |
with that have "p ^ n * p ^ q = p ^ n * 1" by (simp add: power_add)
|
|
|
295 |
with \<open>p ^ n \<noteq> 0\<close> have "p ^ q = 1"
|
|
|
296 |
using mult_left_cancel [of "p ^ n" "p ^ q" 1] by simp
|
|
|
297 |
with \<open>q > 0\<close> show ?thesis by simp
|
|
|
298 |
qed
|
|
|
299 |
assume "m \<noteq> n"
|
|
|
300 |
then have "m > n \<or> m < n" by arith
|
|
|
301 |
moreover assume "p ^ m = p ^ n"
|
|
|
302 |
ultimately show False using * [of m n] * [of n m] by auto
|
|
|
303 |
qed
|
|
|
304 |
|
|
62499
|
305 |
definition factorization :: "'a \<Rightarrow> 'a multiset option"
|
|
|
306 |
where "factorization a = (if a = 0 then None
|
|
|
307 |
else Some (setsum (\<lambda>p. replicate_mset (Max {n. p ^ n dvd a}) p)
|
|
|
308 |
{p. p dvd a \<and> is_prime p \<and> normalize p = p}))"
|
|
|
309 |
|
|
|
310 |
lemma factorization_normalize [simp]:
|
|
|
311 |
"factorization (normalize a) = factorization a"
|
|
|
312 |
by (simp add: factorization_def)
|
|
|
313 |
|
|
|
314 |
lemma factorization_0 [simp]:
|
|
|
315 |
"factorization 0 = None"
|
|
|
316 |
by (simp add: factorization_def)
|
|
|
317 |
|
|
|
318 |
lemma factorization_eq_None_iff [simp]:
|
|
|
319 |
"factorization a = None \<longleftrightarrow> a = 0"
|
|
|
320 |
by (simp add: factorization_def)
|
|
60804
|
321 |
|
|
62499
|
322 |
lemma factorization_eq_Some_iff:
|
|
|
323 |
"factorization a = Some P \<longleftrightarrow>
|
|
|
324 |
normalize a = msetprod P \<and> 0 \<notin># P \<and> (\<forall>p \<in> set_mset P. is_prime p \<and> normalize p = p)"
|
|
|
325 |
proof (cases "a = 0")
|
|
|
326 |
have [simp]: "0 = msetprod P \<longleftrightarrow> 0 \<in># P"
|
|
|
327 |
using msetprod_zero_iff [of P] by blast
|
|
|
328 |
case True
|
|
|
329 |
then show ?thesis by auto
|
|
|
330 |
next
|
|
|
331 |
case False
|
|
60804
|
332 |
let ?prime_factors = "\<lambda>a. {p. p dvd a \<and> is_prime p \<and> normalize p = p}"
|
|
62499
|
333 |
have "?prime_factors a \<subseteq> {b. b dvd a \<and> normalize b = b}"
|
|
|
334 |
by auto
|
|
|
335 |
moreover from \<open>a \<noteq> 0\<close> have "finite {b. b dvd a \<and> normalize b = b}"
|
|
60804
|
336 |
by (rule finite_divisors)
|
|
62499
|
337 |
ultimately have "finite (?prime_factors a)"
|
|
|
338 |
by (rule finite_subset)
|
|
|
339 |
then show ?thesis using \<open>a \<noteq> 0\<close>
|
|
|
340 |
proof (induct "?prime_factors a" arbitrary: a P)
|
|
60804
|
341 |
case empty then have
|
|
62499
|
342 |
*: "{p. p dvd a \<and> is_prime p \<and> normalize p = p} = {}"
|
|
|
343 |
and "a \<noteq> 0"
|
|
60804
|
344 |
by auto
|
|
62499
|
345 |
from \<open>a \<noteq> 0\<close> have "factorization a = Some {#}"
|
|
|
346 |
by (simp only: factorization_def *) simp
|
|
|
347 |
from * have "normalize a = 1"
|
|
|
348 |
by (auto intro: is_unit_normalize no_prime_divisorsI)
|
|
|
349 |
show ?case (is "?lhs \<longleftrightarrow> ?rhs") proof
|
|
|
350 |
assume ?lhs with \<open>factorization a = Some {#}\<close> \<open>normalize a = 1\<close>
|
|
|
351 |
show ?rhs by simp
|
|
|
352 |
next
|
|
|
353 |
assume ?rhs have "P = {#}"
|
|
|
354 |
proof (rule ccontr)
|
|
|
355 |
assume "P \<noteq> {#}"
|
|
|
356 |
then obtain q Q where "P = Q + {#q#}"
|
|
|
357 |
using multi_nonempty_split by blast
|
|
|
358 |
with \<open>?rhs\<close> \<open>normalize a = 1\<close>
|
|
|
359 |
have "1 = q * msetprod Q" and "is_prime q"
|
|
|
360 |
by (simp_all add: ac_simps)
|
|
|
361 |
then have "is_unit q" by (auto intro: dvdI)
|
|
|
362 |
with \<open>is_prime q\<close> show False
|
|
|
363 |
using is_prime_not_unit by blast
|
|
|
364 |
qed
|
|
|
365 |
with \<open>factorization a = Some {#}\<close> show ?lhs by simp
|
|
60804
|
366 |
qed
|
|
|
367 |
next
|
|
62499
|
368 |
case (insert p F)
|
|
|
369 |
from \<open>insert p F = ?prime_factors a\<close>
|
|
|
370 |
have "?prime_factors a = insert p F"
|
|
|
371 |
by simp
|
|
|
372 |
then have "p dvd a" and "is_prime p" and "normalize p = p" and "p \<noteq> 0"
|
|
|
373 |
by (auto intro!: is_prime_not_zeroI)
|
|
|
374 |
def n \<equiv> "Max {n. p ^ n dvd a}"
|
|
|
375 |
then have "n > 0" and "p ^ n dvd a" and "\<not> p ^ Suc n dvd a"
|
|
|
376 |
proof -
|
|
60804
|
377 |
def N \<equiv> "{n. p ^ n dvd a}"
|
|
62499
|
378 |
then have n_M: "n = Max N" by (simp add: n_def)
|
|
60804
|
379 |
from is_prime_inj_power \<open>is_prime p\<close> have "inj (op ^ p)" .
|
|
|
380 |
then have "inj_on (op ^ p) U" for U
|
|
|
381 |
by (rule subset_inj_on) simp
|
|
|
382 |
moreover have "op ^ p ` N \<subseteq> {b. b dvd a \<and> normalize b = b}"
|
|
|
383 |
by (auto simp add: normalize_power \<open>normalize p = p\<close> N_def)
|
|
|
384 |
ultimately have "finite N"
|
|
|
385 |
by (rule inj_on_finite) (simp add: finite_divisors \<open>a \<noteq> 0\<close>)
|
|
|
386 |
from N_def \<open>a \<noteq> 0\<close> have "0 \<in> N" by (simp add: N_def)
|
|
|
387 |
then have "N \<noteq> {}" by blast
|
|
|
388 |
note * = \<open>finite N\<close> \<open>N \<noteq> {}\<close>
|
|
|
389 |
from N_def \<open>p dvd a\<close> have "1 \<in> N" by simp
|
|
62499
|
390 |
with * have "Max N > 0"
|
|
60804
|
391 |
by (auto simp add: Max_gr_iff)
|
|
62499
|
392 |
then show "n > 0" by (simp add: n_M)
|
|
60804
|
393 |
from * have "Max N \<in> N" by (rule Max_in)
|
|
62499
|
394 |
then have "p ^ Max N dvd a" by (simp add: N_def)
|
|
|
395 |
then show "p ^ n dvd a" by (simp add: n_M)
|
|
60804
|
396 |
from * have "\<forall>n\<in>N. n \<le> Max N"
|
|
|
397 |
by (simp add: Max_le_iff [symmetric])
|
|
|
398 |
then have "p ^ Suc (Max N) dvd a \<Longrightarrow> Suc (Max N) \<le> Max N"
|
|
|
399 |
by (rule bspec) (simp add: N_def)
|
|
62499
|
400 |
then have "\<not> p ^ Suc (Max N) dvd a"
|
|
60804
|
401 |
by auto
|
|
62499
|
402 |
then show "\<not> p ^ Suc n dvd a"
|
|
|
403 |
by (simp add: n_M)
|
|
60804
|
404 |
qed
|
|
62499
|
405 |
def b \<equiv> "a div p ^ n"
|
|
|
406 |
with \<open>p ^ n dvd a\<close> have a: "a = p ^ n * b"
|
|
|
407 |
by simp
|
|
|
408 |
with \<open>\<not> p ^ Suc n dvd a\<close> have "\<not> p dvd b" and "b \<noteq> 0"
|
|
60804
|
409 |
by (auto elim: dvdE simp add: ac_simps)
|
|
62499
|
410 |
have "?prime_factors a = insert p (?prime_factors b)"
|
|
60804
|
411 |
proof (rule set_eqI)
|
|
|
412 |
fix q
|
|
62499
|
413 |
show "q \<in> ?prime_factors a \<longleftrightarrow> q \<in> insert p (?prime_factors b)"
|
|
|
414 |
using \<open>is_prime p\<close> \<open>normalize p = p\<close> \<open>n > 0\<close>
|
|
|
415 |
by (auto simp add: a prime_dvd_mult_iff prime_dvd_power_iff)
|
|
|
416 |
(auto dest: is_prime_associated)
|
|
60804
|
417 |
qed
|
|
62499
|
418 |
with \<open>\<not> p dvd b\<close> have "?prime_factors a - {p} = ?prime_factors b"
|
|
|
419 |
by auto
|
|
|
420 |
with insert.hyps have "F = ?prime_factors b"
|
|
60804
|
421 |
by auto
|
|
62499
|
422 |
then have "?prime_factors b = F"
|
|
|
423 |
by simp
|
|
|
424 |
with \<open>?prime_factors a = insert p (?prime_factors b)\<close> have "?prime_factors a = insert p F"
|
|
60804
|
425 |
by simp
|
|
62499
|
426 |
have equiv: "(\<Sum>p\<in>F. replicate_mset (Max {n. p ^ n dvd a}) p) =
|
|
|
427 |
(\<Sum>p\<in>F. replicate_mset (Max {n. p ^ n dvd b}) p)"
|
|
|
428 |
using refl proof (rule Groups_Big.setsum.cong)
|
|
|
429 |
fix q
|
|
|
430 |
assume "q \<in> F"
|
|
|
431 |
have "{n. q ^ n dvd a} = {n. q ^ n dvd b}"
|
|
|
432 |
proof -
|
|
|
433 |
have "q ^ m dvd a \<longleftrightarrow> q ^ m dvd b" (is "?R \<longleftrightarrow> ?S")
|
|
|
434 |
for m
|
|
|
435 |
proof (cases "m = 0")
|
|
|
436 |
case True then show ?thesis by simp
|
|
|
437 |
next
|
|
|
438 |
case False then have "m > 0" by simp
|
|
|
439 |
show ?thesis
|
|
|
440 |
proof
|
|
|
441 |
assume ?S then show ?R by (simp add: a)
|
|
|
442 |
next
|
|
|
443 |
assume ?R
|
|
|
444 |
then have *: "q ^ m dvd p ^ n * b" by (simp add: a)
|
|
|
445 |
from insert.hyps \<open>q \<in> F\<close>
|
|
|
446 |
have "is_prime q" "normalize q = q" "p \<noteq> q" "q dvd p ^ n * b"
|
|
|
447 |
by (auto simp add: a)
|
|
|
448 |
from \<open>is_prime q\<close> * \<open>m > 0\<close> show ?S
|
|
|
449 |
proof (rule prime_power_dvd_multD)
|
|
|
450 |
have "\<not> q dvd p"
|
|
|
451 |
proof
|
|
|
452 |
assume "q dvd p"
|
|
|
453 |
with \<open>is_prime q\<close> \<open>is_prime p\<close> have "normalize q = normalize p"
|
|
|
454 |
by (blast intro: is_prime_associated)
|
|
|
455 |
with \<open>normalize p = p\<close> \<open>normalize q = q\<close> \<open>p \<noteq> q\<close> show False
|
|
|
456 |
by simp
|
|
|
457 |
qed
|
|
|
458 |
with \<open>is_prime q\<close> show "\<not> q dvd p ^ n"
|
|
|
459 |
by (simp add: prime_dvd_power_iff)
|
|
|
460 |
qed
|
|
|
461 |
qed
|
|
|
462 |
qed
|
|
|
463 |
then show ?thesis by auto
|
|
|
464 |
qed
|
|
|
465 |
then show
|
|
|
466 |
"replicate_mset (Max {n. q ^ n dvd a}) q = replicate_mset (Max {n. q ^ n dvd b}) q"
|
|
|
467 |
by simp
|
|
|
468 |
qed
|
|
|
469 |
def Q \<equiv> "the (factorization b)"
|
|
|
470 |
with \<open>b \<noteq> 0\<close> have [simp]: "factorization b = Some Q"
|
|
|
471 |
by simp
|
|
|
472 |
from \<open>a \<noteq> 0\<close> have "factorization a =
|
|
|
473 |
Some (\<Sum>p\<in>?prime_factors a. replicate_mset (Max {n. p ^ n dvd a}) p)"
|
|
|
474 |
by (simp add: factorization_def)
|
|
|
475 |
also have "\<dots> =
|
|
|
476 |
Some (\<Sum>p\<in>insert p F. replicate_mset (Max {n. p ^ n dvd a}) p)"
|
|
|
477 |
by (simp add: \<open>?prime_factors a = insert p F\<close>)
|
|
|
478 |
also have "\<dots> =
|
|
|
479 |
Some (replicate_mset n p + (\<Sum>p\<in>F. replicate_mset (Max {n. p ^ n dvd a}) p))"
|
|
|
480 |
using \<open>finite F\<close> \<open>p \<notin> F\<close> n_def by simp
|
|
|
481 |
also have "\<dots> =
|
|
|
482 |
Some (replicate_mset n p + (\<Sum>p\<in>F. replicate_mset (Max {n. p ^ n dvd b}) p))"
|
|
|
483 |
using equiv by simp
|
|
|
484 |
also have "\<dots> = Some (replicate_mset n p + the (factorization b))"
|
|
|
485 |
using \<open>b \<noteq> 0\<close> by (simp add: factorization_def \<open>?prime_factors a = insert p F\<close> \<open>?prime_factors b = F\<close>)
|
|
|
486 |
finally have fact_a: "factorization a =
|
|
|
487 |
Some (replicate_mset n p + Q)"
|
|
|
488 |
by simp
|
|
|
489 |
moreover have "factorization b = Some Q \<longleftrightarrow>
|
|
|
490 |
normalize b = msetprod Q \<and>
|
|
|
491 |
0 \<notin># Q \<and>
|
|
|
492 |
(\<forall>p\<in>#Q. is_prime p \<and> normalize p = p)"
|
|
|
493 |
using \<open>F = ?prime_factors b\<close> \<open>b \<noteq> 0\<close> by (rule insert.hyps)
|
|
|
494 |
ultimately have
|
|
|
495 |
norm_a: "normalize a = msetprod (replicate_mset n p + Q)" and
|
|
|
496 |
prime_Q: "\<forall>p\<in>set_mset Q. is_prime p \<and> normalize p = p"
|
|
|
497 |
by (simp_all add: a normalize_mult normalize_power \<open>normalize p = p\<close>)
|
|
|
498 |
show ?case (is "?lhs \<longleftrightarrow> ?rhs") proof
|
|
|
499 |
assume ?lhs with fact_a
|
|
|
500 |
have "P = replicate_mset n p + Q" by simp
|
|
|
501 |
with \<open>n > 0\<close> \<open>is_prime p\<close> \<open>normalize p = p\<close> prime_Q
|
|
|
502 |
show ?rhs by (auto simp add: norm_a dest: is_prime_not_zeroI)
|
|
|
503 |
next
|
|
|
504 |
assume ?rhs
|
|
|
505 |
with \<open>n > 0\<close> \<open>is_prime p\<close> \<open>normalize p = p\<close> \<open>n > 0\<close> prime_Q
|
|
|
506 |
have "msetprod P = msetprod (replicate_mset n p + Q)"
|
|
|
507 |
and "\<forall>p\<in>set_mset P. is_prime p \<and> normalize p = p"
|
|
|
508 |
and "\<forall>p\<in>set_mset (replicate_mset n p + Q). is_prime p \<and> normalize p = p"
|
|
|
509 |
by (simp_all add: norm_a)
|
|
|
510 |
then have "P = replicate_mset n p + Q"
|
|
|
511 |
by (simp only: msetprod_eq_iff)
|
|
|
512 |
then show ?lhs
|
|
|
513 |
by (simp add: fact_a)
|
|
|
514 |
qed
|
|
60804
|
515 |
qed
|
|
|
516 |
qed
|
|
62499
|
517 |
|
|
|
518 |
lemma factorization_cases [case_names 0 factorization]:
|
|
|
519 |
assumes "0": "a = 0 \<Longrightarrow> P"
|
|
|
520 |
assumes factorization: "\<And>A. a \<noteq> 0 \<Longrightarrow> factorization a = Some A \<Longrightarrow> msetprod A = normalize a
|
|
|
521 |
\<Longrightarrow> 0 \<notin># A \<Longrightarrow> (\<And>p. p \<in># A \<Longrightarrow> normalize p = p) \<Longrightarrow> (\<And>p. p \<in># A \<Longrightarrow> is_prime p) \<Longrightarrow> P"
|
|
|
522 |
shows P
|
|
|
523 |
proof (cases "a = 0")
|
|
|
524 |
case True with 0 show P .
|
|
|
525 |
next
|
|
|
526 |
case False
|
|
|
527 |
then have "factorization a \<noteq> None" by simp
|
|
|
528 |
then obtain A where "factorization a = Some A" by blast
|
|
|
529 |
moreover from this have "msetprod A = normalize a"
|
|
|
530 |
"0 \<notin># A" "\<And>p. p \<in># A \<Longrightarrow> normalize p = p" "\<And>p. p \<in># A \<Longrightarrow> is_prime p"
|
|
|
531 |
by (auto simp add: factorization_eq_Some_iff)
|
|
|
532 |
ultimately show P using \<open>a \<noteq> 0\<close> factorization by blast
|
|
|
533 |
qed
|
|
|
534 |
|
|
|
535 |
lemma factorizationE:
|
|
|
536 |
assumes "a \<noteq> 0"
|
|
|
537 |
obtains A u where "factorization a = Some A" "normalize a = msetprod A"
|
|
|
538 |
"0 \<notin># A" "\<And>p. p \<in># A \<Longrightarrow> is_prime p" "\<And>p. p \<in># A \<Longrightarrow> normalize p = p"
|
|
|
539 |
using assms by (cases a rule: factorization_cases) simp_all
|
|
|
540 |
|
|
|
541 |
lemma prime_dvd_mset_prod_iff:
|
|
|
542 |
assumes "is_prime p" "normalize p = p" "\<And>p. p \<in># A \<Longrightarrow> is_prime p" "\<And>p. p \<in># A \<Longrightarrow> normalize p = p"
|
|
|
543 |
shows "p dvd msetprod A \<longleftrightarrow> p \<in># A"
|
|
|
544 |
using assms proof (induct A)
|
|
|
545 |
case empty then show ?case by (auto dest: is_prime_not_unit)
|
|
|
546 |
next
|
|
|
547 |
case (add A q) then show ?case
|
|
|
548 |
using is_prime_associated [of q p]
|
|
|
549 |
by (simp_all add: prime_dvd_mult_iff, safe, simp_all)
|
|
|
550 |
qed
|
|
|
551 |
|
|
|
552 |
end
|
|
|
553 |
|
|
|
554 |
class factorial_semiring_gcd = factorial_semiring + gcd +
|
|
|
555 |
assumes gcd_unfold: "gcd a b =
|
|
|
556 |
(if a = 0 then normalize b
|
|
|
557 |
else if b = 0 then normalize a
|
|
|
558 |
else msetprod (the (factorization a) #\<inter> the (factorization b)))"
|
|
|
559 |
and lcm_unfold: "lcm a b =
|
|
|
560 |
(if a = 0 \<or> b = 0 then 0
|
|
|
561 |
else msetprod (the (factorization a) #\<union> the (factorization b)))"
|
|
|
562 |
begin
|
|
|
563 |
|
|
|
564 |
subclass semiring_gcd
|
|
|
565 |
proof
|
|
|
566 |
fix a b
|
|
|
567 |
have comm: "gcd a b = gcd b a" for a b
|
|
|
568 |
by (simp add: gcd_unfold ac_simps)
|
|
|
569 |
have "gcd a b dvd a" for a b
|
|
|
570 |
proof (cases a rule: factorization_cases)
|
|
|
571 |
case 0 then show ?thesis by simp
|
|
|
572 |
next
|
|
|
573 |
case (factorization A) note fact_A = this
|
|
|
574 |
then have non_zero: "\<And>p. p \<in>#A \<Longrightarrow> p \<noteq> 0"
|
|
|
575 |
using normalize_0 not_is_prime_zero by blast
|
|
|
576 |
show ?thesis
|
|
|
577 |
proof (cases b rule: factorization_cases)
|
|
|
578 |
case 0 then show ?thesis by (simp add: gcd_unfold)
|
|
|
579 |
next
|
|
|
580 |
case (factorization B) note fact_B = this
|
|
|
581 |
have "msetprod (A #\<inter> B) dvd msetprod A"
|
|
|
582 |
using non_zero proof (induct B arbitrary: A)
|
|
|
583 |
case empty show ?case by simp
|
|
|
584 |
next
|
|
|
585 |
case (add B p) show ?case
|
|
|
586 |
proof (cases "p \<in># A")
|
|
|
587 |
case True then obtain C where "A = C + {#p#}"
|
|
|
588 |
by (metis insert_DiffM2)
|
|
|
589 |
moreover with True add have "p \<noteq> 0" and "\<And>p. p \<in># C \<Longrightarrow> p \<noteq> 0"
|
|
|
590 |
by auto
|
|
|
591 |
ultimately show ?thesis
|
|
|
592 |
using True add.hyps [of C]
|
|
|
593 |
by (simp add: inter_union_distrib_left [symmetric])
|
|
|
594 |
next
|
|
|
595 |
case False with add.prems add.hyps [of A] show ?thesis
|
|
|
596 |
by (simp add: inter_add_right1)
|
|
|
597 |
qed
|
|
|
598 |
qed
|
|
|
599 |
with fact_A fact_B show ?thesis by (simp add: gcd_unfold)
|
|
|
600 |
qed
|
|
|
601 |
qed
|
|
|
602 |
then have "gcd a b dvd a" and "gcd b a dvd b"
|
|
|
603 |
by simp_all
|
|
|
604 |
then show "gcd a b dvd a" and "gcd a b dvd b"
|
|
|
605 |
by (simp_all add: comm)
|
|
|
606 |
show "c dvd gcd a b" if "c dvd a" and "c dvd b" for c
|
|
|
607 |
proof (cases "a = 0 \<or> b = 0 \<or> c = 0")
|
|
|
608 |
case True with that show ?thesis by (auto simp add: gcd_unfold)
|
|
|
609 |
next
|
|
|
610 |
case False then have "a \<noteq> 0" and "b \<noteq> 0" and "c \<noteq> 0"
|
|
|
611 |
by simp_all
|
|
|
612 |
then obtain A B C where fact:
|
|
|
613 |
"factorization a = Some A" "factorization b = Some B" "factorization c = Some C"
|
|
|
614 |
and norm: "normalize a = msetprod A" "normalize b = msetprod B" "normalize c = msetprod C"
|
|
|
615 |
and A: "0 \<notin># A" "\<And>p. p \<in># A \<Longrightarrow> normalize p = p" "\<And>p. p \<in># A \<Longrightarrow> is_prime p"
|
|
|
616 |
and B: "0 \<notin># B" "\<And>p. p \<in># B \<Longrightarrow> normalize p = p" "\<And>p. p \<in># B \<Longrightarrow> is_prime p"
|
|
|
617 |
and C: "0 \<notin># C" "\<And>p. p \<in># C \<Longrightarrow> normalize p = p" "\<And>p. p \<in># C \<Longrightarrow> is_prime p"
|
|
|
618 |
by (blast elim!: factorizationE)
|
|
|
619 |
moreover from that have "normalize c dvd normalize a" and "normalize c dvd normalize b"
|
|
|
620 |
by simp_all
|
|
|
621 |
ultimately have "msetprod C dvd msetprod A" and "msetprod C dvd msetprod B"
|
|
|
622 |
by simp_all
|
|
|
623 |
with A B C have "msetprod C dvd msetprod (A #\<inter> B)"
|
|
|
624 |
proof (induct C arbitrary: A B)
|
|
|
625 |
case empty then show ?case by simp
|
|
|
626 |
next
|
|
|
627 |
case add: (add C p)
|
|
|
628 |
from add.prems
|
|
|
629 |
have p: "p \<noteq> 0" "is_prime p" "normalize p = p" by auto
|
|
|
630 |
from add.prems have prems: "msetprod C * p dvd msetprod A" "msetprod C * p dvd msetprod B"
|
|
|
631 |
by simp_all
|
|
|
632 |
then have "p dvd msetprod A" "p dvd msetprod B"
|
|
|
633 |
by (auto dest: dvd_mult_imp_div dvd_mult_right)
|
|
|
634 |
with p add.prems have "p \<in># A" "p \<in># B"
|
|
|
635 |
by (simp_all add: prime_dvd_mset_prod_iff)
|
|
|
636 |
then obtain A' B' where ABp: "A = {#p#} + A'" "B = {#p#} + B'"
|
|
|
637 |
by (auto dest!: multi_member_split simp add: ac_simps)
|
|
|
638 |
with add.prems prems p have "msetprod C dvd msetprod (A' #\<inter> B')"
|
|
|
639 |
by (auto intro: add.hyps simp add: ac_simps)
|
|
|
640 |
with p have "msetprod ({#p#} + C) dvd msetprod (({#p#} + A') #\<inter> ({#p#} + B'))"
|
|
|
641 |
by (simp add: inter_union_distrib_right [symmetric])
|
|
|
642 |
then show ?case by (simp add: ABp ac_simps)
|
|
|
643 |
qed
|
|
|
644 |
with \<open>a \<noteq> 0\<close> \<open>b \<noteq> 0\<close> that fact have "normalize c dvd gcd a b"
|
|
|
645 |
by (simp add: norm [symmetric] gcd_unfold fact)
|
|
|
646 |
then show ?thesis by simp
|
|
|
647 |
qed
|
|
|
648 |
show "normalize (gcd a b) = gcd a b"
|
|
|
649 |
apply (simp add: gcd_unfold)
|
|
|
650 |
apply safe
|
|
|
651 |
apply (rule normalized_msetprodI)
|
|
|
652 |
apply (auto elim: factorizationE)
|
|
|
653 |
done
|
|
|
654 |
show "lcm a b = normalize (a * b) div gcd a b"
|
|
|
655 |
by (auto elim!: factorizationE simp add: gcd_unfold lcm_unfold normalize_mult
|
|
|
656 |
union_diff_inter_eq_sup [symmetric] msetprod_diff inter_subset_eq_union)
|
|
|
657 |
qed
|
|
|
658 |
|
|
60804
|
659 |
end
|
|
|
660 |
|
|
|
661 |
instantiation nat :: factorial_semiring
|
|
|
662 |
begin
|
|
|
663 |
|
|
|
664 |
definition is_prime_nat :: "nat \<Rightarrow> bool"
|
|
|
665 |
where
|
|
|
666 |
"is_prime_nat p \<longleftrightarrow> (1 < p \<and> (\<forall>n. n dvd p \<longrightarrow> n = 1 \<or> n = p))"
|
|
|
667 |
|
|
|
668 |
lemma is_prime_eq_prime:
|
|
|
669 |
"is_prime = prime"
|
|
|
670 |
by (simp add: fun_eq_iff prime_def is_prime_nat_def)
|
|
|
671 |
|
|
|
672 |
instance proof
|
|
|
673 |
show "\<not> is_prime (0::nat)" by (simp add: is_prime_nat_def)
|
|
|
674 |
show "\<not> is_unit p" if "is_prime p" for p :: nat
|
|
|
675 |
using that by (simp add: is_prime_nat_def)
|
|
|
676 |
next
|
|
|
677 |
fix p :: nat
|
|
|
678 |
assume "p \<noteq> 0" and "\<not> is_unit p"
|
|
|
679 |
then have "p > 1" by simp
|
|
|
680 |
assume P: "\<And>n. n dvd p \<Longrightarrow> \<not> is_unit n \<Longrightarrow> p dvd n"
|
|
|
681 |
have "n = 1" if "n dvd p" "n \<noteq> p" for n
|
|
|
682 |
proof (rule ccontr)
|
|
|
683 |
assume "n \<noteq> 1"
|
|
|
684 |
with that P have "p dvd n" by auto
|
|
|
685 |
with \<open>n dvd p\<close> have "n = p" by (rule dvd_antisym)
|
|
|
686 |
with that show False by simp
|
|
|
687 |
qed
|
|
|
688 |
with \<open>p > 1\<close> show "is_prime p" by (auto simp add: is_prime_nat_def)
|
|
|
689 |
next
|
|
|
690 |
fix p m n :: nat
|
|
|
691 |
assume "is_prime p"
|
|
|
692 |
then have "prime p" by (simp add: is_prime_eq_prime)
|
|
|
693 |
moreover assume "p dvd m * n"
|
|
|
694 |
ultimately show "p dvd m \<or> p dvd n"
|
|
|
695 |
by (rule prime_dvd_mult_nat)
|
|
|
696 |
next
|
|
|
697 |
fix n :: nat
|
|
|
698 |
show "is_unit n" if "\<And>m. m dvd n \<Longrightarrow> \<not> is_prime m"
|
|
|
699 |
using that prime_factor_nat by (auto simp add: is_prime_eq_prime)
|
|
|
700 |
qed simp
|
|
|
701 |
|
|
|
702 |
end
|
|
|
703 |
|
|
|
704 |
instantiation int :: factorial_semiring
|
|
|
705 |
begin
|
|
|
706 |
|
|
|
707 |
definition is_prime_int :: "int \<Rightarrow> bool"
|
|
|
708 |
where
|
|
|
709 |
"is_prime_int p \<longleftrightarrow> is_prime (nat \<bar>p\<bar>)"
|
|
|
710 |
|
|
|
711 |
lemma is_prime_int_iff [simp]:
|
|
|
712 |
"is_prime (int n) \<longleftrightarrow> is_prime n"
|
|
|
713 |
by (simp add: is_prime_int_def)
|
|
|
714 |
|
|
|
715 |
lemma is_prime_nat_abs_iff [simp]:
|
|
|
716 |
"is_prime (nat \<bar>k\<bar>) \<longleftrightarrow> is_prime k"
|
|
|
717 |
by (simp add: is_prime_int_def)
|
|
|
718 |
|
|
|
719 |
instance proof
|
|
|
720 |
show "\<not> is_prime (0::int)" by (simp add: is_prime_int_def)
|
|
|
721 |
show "\<not> is_unit p" if "is_prime p" for p :: int
|
|
|
722 |
using that is_prime_not_unit [of "nat \<bar>p\<bar>"] by simp
|
|
|
723 |
next
|
|
|
724 |
fix p :: int
|
|
|
725 |
assume P: "\<And>k. k dvd p \<Longrightarrow> \<not> is_unit k \<Longrightarrow> p dvd k"
|
|
|
726 |
have "nat \<bar>p\<bar> dvd n" if "n dvd nat \<bar>p\<bar>" and "n \<noteq> Suc 0" for n :: nat
|
|
|
727 |
proof -
|
|
|
728 |
from that have "int n dvd p" by (simp add: int_dvd_iff)
|
|
|
729 |
moreover from that have "\<not> is_unit (int n)" by simp
|
|
|
730 |
ultimately have "p dvd int n" by (rule P)
|
|
|
731 |
with that have "p dvd int n" by auto
|
|
|
732 |
then show ?thesis by (simp add: dvd_int_iff)
|
|
|
733 |
qed
|
|
|
734 |
moreover assume "p \<noteq> 0" and "\<not> is_unit p"
|
|
|
735 |
ultimately have "is_prime (nat \<bar>p\<bar>)" by (intro is_primeI) auto
|
|
|
736 |
then show "is_prime p" by simp
|
|
|
737 |
next
|
|
|
738 |
fix p k l :: int
|
|
|
739 |
assume "is_prime p"
|
|
|
740 |
then have *: "is_prime (nat \<bar>p\<bar>)" by simp
|
|
|
741 |
assume "p dvd k * l"
|
|
|
742 |
then have "nat \<bar>p\<bar> dvd nat \<bar>k * l\<bar>"
|
|
62348
|
743 |
by (simp add: dvd_int_unfold_dvd_nat)
|
|
60804
|
744 |
then have "nat \<bar>p\<bar> dvd nat \<bar>k\<bar> * nat \<bar>l\<bar>"
|
|
|
745 |
by (simp add: abs_mult nat_mult_distrib)
|
|
|
746 |
with * have "nat \<bar>p\<bar> dvd nat \<bar>k\<bar> \<or> nat \<bar>p\<bar> dvd nat \<bar>l\<bar>"
|
|
|
747 |
using is_primeD [of "nat \<bar>p\<bar>"] by auto
|
|
|
748 |
then show "p dvd k \<or> p dvd l"
|
|
62348
|
749 |
by (simp add: dvd_int_unfold_dvd_nat)
|
|
60804
|
750 |
next
|
|
|
751 |
fix k :: int
|
|
|
752 |
assume P: "\<And>l. l dvd k \<Longrightarrow> \<not> is_prime l"
|
|
|
753 |
have "is_unit (nat \<bar>k\<bar>)"
|
|
|
754 |
proof (rule no_prime_divisorsI)
|
|
|
755 |
fix m
|
|
|
756 |
assume "m dvd nat \<bar>k\<bar>"
|
|
|
757 |
then have "int m dvd k" by (simp add: int_dvd_iff)
|
|
|
758 |
then have "\<not> is_prime (int m)" by (rule P)
|
|
|
759 |
then show "\<not> is_prime m" by simp
|
|
|
760 |
qed
|
|
|
761 |
then show "is_unit k" by simp
|
|
|
762 |
qed simp
|
|
|
763 |
|
|
|
764 |
end
|
|
|
765 |
|
|
|
766 |
end
|