| author | berghofe | 
| Mon, 23 Oct 2006 00:48:45 +0200 | |
| changeset 21086 | fe9f43a1e5bd | 
| parent 20820 | 58693343905f | 
| child 21404 | eb85850d3eb7 | 
| permissions | -rw-r--r-- | 
| 12169 | 1 | (* *********************************************************************** *) | 
| 2 | (* *) | |
| 3 | (* Title: SList.thy (Extended List Theory) *) | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 4 | (* Based on: $Id$ *) | 
| 12169 | 5 | (* Author: Lawrence C Paulson, Cambridge University Computer Laboratory*) | 
| 6 | (* Author: B. Wolff, University of Bremen *) | |
| 7 | (* Purpose: Enriched theory of lists *) | |
| 8 | (* mutual indirect recursive data-types *) | |
| 9 | (* *) | |
| 10 | (* *********************************************************************** *) | |
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 11 | |
| 12169 | 12 | (* Definition of type 'a list (strict lists) by a least fixed point | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 13 | |
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 14 | We use          list(A) == lfp(%Z. {NUMB(0)} <+> A <*> Z)
 | 
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 15 | and not         list    == lfp(%Z. {NUMB(0)} <+> range(Leaf) <*> Z)
 | 
| 12169 | 16 | |
| 17 | so that list can serve as a "functor" for defining other recursive types. | |
| 18 | ||
| 19 | This enables the conservative construction of mutual recursive data-types | |
| 20 | such as | |
| 21 | ||
| 22 | datatype 'a m = Node 'a * ('a m) list
 | |
| 23 | ||
| 24 | Tidied by lcp. Still needs removal of nat_rec. | |
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 25 | *) | 
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 26 | |
| 20801 | 27 | theory SList imports Sexp begin | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 28 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 29 | (*Hilbert_Choice is needed for the function "inv"*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 30 | |
| 12169 | 31 | (* *********************************************************************** *) | 
| 32 | (* *) | |
| 33 | (* Building up data type *) | |
| 34 | (* *) | |
| 35 | (* *********************************************************************** *) | |
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 36 | |
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 37 | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 38 | (* Defining the Concrete Constructors *) | 
| 19736 | 39 | definition | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 40 | NIL :: "'a item" | 
| 20801 | 41 | "NIL = In0(Numb(0))" | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 42 | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 43 | CONS :: "['a item, 'a item] => 'a item" | 
| 20801 | 44 | "CONS M N = In1(Scons M N)" | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 45 | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 46 | consts | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 47 | list :: "'a item set => 'a item set" | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 48 | inductive "list(A)" | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 49 | intros | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 50 | NIL_I: "NIL: list A" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 51 | CONS_I: "[| a: A; M: list A |] ==> CONS a M : list A" | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 52 | |
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 53 | |
| 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 54 | typedef (List) | 
| 20801 | 55 | 'a list = "list(range Leaf) :: 'a item set" | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 56 | by (blast intro: list.NIL_I) | 
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 57 | |
| 20801 | 58 | abbreviation | 
| 20820 
58693343905f
removed obsolete Datatype_Universe.thy (cf. Datatype.thy);
 wenzelm parents: 
20801diff
changeset | 59 | "Case == Datatype.Case" | 
| 
58693343905f
removed obsolete Datatype_Universe.thy (cf. Datatype.thy);
 wenzelm parents: 
20801diff
changeset | 60 | "Split == Datatype.Split" | 
| 20801 | 61 | |
| 19736 | 62 | definition | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 63 | List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b" | 
| 20801 | 64 | "List_case c d = Case(%x. c)(Split(d))" | 
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 65 | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 66 | List_rec :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b" | 
| 20801 | 67 | "List_rec M c d = wfrec (trancl pred_sexp) | 
| 68 | (%g. List_case c (%x y. d x y (g y))) M" | |
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 69 | |
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 70 | |
| 12169 | 71 | (* *********************************************************************** *) | 
| 72 | (* *) | |
| 73 | (* Abstracting data type *) | |
| 74 | (* *) | |
| 75 | (* *********************************************************************** *) | |
| 76 | ||
| 77 | (*Declaring the abstract list constructors*) | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 78 | |
| 20801 | 79 | no_translations | 
| 80 | "[x, xs]" == "x#[xs]" | |
| 81 | "[x]" == "x#[]" | |
| 82 | no_syntax | |
| 83 |   Nil :: "'a list"  ("[]")
 | |
| 84 | Cons :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "#" 65) | |
| 85 | ||
| 19736 | 86 | definition | 
| 20770 | 87 |   Nil       :: "'a list"                               ("[]")
 | 
| 19736 | 88 | "Nil = Abs_List(NIL)" | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 89 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 90 | "Cons" :: "['a, 'a list] => 'a list" (infixr "#" 65) | 
| 19736 | 91 | "x#xs = Abs_List(CONS (Leaf x)(Rep_List xs))" | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 92 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 93 | (* list Recursion -- the trancl is Essential; see list.ML *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 94 | list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" | 
| 19736 | 95 | "list_rec l c d = | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 96 | List_rec(Rep_List l) c (%x y r. d(inv Leaf x)(Abs_List y) r)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 97 | |
| 14653 | 98 | list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b" | 
| 19736 | 99 | "list_case a f xs = list_rec xs a (%x xs r. f x xs)" | 
| 14653 | 100 | |
| 12169 | 101 | (* list Enumeration *) | 
| 102 | translations | |
| 103 | "[x, xs]" == "x#[xs]" | |
| 104 | "[x]" == "x#[]" | |
| 105 | ||
| 20770 | 106 | "case xs of [] => a | y#ys => b" == "CONST list_case(a, %y ys. b, xs)" | 
| 12169 | 107 | |
| 20770 | 108 | |
| 12169 | 109 | (* *********************************************************************** *) | 
| 110 | (* *) | |
| 111 | (* Generalized Map Functionals *) | |
| 112 | (* *) | |
| 113 | (* *********************************************************************** *) | |
| 114 | ||
| 115 | ||
| 116 | (* Generalized Map Functionals *) | |
| 117 | ||
| 19736 | 118 | definition | 
| 12169 | 119 |   Rep_map   :: "('b => 'a item) => ('b list => 'a item)"
 | 
| 19736 | 120 | "Rep_map f xs = list_rec xs NIL(%x l r. CONS(f x) r)" | 
| 12169 | 121 | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 122 |   Abs_map   :: "('a item => 'b) => 'a item => 'b list"
 | 
| 19736 | 123 | "Abs_map g M = List_rec M Nil (%N L r. g(N)#r)" | 
| 12169 | 124 | |
| 125 | ||
| 126 | (**** Function definitions ****) | |
| 127 | ||
| 19736 | 128 | definition | 
| 12169 | 129 | |
| 130 | null :: "'a list => bool" | |
| 19736 | 131 | "null xs = list_rec xs True (%x xs r. False)" | 
| 12169 | 132 | |
| 133 | hd :: "'a list => 'a" | |
| 19736 | 134 | "hd xs = list_rec xs (@x. True) (%x xs r. x)" | 
| 12169 | 135 | |
| 136 | tl :: "'a list => 'a list" | |
| 19736 | 137 | "tl xs = list_rec xs (@xs. True) (%x xs r. xs)" | 
| 12169 | 138 | |
| 139 | (* a total version of tl: *) | |
| 140 | ttl :: "'a list => 'a list" | |
| 19736 | 141 | "ttl xs = list_rec xs [] (%x xs r. xs)" | 
| 12169 | 142 | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 143 | member :: "['a, 'a list] => bool" (infixl "mem" 55) | 
| 19736 | 144 | "x mem xs = list_rec xs False (%y ys r. if y=x then True else r)" | 
| 12169 | 145 | |
| 146 |   list_all  :: "('a => bool) => ('a list => bool)"
 | |
| 19736 | 147 | "list_all P xs = list_rec xs True(%x l r. P(x) & r)" | 
| 12169 | 148 | |
| 149 |   map       :: "('a=>'b) => ('a list => 'b list)"
 | |
| 19736 | 150 | "map f xs = list_rec xs [] (%x l r. f(x)#r)" | 
| 12169 | 151 | |
| 152 | ||
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 153 | append :: "['a list, 'a list] => 'a list" (infixr "@" 65) | 
| 19736 | 154 | "xs@ys = list_rec xs ys (%x l r. x#r)" | 
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 155 | |
| 12169 | 156 | filter :: "['a => bool, 'a list] => 'a list" | 
| 19736 | 157 | "filter P xs = list_rec xs [] (%x xs r. if P(x)then x#r else r)" | 
| 12169 | 158 | |
| 159 | foldl :: "[['b,'a] => 'b, 'b, 'a list] => 'b" | |
| 19736 | 160 | "foldl f a xs = list_rec xs (%a. a)(%x xs r.%a. r(f a x))(a)" | 
| 12169 | 161 | |
| 162 | foldr :: "[['a,'b] => 'b, 'b, 'a list] => 'b" | |
| 19736 | 163 | "foldr f a xs = list_rec xs a (%x xs r. (f x r))" | 
| 12169 | 164 | |
| 165 | length :: "'a list => nat" | |
| 19736 | 166 | "length xs = list_rec xs 0 (%x xs r. Suc r)" | 
| 12169 | 167 | |
| 168 | drop :: "['a list,nat] => 'a list" | |
| 19736 | 169 | "drop t n = (nat_rec(%x. x)(%m r xs. r(ttl xs)))(n)(t)" | 
| 12169 | 170 | |
| 171 | copy :: "['a, nat] => 'a list" (* make list of n copies of x *) | |
| 19736 | 172 | "copy t = nat_rec [] (%m xs. t # xs)" | 
| 12169 | 173 | |
| 174 | flat :: "'a list list => 'a list" | |
| 19736 | 175 | "flat = foldr (op @) []" | 
| 12169 | 176 | |
| 177 | nth :: "[nat, 'a list] => 'a" | |
| 19736 | 178 | "nth = nat_rec hd (%m r xs. r(tl xs))" | 
| 12169 | 179 | |
| 180 | rev :: "'a list => 'a list" | |
| 19736 | 181 | "rev xs = list_rec xs [] (%x xs xsa. xsa @ [x])" | 
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 182 | |
| 12169 | 183 | (* miscellaneous definitions *) | 
| 184 | zipWith :: "['a * 'b => 'c, 'a list * 'b list] => 'c list" | |
| 19736 | 185 | "zipWith f S = (list_rec (fst S) (%T.[]) | 
| 12169 | 186 | (%x xs r. %T. if null T then [] | 
| 187 | else f(x,hd T) # r(tl T)))(snd(S))" | |
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 188 | |
| 14653 | 189 |   zip       :: "'a list * 'b list => ('a*'b) list"
 | 
| 19736 | 190 | "zip = zipWith (%s. s)" | 
| 14653 | 191 | |
| 12169 | 192 |   unzip     :: "('a*'b) list => ('a list * 'b list)"
 | 
| 19736 | 193 | "unzip = foldr(% (a,b)(c,d).(a#c,b#d))([],[])" | 
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 194 | |
| 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 195 | |
| 12169 | 196 | consts take :: "['a list,nat] => 'a list" | 
| 197 | primrec | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 198 | take_0: "take xs 0 = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 199 | take_Suc: "take xs (Suc n) = list_case [] (%x l. x # take l n) xs" | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 200 | |
| 12169 | 201 | consts enum :: "[nat,nat] => nat list" | 
| 202 | primrec | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 203 | enum_0: "enum i 0 = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 204 | enum_Suc: "enum i (Suc j) = (if i <= j then enum i j @ [j] else [])" | 
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 205 | |
| 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 206 | |
| 20801 | 207 | no_syntax | 
| 208 | "@" :: "'a list => 'a list => 'a list" (infixr 65) | |
| 209 | no_translations | |
| 210 | "[x:xs . P]" == "filter (%x. P) xs" | |
| 211 | ||
| 12169 | 212 | syntax | 
| 213 | (* Special syntax for list_all and filter *) | |
| 214 |   "@Alls"       :: "[idt, 'a list, bool] => bool"        ("(2Alls _:_./ _)" 10)
 | |
| 215 | ||
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 216 | translations | 
| 20770 | 217 | "[x:xs. P]" == "CONST filter(%x. P) xs" | 
| 218 | "Alls x:xs. P" == "CONST list_all(%x. P)xs" | |
| 5977 
9f0c8869cf71
tidied up list definitions, using type 'a option instead of
 paulson parents: 
5191diff
changeset | 219 | |
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 220 | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 221 | lemma ListI: "x : list (range Leaf) ==> x : List" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 222 | by (simp add: List_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 223 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 224 | lemma ListD: "x : List ==> x : list (range Leaf)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 225 | by (simp add: List_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 226 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 227 | lemma list_unfold: "list(A) = usum {Numb(0)} (uprod A (list(A)))"
 | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 228 | by (fast intro!: list.intros [unfolded NIL_def CONS_def] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 229 | elim: list.cases [unfolded NIL_def CONS_def]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 230 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 231 | (*This justifies using list in other recursive type definitions*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 232 | lemma list_mono: "A<=B ==> list(A) <= list(B)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 233 | apply (unfold list.defs ) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 234 | apply (rule lfp_mono) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 235 | apply (assumption | rule basic_monos)+ | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 236 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 237 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 238 | (*Type checking -- list creates well-founded sets*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 239 | lemma list_sexp: "list(sexp) <= sexp" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 240 | apply (unfold NIL_def CONS_def list.defs) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 241 | apply (rule lfp_lowerbound) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 242 | apply (fast intro: sexp.intros sexp_In0I sexp_In1I) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 243 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 244 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 245 | (* A <= sexp ==> list(A) <= sexp *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 246 | lemmas list_subset_sexp = subset_trans [OF list_mono list_sexp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 247 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 248 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 249 | (*Induction for the type 'a list *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 250 | lemma list_induct: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 251 | "[| P(Nil); | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 252 | !!x xs. P(xs) ==> P(x # xs) |] ==> P(l)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 253 | apply (unfold Nil_def Cons_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 254 | apply (rule Rep_List_inverse [THEN subst]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 255 | (*types force good instantiation*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 256 | apply (rule Rep_List [unfolded List_def, THEN list.induct], simp) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 257 | apply (erule Abs_List_inverse [unfolded List_def, THEN subst], blast) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 258 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 259 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 260 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 261 | (*** Isomorphisms ***) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 262 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 263 | lemma inj_on_Abs_list: "inj_on Abs_List (list(range Leaf))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 264 | apply (rule inj_on_inverseI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 265 | apply (erule Abs_List_inverse [unfolded List_def]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 266 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 267 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 268 | (** Distinctness of constructors **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 269 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 270 | lemma CONS_not_NIL [iff]: "CONS M N ~= NIL" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 271 | by (simp add: NIL_def CONS_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 272 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 273 | lemmas NIL_not_CONS [iff] = CONS_not_NIL [THEN not_sym] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 274 | lemmas CONS_neq_NIL = CONS_not_NIL [THEN notE, standard] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 275 | lemmas NIL_neq_CONS = sym [THEN CONS_neq_NIL] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 276 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 277 | lemma Cons_not_Nil [iff]: "x # xs ~= Nil" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 278 | apply (unfold Nil_def Cons_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 279 | apply (rule CONS_not_NIL [THEN inj_on_Abs_list [THEN inj_on_contraD]]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 280 | apply (simp_all add: list.intros rangeI Rep_List [unfolded List_def]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 281 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 282 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 283 | lemmas Nil_not_Cons [iff] = Cons_not_Nil [THEN not_sym, standard] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 284 | lemmas Cons_neq_Nil = Cons_not_Nil [THEN notE, standard] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 285 | lemmas Nil_neq_Cons = sym [THEN Cons_neq_Nil] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 286 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 287 | (** Injectiveness of CONS and Cons **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 288 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 289 | lemma CONS_CONS_eq [iff]: "(CONS K M)=(CONS L N) = (K=L & M=N)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 290 | by (simp add: CONS_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 291 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 292 | (*For reasoning about abstract list constructors*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 293 | declare Rep_List [THEN ListD, intro] ListI [intro] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 294 | declare list.intros [intro,simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 295 | declare Leaf_inject [dest!] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 296 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 297 | lemma Cons_Cons_eq [iff]: "(x#xs=y#ys) = (x=y & xs=ys)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 298 | apply (simp add: Cons_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 299 | apply (subst Abs_List_inject) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 300 | apply (auto simp add: Rep_List_inject) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 301 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 302 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 303 | lemmas Cons_inject2 = Cons_Cons_eq [THEN iffD1, THEN conjE, standard] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 304 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 305 | lemma CONS_D: "CONS M N: list(A) ==> M: A & N: list(A)" | 
| 18413 | 306 | by (induct L == "CONS M N" set: list) auto | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 307 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 308 | lemma sexp_CONS_D: "CONS M N: sexp ==> M: sexp & N: sexp" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 309 | apply (simp add: CONS_def In1_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 310 | apply (fast dest!: Scons_D) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 311 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 312 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 313 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 314 | (*Reasoning about constructors and their freeness*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 315 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 316 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 317 | lemma not_CONS_self: "N: list(A) ==> !M. N ~= CONS M N" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 318 | by (erule list.induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 319 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 320 | lemma not_Cons_self2: "\<forall>x. l ~= x#l" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 321 | by (induct_tac "l" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 322 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 323 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 324 | lemma neq_Nil_conv2: "(xs ~= []) = (\<exists>y ys. xs = y#ys)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 325 | by (induct_tac "xs" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 326 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 327 | (** Conversion rules for List_case: case analysis operator **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 328 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 329 | lemma List_case_NIL [simp]: "List_case c h NIL = c" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 330 | by (simp add: List_case_def NIL_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 331 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 332 | lemma List_case_CONS [simp]: "List_case c h (CONS M N) = h M N" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 333 | by (simp add: List_case_def CONS_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 334 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 335 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 336 | (*** List_rec -- by wf recursion on pred_sexp ***) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 337 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 338 | (* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 339 | hold if pred_sexp^+ were changed to pred_sexp. *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 340 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 341 | lemma List_rec_unfold_lemma: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 342 | "(%M. List_rec M c d) == | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 343 | wfrec (trancl pred_sexp) (%g. List_case c (%x y. d x y (g y)))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 344 | by (simp add: List_rec_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 345 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 346 | lemmas List_rec_unfold = | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 347 | def_wfrec [OF List_rec_unfold_lemma wf_pred_sexp [THEN wf_trancl], | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 348 | standard] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 349 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 350 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 351 | (** pred_sexp lemmas **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 352 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 353 | lemma pred_sexp_CONS_I1: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 354 | "[| M: sexp; N: sexp |] ==> (M, CONS M N) : pred_sexp^+" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 355 | by (simp add: CONS_def In1_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 356 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 357 | lemma pred_sexp_CONS_I2: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 358 | "[| M: sexp; N: sexp |] ==> (N, CONS M N) : pred_sexp^+" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 359 | by (simp add: CONS_def In1_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 360 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 361 | lemma pred_sexp_CONS_D: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 362 | "(CONS M1 M2, N) : pred_sexp^+ ==> | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 363 | (M1,N) : pred_sexp^+ & (M2,N) : pred_sexp^+" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 364 | apply (frule pred_sexp_subset_Sigma [THEN trancl_subset_Sigma, THEN subsetD]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 365 | apply (blast dest!: sexp_CONS_D intro: pred_sexp_CONS_I1 pred_sexp_CONS_I2 | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 366 | trans_trancl [THEN transD]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 367 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 368 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 369 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 370 | (** Conversion rules for List_rec **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 371 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 372 | lemma List_rec_NIL [simp]: "List_rec NIL c h = c" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 373 | apply (rule List_rec_unfold [THEN trans]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 374 | apply (simp add: List_case_NIL) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 375 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 376 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 377 | lemma List_rec_CONS [simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 378 | "[| M: sexp; N: sexp |] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 379 | ==> List_rec (CONS M N) c h = h M N (List_rec N c h)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 380 | apply (rule List_rec_unfold [THEN trans]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 381 | apply (simp add: pred_sexp_CONS_I2) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 382 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 383 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 384 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 385 | (*** list_rec -- by List_rec ***) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 386 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 387 | lemmas Rep_List_in_sexp = | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 388 | subsetD [OF range_Leaf_subset_sexp [THEN list_subset_sexp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 389 | Rep_List [THEN ListD]] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 390 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 391 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 392 | lemma list_rec_Nil [simp]: "list_rec Nil c h = c" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 393 | by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Nil_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 394 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 395 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 396 | lemma list_rec_Cons [simp]: "list_rec (a#l) c h = h a l (list_rec l c h)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 397 | by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Cons_def | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 398 | Rep_List_inverse Rep_List [THEN ListD] inj_Leaf Rep_List_in_sexp) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 399 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 400 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 401 | (*Type checking. Useful?*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 402 | lemma List_rec_type: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 403 | "[| M: list(A); | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 404 | A<=sexp; | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 405 | c: C(NIL); | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 406 | !!x y r. [| x: A; y: list(A); r: C(y) |] ==> h x y r: C(CONS x y) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 407 | |] ==> List_rec M c h : C(M :: 'a item)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 408 | apply (erule list.induct, simp) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 409 | apply (insert list_subset_sexp) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 410 | apply (subst List_rec_CONS, blast+) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 411 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 412 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 413 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 414 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 415 | (** Generalized map functionals **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 416 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 417 | lemma Rep_map_Nil [simp]: "Rep_map f Nil = NIL" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 418 | by (simp add: Rep_map_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 419 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 420 | lemma Rep_map_Cons [simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 421 | "Rep_map f(x#xs) = CONS(f x)(Rep_map f xs)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 422 | by (simp add: Rep_map_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 423 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 424 | lemma Rep_map_type: "(!!x. f(x): A) ==> Rep_map f xs: list(A)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 425 | apply (simp add: Rep_map_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 426 | apply (rule list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 427 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 428 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 429 | lemma Abs_map_NIL [simp]: "Abs_map g NIL = Nil" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 430 | by (simp add: Abs_map_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 431 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 432 | lemma Abs_map_CONS [simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 433 | "[| M: sexp; N: sexp |] ==> Abs_map g (CONS M N) = g(M) # Abs_map g N" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 434 | by (simp add: Abs_map_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 435 | |
| 19736 | 436 | (*Eases the use of primitive recursion.*) | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 437 | lemma def_list_rec_NilCons: | 
| 19736 | 438 | "[| !!xs. f(xs) = list_rec xs c h |] | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 439 | ==> f [] = c & f(x#xs) = h x xs (f xs)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 440 | by simp | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 441 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 442 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 443 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 444 | lemma Abs_map_inverse: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 445 | "[| M: list(A); A<=sexp; !!z. z: A ==> f(g(z)) = z |] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 446 | ==> Rep_map f (Abs_map g M) = M" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 447 | apply (erule list.induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 448 | apply (insert list_subset_sexp) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 449 | apply (subst Abs_map_CONS, blast) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 450 | apply blast | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 451 | apply simp | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 452 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 453 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 454 | (*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 455 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 456 | (** list_case **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 457 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 458 | (* setting up rewrite sets *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 459 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 460 | text{*Better to have a single theorem with a conjunctive conclusion.*}
 | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 461 | declare def_list_rec_NilCons [OF list_case_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 462 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 463 | (** list_case **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 464 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 465 | lemma expand_list_case: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 466 | "P(list_case a f xs) = ((xs=[] --> P a ) & (!y ys. xs=y#ys --> P(f y ys)))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 467 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 468 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 469 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 470 | (**** Function definitions ****) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 471 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 472 | declare def_list_rec_NilCons [OF null_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 473 | declare def_list_rec_NilCons [OF hd_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 474 | declare def_list_rec_NilCons [OF tl_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 475 | declare def_list_rec_NilCons [OF ttl_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 476 | declare def_list_rec_NilCons [OF append_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 477 | declare def_list_rec_NilCons [OF member_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 478 | declare def_list_rec_NilCons [OF map_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 479 | declare def_list_rec_NilCons [OF filter_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 480 | declare def_list_rec_NilCons [OF list_all_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 481 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 482 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 483 | (** nth **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 484 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 485 | lemma def_nat_rec_0_eta: | 
| 19736 | 486 | "[| !!n. f = nat_rec c h |] ==> f(0) = c" | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 487 | by simp | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 488 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 489 | lemma def_nat_rec_Suc_eta: | 
| 19736 | 490 | "[| !!n. f = nat_rec c h |] ==> f(Suc(n)) = h n (f n)" | 
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 491 | by simp | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 492 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 493 | declare def_nat_rec_0_eta [OF nth_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 494 | declare def_nat_rec_Suc_eta [OF nth_def, simp] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 495 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 496 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 497 | (** length **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 498 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 499 | lemma length_Nil [simp]: "length([]) = 0" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 500 | by (simp add: length_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 501 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 502 | lemma length_Cons [simp]: "length(a#xs) = Suc(length(xs))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 503 | by (simp add: length_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 504 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 505 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 506 | (** @ - append **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 507 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 508 | lemma append_assoc [simp]: "(xs@ys)@zs = xs@(ys@zs)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 509 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 510 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 511 | lemma append_Nil2 [simp]: "xs @ [] = xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 512 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 513 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 514 | (** mem **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 515 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 516 | lemma mem_append [simp]: "x mem (xs@ys) = (x mem xs | x mem ys)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 517 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 518 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 519 | lemma mem_filter [simp]: "x mem [x:xs. P x ] = (x mem xs & P(x))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 520 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 521 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 522 | (** list_all **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 523 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 524 | lemma list_all_True [simp]: "(Alls x:xs. True) = True" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 525 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 526 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 527 | lemma list_all_conj [simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 528 | "list_all p (xs@ys) = ((list_all p xs) & (list_all p ys))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 529 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 530 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 531 | lemma list_all_mem_conv: "(Alls x:xs. P(x)) = (!x. x mem xs --> P(x))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 532 | apply (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 533 | apply blast | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 534 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 535 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 536 | lemma nat_case_dist : "(! n. P n) = (P 0 & (! n. P (Suc n)))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 537 | apply auto | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 538 | apply (induct_tac "n", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 539 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 540 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 541 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 542 | lemma alls_P_eq_P_nth: "(Alls u:A. P u) = (!n. n < length A --> P(nth n A))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 543 | apply (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 544 | apply (rule trans) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 545 | apply (rule_tac [2] nat_case_dist [symmetric], simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 546 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 547 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 548 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 549 | lemma list_all_imp: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 550 | "[| !x. P x --> Q x; (Alls x:xs. P(x)) |] ==> (Alls x:xs. Q(x))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 551 | by (simp add: list_all_mem_conv) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 552 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 553 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 554 | (** The functional "map" and the generalized functionals **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 555 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 556 | lemma Abs_Rep_map: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 557 | "(!!x. f(x): sexp) ==> | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 558 | Abs_map g (Rep_map f xs) = map (%t. g(f(t))) xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 559 | apply (induct_tac "xs" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 560 | apply (simp_all add: Rep_map_type list_sexp [THEN subsetD]) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 561 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 562 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 563 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 564 | (** Additional mapping lemmas **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 565 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 566 | lemma map_ident [simp]: "map(%x. x)(xs) = xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 567 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 568 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 569 | lemma map_append [simp]: "map f (xs@ys) = map f xs @ map f ys" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 570 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 571 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 572 | lemma map_compose: "map(f o g)(xs) = map f (map g xs)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 573 | apply (simp add: o_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 574 | apply (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 575 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 576 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 577 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 578 | lemma mem_map_aux1 [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 579 | "x mem (map f q) --> (\<exists>y. y mem q & x = f y)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 580 | by (induct_tac "q" rule: list_induct, simp_all, blast) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 581 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 582 | lemma mem_map_aux2 [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 583 | "(\<exists>y. y mem q & x = f y) --> x mem (map f q)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 584 | by (induct_tac "q" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 585 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 586 | lemma mem_map: "x mem (map f q) = (\<exists>y. y mem q & x = f y)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 587 | apply (rule iffI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 588 | apply (erule mem_map_aux1) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 589 | apply (erule mem_map_aux2) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 590 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 591 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 592 | lemma hd_append [rule_format]: "A ~= [] --> hd(A @ B) = hd(A)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 593 | by (induct_tac "A" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 594 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 595 | lemma tl_append [rule_format]: "A ~= [] --> tl(A @ B) = tl(A) @ B" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 596 | by (induct_tac "A" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 597 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 598 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 599 | (** take **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 600 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 601 | lemma take_Suc1 [simp]: "take [] (Suc x) = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 602 | by simp | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 603 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 604 | lemma take_Suc2 [simp]: "take(a#xs)(Suc x) = a#take xs x" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 605 | by simp | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 606 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 607 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 608 | (** drop **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 609 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 610 | lemma drop_0 [simp]: "drop xs 0 = xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 611 | by (simp add: drop_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 612 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 613 | lemma drop_Suc1 [simp]: "drop [] (Suc x) = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 614 | apply (simp add: drop_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 615 | apply (induct_tac "x", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 616 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 617 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 618 | lemma drop_Suc2 [simp]: "drop(a#xs)(Suc x) = drop xs x" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 619 | by (simp add: drop_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 620 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 621 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 622 | (** copy **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 623 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 624 | lemma copy_0 [simp]: "copy x 0 = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 625 | by (simp add: copy_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 626 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 627 | lemma copy_Suc [simp]: "copy x (Suc y) = x # copy x y" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 628 | by (simp add: copy_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 629 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 630 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 631 | (** fold **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 632 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 633 | lemma foldl_Nil [simp]: "foldl f a [] = a" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 634 | by (simp add: foldl_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 635 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 636 | lemma foldl_Cons [simp]: "foldl f a(x#xs) = foldl f (f a x) xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 637 | by (simp add: foldl_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 638 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 639 | lemma foldr_Nil [simp]: "foldr f a [] = a" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 640 | by (simp add: foldr_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 641 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 642 | lemma foldr_Cons [simp]: "foldr f z(x#xs) = f x (foldr f z xs)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 643 | by (simp add: foldr_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 644 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 645 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 646 | (** flat **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 647 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 648 | lemma flat_Nil [simp]: "flat [] = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 649 | by (simp add: flat_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 650 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 651 | lemma flat_Cons [simp]: "flat (x # xs) = x @ flat xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 652 | by (simp add: flat_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 653 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 654 | (** rev **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 655 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 656 | lemma rev_Nil [simp]: "rev [] = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 657 | by (simp add: rev_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 658 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 659 | lemma rev_Cons [simp]: "rev (x # xs) = rev xs @ [x]" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 660 | by (simp add: rev_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 661 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 662 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 663 | (** zip **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 664 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 665 | lemma zipWith_Cons_Cons [simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 666 | "zipWith f (a#as,b#bs) = f(a,b) # zipWith f (as,bs)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 667 | by (simp add: zipWith_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 668 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 669 | lemma zipWith_Nil_Nil [simp]: "zipWith f ([],[]) = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 670 | by (simp add: zipWith_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 671 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 672 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 673 | lemma zipWith_Cons_Nil [simp]: "zipWith f (x,[]) = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 674 | apply (simp add: zipWith_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 675 | apply (induct_tac "x" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 676 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 677 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 678 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 679 | lemma zipWith_Nil_Cons [simp]: "zipWith f ([],x) = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 680 | by (simp add: zipWith_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 681 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 682 | lemma unzip_Nil [simp]: "unzip [] = ([],[])" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 683 | by (simp add: unzip_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 684 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 685 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 686 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 687 | (** SOME LIST THEOREMS **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 688 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 689 | (* SQUIGGOL LEMMAS *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 690 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 691 | lemma map_compose_ext: "map(f o g) = ((map f) o (map g))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 692 | apply (simp add: o_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 693 | apply (rule ext) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 694 | apply (simp add: map_compose [symmetric] o_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 695 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 696 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 697 | lemma map_flat: "map f (flat S) = flat(map (map f) S)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 698 | by (induct_tac "S" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 699 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 700 | lemma list_all_map_eq: "(Alls u:xs. f(u) = g(u)) --> map f xs = map g xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 701 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 702 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 703 | lemma filter_map_d: "filter p (map f xs) = map f (filter(p o f)(xs))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 704 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 705 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 706 | lemma filter_compose: "filter p (filter q xs) = filter(%x. p x & q x) xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 707 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 708 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 709 | (* "filter(p, filter(q,xs)) = filter(q, filter(p,xs))", | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 710 | "filter(p, filter(p,xs)) = filter(p,xs)" BIRD's thms.*) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 711 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 712 | lemma filter_append [rule_format, simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 713 | "\<forall>B. filter p (A @ B) = (filter p A @ filter p B)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 714 | by (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 715 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 716 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 717 | (* inits(xs) == map(fst,splits(xs)), | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 718 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 719 | splits([]) = [] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 720 | splits(a # xs) = <[],xs> @ map(%x. <a # fst(x),snd(x)>, splits(xs)) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 721 | (x @ y = z) = <x,y> mem splits(z) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 722 | x mem xs & y mem ys = <x,y> mem diag(xs,ys) *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 723 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 724 | lemma length_append: "length(xs@ys) = length(xs)+length(ys)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 725 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 726 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 727 | lemma length_map: "length(map f xs) = length(xs)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 728 | by (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 729 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 730 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 731 | lemma take_Nil [simp]: "take [] n = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 732 | by (induct_tac "n", simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 733 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 734 | lemma take_take_eq [simp]: "\<forall>n. take (take xs n) n = take xs n" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 735 | apply (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 736 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 737 | apply (induct_tac "n", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 738 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 739 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 740 | lemma take_take_Suc_eq1 [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 741 | "\<forall>n. take (take xs(Suc(n+m))) n = take xs n" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 742 | apply (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 743 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 744 | apply (induct_tac "n", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 745 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 746 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 747 | declare take_Suc [simp del] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 748 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 749 | lemma take_take_1: "take (take xs (n+m)) n = take xs n" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 750 | apply (induct_tac "m") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 751 | apply (simp_all add: take_take_Suc_eq1) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 752 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 753 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 754 | lemma take_take_Suc_eq2 [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 755 | "\<forall>n. take (take xs n)(Suc(n+m)) = take xs n" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 756 | apply (induct_tac "xs" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 757 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 758 | apply (induct_tac "n", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 759 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 760 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 761 | lemma take_take_2: "take(take xs n)(n+m) = take xs n" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 762 | apply (induct_tac "m") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 763 | apply (simp_all add: take_take_Suc_eq2) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 764 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 765 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 766 | (* length(take(xs,n)) = min(n, length(xs)) *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 767 | (* length(drop(xs,n)) = length(xs) - n *) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 768 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 769 | lemma drop_Nil [simp]: "drop [] n = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 770 | by (induct_tac "n", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 771 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 772 | lemma drop_drop [rule_format]: "\<forall>xs. drop (drop xs m) n = drop xs(m+n)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 773 | apply (induct_tac "m", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 774 | apply (induct_tac "xs" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 775 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 776 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 777 | lemma take_drop [rule_format]: "\<forall>xs. (take xs n) @ (drop xs n) = xs" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 778 | apply (induct_tac "n", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 779 | apply (induct_tac "xs" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 780 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 781 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 782 | lemma copy_copy: "copy x n @ copy x m = copy x (n+m)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 783 | by (induct_tac "n", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 784 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 785 | lemma length_copy: "length(copy x n) = n" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 786 | by (induct_tac "n", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 787 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 788 | lemma length_take [rule_format, simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 789 | "\<forall>xs. length(take xs n) = min (length xs) n" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 790 | apply (induct_tac "n") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 791 | apply auto | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 792 | apply (induct_tac "xs" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 793 | apply auto | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 794 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 795 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 796 | lemma length_take_drop: "length(take A k) + length(drop A k) = length(A)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 797 | by (simp only: length_append [symmetric] take_drop) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 798 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 799 | lemma take_append [rule_format]: "\<forall>A. length(A) = n --> take(A@B) n = A" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 800 | apply (induct_tac "n") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 801 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 802 | apply (rule_tac [2] allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 803 | apply (induct_tac "A" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 804 | apply (induct_tac [3] "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 805 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 806 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 807 | lemma take_append2 [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 808 | "\<forall>A. length(A) = n --> take(A@B) (n+k) = A @ take B k" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 809 | apply (induct_tac "n") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 810 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 811 | apply (rule_tac [2] allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 812 | apply (induct_tac "A" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 813 | apply (induct_tac [3] "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 814 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 815 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 816 | lemma take_map [rule_format]: "\<forall>n. take (map f A) n = map f (take A n)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 817 | apply (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 818 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 819 | apply (induct_tac "n", simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 820 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 821 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 822 | lemma drop_append [rule_format]: "\<forall>A. length(A) = n --> drop(A@B)n = B" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 823 | apply (induct_tac "n") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 824 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 825 | apply (rule_tac [2] allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 826 | apply (induct_tac "A" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 827 | apply (induct_tac [3] "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 828 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 829 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 830 | lemma drop_append2 [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 831 | "\<forall>A. length(A) = n --> drop(A@B)(n+k) = drop B k" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 832 | apply (induct_tac "n") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 833 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 834 | apply (rule_tac [2] allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 835 | apply (induct_tac "A" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 836 | apply (induct_tac [3] "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 837 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 838 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 839 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 840 | lemma drop_all [rule_format]: "\<forall>A. length(A) = n --> drop A n = []" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 841 | apply (induct_tac "n") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 842 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 843 | apply (rule_tac [2] allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 844 | apply (induct_tac "A" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 845 | apply (induct_tac [3] "A" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 846 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 847 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 848 | lemma drop_map [rule_format]: "\<forall>n. drop (map f A) n = map f (drop A n)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 849 | apply (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 850 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 851 | apply (induct_tac "n", simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 852 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 853 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 854 | lemma take_all [rule_format]: "\<forall>A. length(A) = n --> take A n = A" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 855 | apply (induct_tac "n") | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 856 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 857 | apply (rule_tac [2] allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 858 | apply (induct_tac "A" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 859 | apply (induct_tac [3] "A" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 860 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 861 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 862 | lemma foldl_single: "foldl f a [b] = f a b" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 863 | by simp_all | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 864 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 865 | lemma foldl_append [rule_format, simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 866 | "\<forall>a. foldl f a (A @ B) = foldl f (foldl f a A) B" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 867 | by (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 868 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 869 | lemma foldl_map [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 870 | "\<forall>e. foldl f e (map g S) = foldl (%x y. f x (g y)) e S" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 871 | by (induct_tac "S" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 872 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 873 | lemma foldl_neutr_distr [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 874 | assumes r_neutr: "\<forall>a. f a e = a" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 875 | and r_neutl: "\<forall>a. f e a = a" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 876 | and assoc: "\<forall>a b c. f a (f b c) = f(f a b) c" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 877 | shows "\<forall>y. f y (foldl f e A) = foldl f y A" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 878 | apply (induct_tac "A" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 879 | apply (simp_all add: r_neutr r_neutl, clarify) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 880 | apply (erule all_dupE) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 881 | apply (rule trans) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 882 | prefer 2 apply assumption | 
| 13612 | 883 | apply (simp (no_asm_use) add: assoc [THEN spec, THEN spec, THEN spec, THEN sym]) | 
| 884 | apply simp | |
| 13079 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 885 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 886 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 887 | lemma foldl_append_sym: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 888 | "[| !a. f a e = a; !a. f e a = a; | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 889 | !a b c. f a (f b c) = f(f a b) c |] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 890 | ==> foldl f e (A @ B) = f(foldl f e A)(foldl f e B)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 891 | apply (rule trans) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 892 | apply (rule foldl_append) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 893 | apply (rule sym) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 894 | apply (rule foldl_neutr_distr, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 895 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 896 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 897 | lemma foldr_append [rule_format, simp]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 898 | "\<forall>a. foldr f a (A @ B) = foldr f (foldr f a B) A" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 899 | apply (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 900 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 901 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 902 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 903 | lemma foldr_map [rule_format]: "\<forall>e. foldr f e (map g S) = foldr (f o g) e S" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 904 | apply (simp add: o_def) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 905 | apply (induct_tac "S" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 906 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 907 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 908 | lemma foldr_Un_eq_UN: "foldr op Un {} S = (UN X: {t. t mem S}.X)"
 | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 909 | by (induct_tac "S" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 910 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 911 | lemma foldr_neutr_distr: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 912 | "[| !a. f e a = a; !a b c. f a (f b c) = f(f a b) c |] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 913 | ==> foldr f y S = f (foldr f e S) y" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 914 | by (induct_tac "S" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 915 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 916 | lemma foldr_append2: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 917 | "[| !a. f e a = a; !a b c. f a (f b c) = f(f a b) c |] | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 918 | ==> foldr f e (A @ B) = f (foldr f e A) (foldr f e B)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 919 | apply auto | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 920 | apply (rule foldr_neutr_distr, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 921 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 922 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 923 | lemma foldr_flat: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 924 | "[| !a. f e a = a; !a b c. f a (f b c) = f(f a b) c |] ==> | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 925 | foldr f e (flat S) = (foldr f e)(map (foldr f e) S)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 926 | apply (induct_tac "S" rule: list_induct) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 927 | apply (simp_all del: foldr_append add: foldr_append2) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 928 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 929 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 930 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 931 | lemma list_all_map: "(Alls x:map f xs .P(x)) = (Alls x:xs.(P o f)(x))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 932 | by (induct_tac "xs" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 933 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 934 | lemma list_all_and: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 935 | "(Alls x:xs. P(x)&Q(x)) = ((Alls x:xs. P(x))&(Alls x:xs. Q(x)))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 936 | by (induct_tac "xs" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 937 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 938 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 939 | lemma nth_map [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 940 | "\<forall>i. i < length(A) --> nth i (map f A) = f(nth i A)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 941 | apply (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 942 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 943 | apply (induct_tac "i", auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 944 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 945 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 946 | lemma nth_app_cancel_right [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 947 | "\<forall>i. i < length(A) --> nth i(A@B) = nth i A" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 948 | apply (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 949 | apply (rule allI) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 950 | apply (induct_tac "i", simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 951 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 952 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 953 | lemma nth_app_cancel_left [rule_format]: | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 954 | "\<forall>n. n = length(A) --> nth(n+i)(A@B) = nth i B" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 955 | by (induct_tac "A" rule: list_induct, simp_all) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 956 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 957 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 958 | (** flat **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 959 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 960 | lemma flat_append [simp]: "flat(xs@ys) = flat(xs) @ flat(ys)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 961 | by (induct_tac "xs" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 962 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 963 | lemma filter_flat: "filter p (flat S) = flat(map (filter p) S)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 964 | by (induct_tac "S" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 965 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 966 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 967 | (** rev **) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 968 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 969 | lemma rev_append [simp]: "rev(xs@ys) = rev(ys) @ rev(xs)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 970 | by (induct_tac "xs" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 971 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 972 | lemma rev_rev_ident [simp]: "rev(rev l) = l" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 973 | by (induct_tac "l" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 974 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 975 | lemma rev_flat: "rev(flat ls) = flat (map rev (rev ls))" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 976 | by (induct_tac "ls" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 977 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 978 | lemma rev_map_distrib: "rev(map f l) = map f (rev l)" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 979 | by (induct_tac "l" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 980 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 981 | lemma foldl_rev: "foldl f b (rev l) = foldr (%x y. f y x) b l" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 982 | by (induct_tac "l" rule: list_induct, auto) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 983 | |
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 984 | lemma foldr_rev: "foldr f b (rev l) = foldl (%x y. f y x) b l" | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 985 | apply (rule sym) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 986 | apply (rule trans) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 987 | apply (rule_tac [2] foldl_rev, simp) | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 988 | done | 
| 
e7738aa7267f
conversion of Induct/{Slist,Sexp} to Isar scripts
 paulson parents: 
12169diff
changeset | 989 | |
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 990 | end |