23664
|
1 |
theory ComputeHOL
|
|
2 |
imports Main "~~/src/Tools/Compute_Oracle/Compute_Oracle"
|
|
3 |
begin
|
|
4 |
|
|
5 |
lemma Trueprop_eq_eq: "Trueprop X == (X == True)" by (simp add: atomize_eq)
|
|
6 |
lemma meta_eq_trivial: "x == y \<Longrightarrow> x == y" by simp
|
|
7 |
lemma meta_eq_imp_eq: "x == y \<Longrightarrow> x = y" by auto
|
|
8 |
lemma eq_trivial: "x = y \<Longrightarrow> x = y" by auto
|
|
9 |
lemma bool_to_true: "x :: bool \<Longrightarrow> x == True" by simp
|
|
10 |
lemma transmeta_1: "x = y \<Longrightarrow> y == z \<Longrightarrow> x = z" by simp
|
|
11 |
lemma transmeta_2: "x == y \<Longrightarrow> y = z \<Longrightarrow> x = z" by simp
|
|
12 |
lemma transmeta_3: "x == y \<Longrightarrow> y == z \<Longrightarrow> x = z" by simp
|
|
13 |
|
|
14 |
|
|
15 |
(**** compute_if ****)
|
|
16 |
|
|
17 |
lemma If_True: "If True = (\<lambda> x y. x)" by ((rule ext)+,auto)
|
|
18 |
lemma If_False: "If False = (\<lambda> x y. y)" by ((rule ext)+, auto)
|
|
19 |
|
|
20 |
lemmas compute_if = If_True If_False
|
|
21 |
|
|
22 |
(**** compute_bool ****)
|
|
23 |
|
|
24 |
lemma bool1: "(\<not> True) = False" by blast
|
|
25 |
lemma bool2: "(\<not> False) = True" by blast
|
|
26 |
lemma bool3: "(P \<and> True) = P" by blast
|
|
27 |
lemma bool4: "(True \<and> P) = P" by blast
|
|
28 |
lemma bool5: "(P \<and> False) = False" by blast
|
|
29 |
lemma bool6: "(False \<and> P) = False" by blast
|
|
30 |
lemma bool7: "(P \<or> True) = True" by blast
|
|
31 |
lemma bool8: "(True \<or> P) = True" by blast
|
|
32 |
lemma bool9: "(P \<or> False) = P" by blast
|
|
33 |
lemma bool10: "(False \<or> P) = P" by blast
|
|
34 |
lemma bool11: "(True \<longrightarrow> P) = P" by blast
|
|
35 |
lemma bool12: "(P \<longrightarrow> True) = True" by blast
|
|
36 |
lemma bool13: "(True \<longrightarrow> P) = P" by blast
|
|
37 |
lemma bool14: "(P \<longrightarrow> False) = (\<not> P)" by blast
|
|
38 |
lemma bool15: "(False \<longrightarrow> P) = True" by blast
|
|
39 |
lemma bool16: "(False = False) = True" by blast
|
|
40 |
lemma bool17: "(True = True) = True" by blast
|
|
41 |
lemma bool18: "(False = True) = False" by blast
|
|
42 |
lemma bool19: "(True = False) = False" by blast
|
|
43 |
|
|
44 |
lemmas compute_bool = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10 bool11 bool12 bool13 bool14 bool15 bool16 bool17 bool18 bool19
|
|
45 |
|
|
46 |
|
|
47 |
(*** compute_pair ***)
|
|
48 |
|
|
49 |
lemma compute_fst: "fst (x,y) = x" by simp
|
|
50 |
lemma compute_snd: "snd (x,y) = y" by simp
|
|
51 |
lemma compute_pair_eq: "((a, b) = (c, d)) = (a = c \<and> b = d)" by auto
|
|
52 |
|
|
53 |
lemma prod_case_simp: "prod_case f (x,y) = f x y" by simp
|
|
54 |
|
|
55 |
lemmas compute_pair = compute_fst compute_snd compute_pair_eq prod_case_simp
|
|
56 |
|
|
57 |
(*** compute_option ***)
|
|
58 |
|
|
59 |
lemma compute_the: "the (Some x) = x" by simp
|
|
60 |
lemma compute_None_Some_eq: "(None = Some x) = False" by auto
|
|
61 |
lemma compute_Some_None_eq: "(Some x = None) = False" by auto
|
|
62 |
lemma compute_None_None_eq: "(None = None) = True" by auto
|
|
63 |
lemma compute_Some_Some_eq: "(Some x = Some y) = (x = y)" by auto
|
|
64 |
|
|
65 |
definition
|
|
66 |
option_case_compute :: "'b option \<Rightarrow> 'a \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
|
|
67 |
where
|
|
68 |
"option_case_compute opt a f = option_case a f opt"
|
|
69 |
|
|
70 |
lemma option_case_compute: "option_case = (\<lambda> a f opt. option_case_compute opt a f)"
|
|
71 |
by (simp add: option_case_compute_def)
|
|
72 |
|
|
73 |
lemma option_case_compute_None: "option_case_compute None = (\<lambda> a f. a)"
|
|
74 |
apply (rule ext)+
|
|
75 |
apply (simp add: option_case_compute_def)
|
|
76 |
done
|
|
77 |
|
|
78 |
lemma option_case_compute_Some: "option_case_compute (Some x) = (\<lambda> a f. f x)"
|
|
79 |
apply (rule ext)+
|
|
80 |
apply (simp add: option_case_compute_def)
|
|
81 |
done
|
|
82 |
|
|
83 |
lemmas compute_option_case = option_case_compute option_case_compute_None option_case_compute_Some
|
|
84 |
|
|
85 |
lemmas compute_option = compute_the compute_None_Some_eq compute_Some_None_eq compute_None_None_eq compute_Some_Some_eq compute_option_case
|
|
86 |
|
|
87 |
(**** compute_list_length ****)
|
|
88 |
|
|
89 |
lemma length_cons:"length (x#xs) = 1 + (length xs)"
|
|
90 |
by simp
|
|
91 |
|
|
92 |
lemma length_nil: "length [] = 0"
|
|
93 |
by simp
|
|
94 |
|
|
95 |
lemmas compute_list_length = length_nil length_cons
|
|
96 |
|
|
97 |
(*** compute_list_case ***)
|
|
98 |
|
|
99 |
definition
|
|
100 |
list_case_compute :: "'b list \<Rightarrow> 'a \<Rightarrow> ('b \<Rightarrow> 'b list \<Rightarrow> 'a) \<Rightarrow> 'a"
|
|
101 |
where
|
|
102 |
"list_case_compute l a f = list_case a f l"
|
|
103 |
|
|
104 |
lemma list_case_compute: "list_case = (\<lambda> (a::'a) f (l::'b list). list_case_compute l a f)"
|
|
105 |
apply (rule ext)+
|
|
106 |
apply (simp add: list_case_compute_def)
|
|
107 |
done
|
|
108 |
|
|
109 |
lemma list_case_compute_empty: "list_case_compute ([]::'b list) = (\<lambda> (a::'a) f. a)"
|
|
110 |
apply (rule ext)+
|
|
111 |
apply (simp add: list_case_compute_def)
|
|
112 |
done
|
|
113 |
|
|
114 |
lemma list_case_compute_cons: "list_case_compute (u#v) = (\<lambda> (a::'a) f. (f (u::'b) v))"
|
|
115 |
apply (rule ext)+
|
|
116 |
apply (simp add: list_case_compute_def)
|
|
117 |
done
|
|
118 |
|
|
119 |
lemmas compute_list_case = list_case_compute list_case_compute_empty list_case_compute_cons
|
|
120 |
|
|
121 |
(*** compute_list_nth ***)
|
|
122 |
(* Of course, you will need computation with nats for this to work \<dots> *)
|
|
123 |
|
|
124 |
lemma compute_list_nth: "((x#xs) ! n) = (if n = 0 then x else (xs ! (n - 1)))"
|
|
125 |
by (cases n, auto)
|
|
126 |
|
|
127 |
(*** compute_list ***)
|
|
128 |
|
|
129 |
lemmas compute_list = compute_list_case compute_list_length compute_list_nth
|
|
130 |
|
|
131 |
(*** compute_let ***)
|
|
132 |
|
|
133 |
lemmas compute_let = Let_def
|
|
134 |
|
|
135 |
(***********************)
|
|
136 |
(* Everything together *)
|
|
137 |
(***********************)
|
|
138 |
|
|
139 |
lemmas compute_hol = compute_if compute_bool compute_pair compute_option compute_list compute_let
|
|
140 |
|
23667
|
141 |
ML {*
|
|
142 |
signature ComputeHOL =
|
|
143 |
sig
|
|
144 |
val prep_thms : thm list -> thm list
|
|
145 |
val to_meta_eq : thm -> thm
|
|
146 |
val to_hol_eq : thm -> thm
|
|
147 |
val symmetric : thm -> thm
|
|
148 |
val trans : thm -> thm -> thm
|
23664
|
149 |
end
|
23667
|
150 |
|
|
151 |
structure ComputeHOL : ComputeHOL =
|
|
152 |
struct
|
|
153 |
|
|
154 |
local
|
|
155 |
fun lhs_of eq = fst (Thm.dest_equals (cprop_of eq));
|
|
156 |
in
|
|
157 |
fun rewrite_conv [] ct = raise CTERM ("rewrite_conv", [])
|
|
158 |
| rewrite_conv (eq :: eqs) ct =
|
|
159 |
Thm.instantiate (Thm.match (lhs_of eq, ct)) eq
|
|
160 |
handle Pattern.MATCH => rewrite_conv eqs ct;
|
|
161 |
end
|
|
162 |
|
|
163 |
val convert_conditions = Conv.fconv_rule (Conv.prems_conv ~1 (Conv.try_conv (rewrite_conv [@{thm "Trueprop_eq_eq"}])))
|
|
164 |
|
|
165 |
val eq_th = @{thm "HOL.eq_reflection"}
|
|
166 |
val meta_eq_trivial = @{thm "ComputeHOL.meta_eq_trivial"}
|
|
167 |
val bool_to_true = @{thm "ComputeHOL.bool_to_true"}
|
|
168 |
|
|
169 |
fun to_meta_eq th = eq_th OF [th] handle THM _ => meta_eq_trivial OF [th] handle THM _ => bool_to_true OF [th]
|
|
170 |
|
|
171 |
fun to_hol_eq th = @{thm "meta_eq_imp_eq"} OF [th] handle THM _ => @{thm "eq_trivial"} OF [th]
|
|
172 |
|
|
173 |
fun prep_thms ths = map (convert_conditions o to_meta_eq) ths
|
|
174 |
|
|
175 |
local
|
|
176 |
val sym_HOL = @{thm "HOL.sym"}
|
|
177 |
val sym_Pure = @{thm "ProtoPure.symmetric"}
|
|
178 |
in
|
|
179 |
fun symmetric th = ((sym_HOL OF [th]) handle THM _ => (sym_Pure OF [th]))
|
|
180 |
end
|
|
181 |
|
|
182 |
local
|
|
183 |
val trans_HOL = @{thm "HOL.trans"}
|
|
184 |
val trans_HOL_1 = @{thm "ComputeHOL.transmeta_1"}
|
|
185 |
val trans_HOL_2 = @{thm "ComputeHOL.transmeta_2"}
|
|
186 |
val trans_HOL_3 = @{thm "ComputeHOL.transmeta_3"}
|
|
187 |
fun tr [] th1 th2 = trans_HOL OF [th1, th2]
|
|
188 |
| tr (t::ts) th1 th2 = (t OF [th1, th2] handle THM _ => tr ts th1 th2)
|
|
189 |
in
|
|
190 |
fun trans th1 th2 = tr [trans_HOL, trans_HOL_1, trans_HOL_2, trans_HOL_3] th1 th2
|
|
191 |
end
|
|
192 |
|
|
193 |
end
|
|
194 |
*}
|
|
195 |
|
|
196 |
end
|