| author | paulson <lp15@cam.ac.uk> | 
| Tue, 01 Mar 2022 15:05:27 +0000 | |
| changeset 75168 | ff60b4acd6dd | 
| parent 70817 | dd675800469d | 
| child 77280 | 8543e6b10a56 | 
| permissions | -rw-r--r-- | 
| 63569 | 1 | (* Title: HOL/MacLaurin.thy | 
| 2 | Author: Jacques D. Fleuriot, 2001 University of Edinburgh | |
| 3 | Author: Lawrence C Paulson, 2004 | |
| 4 | Author: Lukas Bulwahn and Bernhard Häupler, 2005 | |
| 12224 | 5 | *) | 
| 6 | ||
| 63570 | 7 | section \<open>MacLaurin and Taylor Series\<close> | 
| 15944 | 8 | |
| 15131 | 9 | theory MacLaurin | 
| 29811 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29803diff
changeset | 10 | imports Transcendental | 
| 15131 | 11 | begin | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 12 | |
| 63569 | 13 | subsection \<open>Maclaurin's Theorem with Lagrange Form of Remainder\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 14 | |
| 63569 | 15 | text \<open>This is a very long, messy proof even now that it's been broken down | 
| 16 | into lemmas.\<close> | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 17 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 18 | lemma Maclaurin_lemma: | 
| 63569 | 19 | "0 < h \<Longrightarrow> | 
| 20 | \<exists>B::real. f h = (\<Sum>m<n. (j m / (fact m)) * (h^m)) + (B * ((h^n) /(fact n)))" | |
| 21 | by (rule exI[where x = "(f h - (\<Sum>m<n. (j m / (fact m)) * h^m)) * (fact n) / (h^n)"]) simp | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 22 | |
| 63569 | 23 | lemma eq_diff_eq': "x = y - z \<longleftrightarrow> y = x + z" | 
| 24 | for x y z :: real | |
| 25 | by arith | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 26 | |
| 63569 | 27 | lemma fact_diff_Suc: "n < Suc m \<Longrightarrow> fact (Suc m - n) = (Suc m - n) * fact (m - n)" | 
| 28 | by (subst fact_reduce) auto | |
| 32038 | 29 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 30 | lemma Maclaurin_lemma2: | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 31 | fixes B | 
| 63569 | 32 | assumes DERIV: "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | 
| 33 | and INIT: "n = Suc k" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 34 | defines "difg \<equiv> | 
| 63569 | 35 | (\<lambda>m t::real. diff m t - | 
| 36 | ((\<Sum>p<n - m. diff (m + p) 0 / fact p * t ^ p) + B * (t ^ (n - m) / fact (n - m))))" | |
| 37 | (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)") | |
| 38 | shows "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 39 | proof (rule allI impI)+ | 
| 63569 | 40 | fix m t | 
| 41 | assume INIT2: "m < n \<and> 0 \<le> t \<and> t \<le> h" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 42 | have "DERIV (difg m) t :> diff (Suc m) t - | 
| 63569 | 43 | ((\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) + | 
| 44 | real (n - m) * t ^ (n - Suc m) * B / fact (n - m))" | |
| 45 | by (auto simp: difg_def intro!: derivative_eq_intros DERIV[rule_format, OF INIT2]) | |
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
56181diff
changeset | 46 | moreover | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 47 |   from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m"
 | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 48 | unfolding atLeast0LessThan[symmetric] by auto | 
| 63569 | 49 | have "(\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) = | 
| 50 | (\<Sum>x<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x))" | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 51 | unfolding intvl by (subst sum.insert) (auto simp: sum.reindex) | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 52 | moreover | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 53 | have fact_neq_0: "\<And>x. (fact x) + real x * (fact x) \<noteq> 0" | 
| 63569 | 54 | by (metis add_pos_pos fact_gt_zero less_add_same_cancel1 less_add_same_cancel2 | 
| 55 | less_numeral_extra(3) mult_less_0_iff of_nat_less_0_iff) | |
| 56 | have "\<And>x. (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x) = diff (Suc m + x) 0 * t^x / fact x" | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 57 | by (rule nonzero_divide_eq_eq[THEN iffD2]) auto | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 58 | moreover | 
| 63569 | 59 | have "(n - m) * t ^ (n - Suc m) * B / fact (n - m) = B * (t ^ (n - Suc m) / fact (n - Suc m))" | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
69529diff
changeset | 60 | using \<open>0 < n - m\<close> by (simp add: field_split_simps fact_reduce) | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 61 | ultimately show "DERIV (difg m) t :> difg (Suc m) t" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 62 | unfolding difg_def by (simp add: mult.commute) | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 63 | qed | 
| 32038 | 64 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 65 | lemma Maclaurin: | 
| 29187 | 66 | assumes h: "0 < h" | 
| 63569 | 67 | and n: "0 < n" | 
| 68 | and diff_0: "diff 0 = f" | |
| 69 | and diff_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 29187 | 70 | shows | 
| 63569 | 71 | "\<exists>t::real. 0 < t \<and> t < h \<and> | 
| 64267 | 72 |       f h = sum (\<lambda>m. (diff m 0 / fact m) * h ^ m) {..<n} + (diff n t / fact n) * h ^ n"
 | 
| 29187 | 73 | proof - | 
| 74 | from n obtain m where m: "n = Suc m" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 75 | by (cases n) (simp add: n) | 
| 63569 | 76 | from m have "m < n" by simp | 
| 29187 | 77 | |
| 63569 | 78 | obtain B where f_h: "f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + B * (h ^ n / fact n)" | 
| 29187 | 79 | using Maclaurin_lemma [OF h] .. | 
| 80 | ||
| 63040 | 81 | define g where [abs_def]: "g t = | 
| 64267 | 82 |     f t - (sum (\<lambda>m. (diff m 0 / fact m) * t^m) {..<n} + B * (t^n / fact n))" for t
 | 
| 63569 | 83 | have g2: "g 0 = 0" "g h = 0" | 
| 64267 | 84 | by (simp_all add: m f_h g_def lessThan_Suc_eq_insert_0 image_iff diff_0 sum.reindex) | 
| 29187 | 85 | |
| 63040 | 86 | define difg where [abs_def]: "difg m t = | 
| 64267 | 87 |     diff m t - (sum (\<lambda>p. (diff (m + p) 0 / fact p) * (t ^ p)) {..<n-m} +
 | 
| 63569 | 88 | B * ((t ^ (n - m)) / fact (n - m)))" for m t | 
| 29187 | 89 | have difg_0: "difg 0 = g" | 
| 63569 | 90 | by (simp add: difg_def g_def diff_0) | 
| 91 | have difg_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" | |
| 63040 | 92 | using diff_Suc m unfolding difg_def [abs_def] by (rule Maclaurin_lemma2) | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
56181diff
changeset | 93 | have difg_eq_0: "\<forall>m<n. difg m 0 = 0" | 
| 64267 | 94 | by (auto simp: difg_def m Suc_diff_le lessThan_Suc_eq_insert_0 image_iff sum.reindex) | 
| 63569 | 95 | have isCont_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> isCont (difg m) x" | 
| 29187 | 96 | by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp | 
| 63569 | 97 | have differentiable_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> difg m differentiable (at x)" | 
| 69022 
e2858770997a
removal of more redundancies, and fixes
 paulson <lp15@cam.ac.uk> parents: 
69020diff
changeset | 98 | using difg_Suc real_differentiable_def by auto | 
| 63569 | 99 | have difg_Suc_eq_0: | 
| 100 | "\<And>m t. m < n \<Longrightarrow> 0 \<le> t \<Longrightarrow> t \<le> h \<Longrightarrow> DERIV (difg m) t :> 0 \<Longrightarrow> difg (Suc m) t = 0" | |
| 29187 | 101 | by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp | 
| 102 | ||
| 103 | have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0" | |
| 60758 | 104 | using \<open>m < n\<close> | 
| 29187 | 105 | proof (induct m) | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 106 | case 0 | 
| 29187 | 107 | show ?case | 
| 108 | proof (rule Rolle) | |
| 109 | show "0 < h" by fact | |
| 63569 | 110 | show "difg 0 0 = difg 0 h" | 
| 111 | by (simp add: difg_0 g2) | |
| 69020 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 112 |       show "continuous_on {0..h} (difg 0)"
 | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 113 | by (simp add: continuous_at_imp_continuous_on isCont_difg n) | 
| 69022 
e2858770997a
removal of more redundancies, and fixes
 paulson <lp15@cam.ac.uk> parents: 
69020diff
changeset | 114 | qed (simp add: differentiable_difg n) | 
| 29187 | 115 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 116 | case (Suc m') | 
| 63569 | 117 | then have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" | 
| 118 | by simp | |
| 119 | then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" | |
| 120 | by fast | |
| 29187 | 121 | have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0" | 
| 122 | proof (rule Rolle) | |
| 123 | show "0 < t" by fact | |
| 124 | show "difg (Suc m') 0 = difg (Suc m') t" | |
| 60758 | 125 | using t \<open>Suc m' < n\<close> by (simp add: difg_Suc_eq_0 difg_eq_0) | 
| 69020 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 126 | have "\<And>x. 0 \<le> x \<and> x \<le> t \<Longrightarrow> isCont (difg (Suc m')) x" | 
| 60758 | 127 | using \<open>t < h\<close> \<open>Suc m' < n\<close> by (simp add: isCont_difg) | 
| 69020 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 128 |       then show "continuous_on {0..t} (difg (Suc m'))"
 | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 129 | by (simp add: continuous_at_imp_continuous_on) | 
| 69022 
e2858770997a
removal of more redundancies, and fixes
 paulson <lp15@cam.ac.uk> parents: 
69020diff
changeset | 130 | qed (use \<open>t < h\<close> \<open>Suc m' < n\<close> in \<open>simp add: differentiable_difg\<close>) | 
| 63569 | 131 | with \<open>t < h\<close> show ?case | 
| 132 | by auto | |
| 29187 | 133 | qed | 
| 63569 | 134 | then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" | 
| 135 | by fast | |
| 136 | with \<open>m < n\<close> have "difg (Suc m) t = 0" | |
| 137 | by (simp add: difg_Suc_eq_0) | |
| 29187 | 138 | show ?thesis | 
| 139 | proof (intro exI conjI) | |
| 140 | show "0 < t" by fact | |
| 141 | show "t < h" by fact | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 142 | show "f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / (fact n) * h ^ n" | 
| 63569 | 143 | using \<open>difg (Suc m) t = 0\<close> by (simp add: m f_h difg_def) | 
| 29187 | 144 | qed | 
| 145 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 146 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 147 | lemma Maclaurin2: | 
| 63569 | 148 | fixes n :: nat | 
| 149 | and h :: real | |
| 150 | assumes INIT1: "0 < h" | |
| 151 | and INIT2: "diff 0 = f" | |
| 152 | and DERIV: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 153 | shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / fact n * h ^ n" | |
| 154 | proof (cases n) | |
| 155 | case 0 | |
| 156 | with INIT1 INIT2 show ?thesis by fastforce | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 157 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 158 | case Suc | 
| 63569 | 159 | then have "n > 0" by simp | 
| 160 | from INIT1 this INIT2 DERIV | |
| 161 | have "\<exists>t>0. t < h \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n" | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 162 | by (rule Maclaurin) | 
| 63569 | 163 | then show ?thesis by fastforce | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 164 | qed | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 165 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 166 | lemma Maclaurin_minus: | 
| 63569 | 167 | fixes n :: nat and h :: real | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 168 | assumes "h < 0" "0 < n" "diff 0 = f" | 
| 63569 | 169 | and DERIV: "\<forall>m t. m < n \<and> h \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | 
| 170 | shows "\<exists>t. h < t \<and> t < 0 \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n" | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 171 | proof - | 
| 63569 | 172 | txt \<open>Transform \<open>ABL'\<close> into \<open>derivative_intros\<close> format.\<close> | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 173 | note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong] | 
| 63569 | 174 | let ?sum = "\<lambda>t. | 
| 175 | (\<Sum>m<n. (- 1) ^ m * diff m (- 0) / (fact m) * (- h) ^ m) + | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 176 | (- 1) ^ n * diff n (- t) / (fact n) * (- h) ^ n" | 
| 63569 | 177 | from assms have "\<exists>t>0. t < - h \<and> f (- (- h)) = ?sum t" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56238diff
changeset | 178 | by (intro Maclaurin) (auto intro!: derivative_eq_intros DERIV') | 
| 63569 | 179 | then obtain t where "0 < t" "t < - h" "f (- (- h)) = ?sum t" | 
| 180 | by blast | |
| 181 | moreover have "(- 1) ^ n * diff n (- t) * (- h) ^ n / fact n = diff n (- t) * h ^ n / fact n" | |
| 182 | by (auto simp: power_mult_distrib[symmetric]) | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 183 | moreover | 
| 63569 | 184 | have "(\<Sum>m<n. (- 1) ^ m * diff m 0 * (- h) ^ m / fact m) = (\<Sum>m<n. diff m 0 * h ^ m / fact m)" | 
| 64267 | 185 | by (auto intro: sum.cong simp add: power_mult_distrib[symmetric]) | 
| 63569 | 186 | ultimately have "h < - t \<and> - t < 0 \<and> | 
| 187 | f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n (- t) / (fact n) * h ^ n" | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 188 | by auto | 
| 63569 | 189 | then show ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 190 | qed | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 191 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 192 | |
| 63569 | 193 | subsection \<open>More Convenient "Bidirectional" Version.\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 194 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 195 | lemma Maclaurin_bi_le: | 
| 63569 | 196 | fixes n :: nat and x :: real | 
| 197 | assumes "diff 0 = f" | |
| 198 | and DERIV : "\<forall>m t. m < n \<and> \<bar>t\<bar> \<le> \<bar>x\<bar> \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 199 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. diff m 0 / (fact m) * x ^ m) + diff n t / (fact n) * x ^ n" | |
| 200 | (is "\<exists>t. _ \<and> f x = ?f x t") | |
| 201 | proof (cases "n = 0") | |
| 202 | case True | |
| 203 | with \<open>diff 0 = f\<close> show ?thesis by force | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 204 | next | 
| 63569 | 205 | case False | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 206 | show ?thesis | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 207 | proof (cases rule: linorder_cases) | 
| 63569 | 208 | assume "x = 0" | 
| 209 | with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" | |
| 68669 | 210 | by auto | 
| 63569 | 211 | then show ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 212 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 213 | assume "x < 0" | 
| 63569 | 214 | with \<open>n \<noteq> 0\<close> DERIV have "\<exists>t>x. t < 0 \<and> diff 0 x = ?f x t" | 
| 215 | by (intro Maclaurin_minus) auto | |
| 216 | then obtain t where "x < t" "t < 0" | |
| 217 | "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n" | |
| 218 | by blast | |
| 219 | with \<open>x < 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" | |
| 220 | by simp | |
| 221 | then show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 222 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 223 | assume "x > 0" | 
| 63569 | 224 | with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t" | 
| 225 | by (intro Maclaurin) auto | |
| 226 | then obtain t where "0 < t" "t < x" | |
| 227 | "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n" | |
| 228 | by blast | |
| 60758 | 229 | with \<open>x > 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp | 
| 63569 | 230 | then show ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 231 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 232 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 233 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 234 | lemma Maclaurin_all_lt: | 
| 63569 | 235 | fixes x :: real | 
| 236 | assumes INIT1: "diff 0 = f" | |
| 237 | and INIT2: "0 < n" | |
| 238 | and INIT3: "x \<noteq> 0" | |
| 239 | and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x" | |
| 240 | shows "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = | |
| 241 | (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n" | |
| 242 | (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t") | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 243 | proof (cases rule: linorder_cases) | 
| 63569 | 244 | assume "x = 0" | 
| 245 | with INIT3 show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 246 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 247 | assume "x < 0" | 
| 63569 | 248 | with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t" | 
| 249 | by (intro Maclaurin_minus) auto | |
| 250 | then obtain t where "t > x" "t < 0" "f x = ?f x t" | |
| 251 | by blast | |
| 252 | with \<open>x < 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" | |
| 253 | by simp | |
| 254 | then show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 255 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 256 | assume "x > 0" | 
| 63569 | 257 | with assms have "\<exists>t>0. t < x \<and> f x = ?f x t" | 
| 258 | by (intro Maclaurin) auto | |
| 259 | then obtain t where "t > 0" "t < x" "f x = ?f x t" | |
| 260 | by blast | |
| 261 | with \<open>x > 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" | |
| 262 | by simp | |
| 263 | then show ?thesis .. | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 264 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 265 | |
| 63569 | 266 | lemma Maclaurin_zero: "x = 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) = diff 0 0" | 
| 267 | for x :: real and n :: nat | |
| 68669 | 268 | by simp | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 269 | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 270 | |
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 271 | lemma Maclaurin_all_le: | 
| 63569 | 272 | fixes x :: real and n :: nat | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 273 | assumes INIT: "diff 0 = f" | 
| 63569 | 274 | and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x" | 
| 275 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n" | |
| 276 | (is "\<exists>t. _ \<and> f x = ?f x t") | |
| 277 | proof (cases "n = 0") | |
| 278 | case True | |
| 279 | with INIT show ?thesis by force | |
| 280 | next | |
| 281 | case False | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 282 | show ?thesis | 
| 63569 | 283 | proof (cases "x = 0") | 
| 284 | case True | |
| 60758 | 285 | with \<open>n \<noteq> 0\<close> have "(\<Sum>m<n. diff m 0 / (fact m) * x ^ m) = diff 0 0" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 286 | by (intro Maclaurin_zero) auto | 
| 63569 | 287 | with INIT \<open>x = 0\<close> \<open>n \<noteq> 0\<close> have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" | 
| 288 | by force | |
| 289 | then show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 290 | next | 
| 63569 | 291 | case False | 
| 60758 | 292 | with INIT \<open>n \<noteq> 0\<close> DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 293 | by (intro Maclaurin_all_lt) auto | 
| 63569 | 294 | then obtain t where "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" .. | 
| 295 | then have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" | |
| 296 | by simp | |
| 297 | then show ?thesis .. | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 298 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 299 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 300 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 301 | lemma Maclaurin_all_le_objl: | 
| 63569 | 302 | "diff 0 = f \<and> (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) \<longrightarrow> | 
| 303 | (\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n)" | |
| 304 | for x :: real and n :: nat | |
| 305 | by (blast intro: Maclaurin_all_le) | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 306 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 307 | |
| 63569 | 308 | subsection \<open>Version for Exponential Function\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 309 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 310 | lemma Maclaurin_exp_lt: | 
| 63569 | 311 | fixes x :: real and n :: nat | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 312 | shows | 
| 63569 | 313 | "x \<noteq> 0 \<Longrightarrow> n > 0 \<Longrightarrow> | 
| 314 | (\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n)" | |
| 68669 | 315 | using Maclaurin_all_lt [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 316 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 317 | lemma Maclaurin_exp_le: | 
| 63569 | 318 | fixes x :: real and n :: nat | 
| 319 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n" | |
| 320 | using Maclaurin_all_le_objl [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto | |
| 321 | ||
| 69529 | 322 | corollary exp_lower_Taylor_quadratic: "0 \<le> x \<Longrightarrow> 1 + x + x\<^sup>2 / 2 \<le> exp x" | 
| 63569 | 323 | for x :: real | 
| 324 | using Maclaurin_exp_le [of x 3] by (auto simp: numeral_3_eq_3 power2_eq_square) | |
| 325 | ||
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 326 | corollary ln_2_less_1: "ln 2 < (1::real)" | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 327 | proof - | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 328 | have "2 < 5/(2::real)" by simp | 
| 69529 | 329 | also have "5/2 \<le> exp (1::real)" using exp_lower_Taylor_quadratic[of 1, simplified] by simp | 
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 330 | finally have "exp (ln 2) < exp (1::real)" by simp | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 331 | thus "ln 2 < (1::real)" by (subst (asm) exp_less_cancel_iff) simp | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 332 | qed | 
| 63569 | 333 | |
| 334 | subsection \<open>Version for Sine Function\<close> | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 335 | |
| 67091 | 336 | lemma mod_exhaust_less_4: "m mod 4 = 0 \<or> m mod 4 = 1 \<or> m mod 4 = 2 \<or> m mod 4 = 3" | 
| 63569 | 337 | for m :: nat | 
| 338 | by auto | |
| 339 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 340 | |
| 63569 | 341 | text \<open>It is unclear why so many variant results are needed.\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 342 | |
| 63569 | 343 | lemma sin_expansion_lemma: "sin (x + real (Suc m) * pi / 2) = cos (x + real m * pi / 2)" | 
| 344 | by (auto simp: cos_add sin_add add_divide_distrib distrib_right) | |
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 345 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 346 | lemma Maclaurin_sin_expansion2: | 
| 63569 | 347 | "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> | 
| 348 | sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 68669 | 349 | proof (cases "n = 0 \<or> x = 0") | 
| 350 | case False | |
| 351 | let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)" | |
| 352 | have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> sin x = | |
| 353 | (\<Sum>m<n. (?diff m 0 / fact m) * x ^ m) + (?diff n t / fact n) * x ^ n" | |
| 354 | proof (rule Maclaurin_all_lt) | |
| 355 | show "\<forall>m x. ((\<lambda>t. sin (t + 1/2 * real m * pi)) has_real_derivative | |
| 356 | sin (x + 1/2 * real (Suc m) * pi)) (at x)" | |
| 357 | by (rule allI derivative_eq_intros | use sin_expansion_lemma in force)+ | |
| 358 | qed (use False in auto) | |
| 359 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 360 | apply (rule ex_forward, simp) | 
| 68669 | 361 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 362 | apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 68669 | 363 | done | 
| 364 | qed auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 365 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 366 | lemma Maclaurin_sin_expansion: | 
| 63569 | 367 | "\<exists>t. sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | 
| 368 | using Maclaurin_sin_expansion2 [of x n] by blast | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 369 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 370 | lemma Maclaurin_sin_expansion3: | 
| 68669 | 371 | assumes "n > 0" "x > 0" | 
| 372 | shows "\<exists>t. 0 < t \<and> t < x \<and> | |
| 373 | sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 374 | proof - | |
| 375 | let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)" | |
| 376 | have "\<exists>t. 0 < t \<and> t < x \<and> sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n" | |
| 377 | proof (rule Maclaurin) | |
| 378 | show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> | |
| 379 | ((\<lambda>u. sin (u + 1/2 * real m * pi)) has_real_derivative | |
| 380 | sin (t + 1/2 * real (Suc m) * pi)) (at t)" | |
| 381 | apply (simp add: sin_expansion_lemma del: of_nat_Suc) | |
| 382 | apply (force intro!: derivative_eq_intros) | |
| 383 | done | |
| 384 | qed (use assms in auto) | |
| 385 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 386 | apply (rule ex_forward, simp) | 
| 68669 | 387 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 388 | apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 68669 | 389 | done | 
| 390 | qed | |
| 63569 | 391 | |
| 392 | lemma Maclaurin_sin_expansion4: | |
| 68669 | 393 | assumes "0 < x" | 
| 394 | shows "\<exists>t. 0 < t \<and> t \<le> x \<and> sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 395 | proof - | |
| 396 | let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)" | |
| 397 | have "\<exists>t. 0 < t \<and> t \<le> x \<and> sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n" | |
| 398 | proof (rule Maclaurin2) | |
| 399 | show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> | |
| 400 | ((\<lambda>u. sin (u + 1/2 * real m * pi)) has_real_derivative | |
| 401 | sin (t + 1/2 * real (Suc m) * pi)) (at t)" | |
| 402 | apply (simp add: sin_expansion_lemma del: of_nat_Suc) | |
| 403 | apply (force intro!: derivative_eq_intros) | |
| 404 | done | |
| 405 | qed (use assms in auto) | |
| 406 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 407 | apply (rule ex_forward, simp) | 
| 68669 | 408 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 409 | apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 68669 | 410 | done | 
| 411 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 412 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 413 | |
| 63569 | 414 | subsection \<open>Maclaurin Expansion for Cosine Function\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 415 | |
| 63569 | 416 | lemma sumr_cos_zero_one [simp]: "(\<Sum>m<Suc n. cos_coeff m * 0 ^ m) = 1" | 
| 417 | by (induct n) auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 418 | |
| 63569 | 419 | lemma cos_expansion_lemma: "cos (x + real (Suc m) * pi / 2) = - sin (x + real m * pi / 2)" | 
| 420 | by (auto simp: cos_add sin_add distrib_right add_divide_distrib) | |
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 421 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 422 | lemma Maclaurin_cos_expansion: | 
| 63569 | 423 | "\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> | 
| 424 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos(t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 68669 | 425 | proof (cases "n = 0 \<or> x = 0") | 
| 426 | case False | |
| 427 | let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)" | |
| 428 | have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> cos x = | |
| 429 | (\<Sum>m<n. (?diff m 0 / fact m) * x ^ m) + (?diff n t / fact n) * x ^ n" | |
| 430 | proof (rule Maclaurin_all_lt) | |
| 431 | show "\<forall>m x. ((\<lambda>t. cos (t + 1/2 * real m * pi)) has_real_derivative | |
| 432 | cos (x + 1/2 * real (Suc m) * pi)) (at x)" | |
| 433 | apply (rule allI derivative_eq_intros | simp)+ | |
| 434 | using cos_expansion_lemma by force | |
| 435 | qed (use False in auto) | |
| 436 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 437 | apply (rule ex_forward, simp) | 
| 68669 | 438 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 439 | apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE simp del: of_nat_Suc) | 
| 68669 | 440 | done | 
| 441 | qed auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 442 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 443 | lemma Maclaurin_cos_expansion2: | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 444 | assumes "x > 0" "n > 0" | 
| 68669 | 445 | shows "\<exists>t. 0 < t \<and> t < x \<and> | 
| 63569 | 446 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos (t + 1/2 * real n * pi) / fact n) * x ^ n" | 
| 68669 | 447 | proof - | 
| 448 | let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)" | |
| 449 | have "\<exists>t. 0 < t \<and> t < x \<and> cos x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n" | |
| 450 | proof (rule Maclaurin) | |
| 451 | show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> | |
| 452 | ((\<lambda>u. cos (u + 1 / 2 * real m * pi)) has_real_derivative | |
| 453 | cos (t + 1 / 2 * real (Suc m) * pi)) (at t)" | |
| 454 | by (simp add: cos_expansion_lemma del: of_nat_Suc) | |
| 455 | qed (use assms in auto) | |
| 456 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 457 | apply (rule ex_forward, simp) | 
| 68669 | 458 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 459 | apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE) | 
| 68669 | 460 | done | 
| 461 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 462 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 463 | lemma Maclaurin_minus_cos_expansion: | 
| 68669 | 464 | assumes "n > 0" "x < 0" | 
| 465 | shows "\<exists>t. x < t \<and> t < 0 \<and> | |
| 466 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + ((cos (t + 1/2 * real n * pi) / fact n) * x ^ n)" | |
| 467 | proof - | |
| 468 | let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)" | |
| 469 | have "\<exists>t. x < t \<and> t < 0 \<and> cos x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n" | |
| 470 | proof (rule Maclaurin_minus) | |
| 471 | show "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> 0 \<longrightarrow> | |
| 472 | ((\<lambda>u. cos (u + 1 / 2 * real m * pi)) has_real_derivative | |
| 473 | cos (t + 1 / 2 * real (Suc m) * pi)) (at t)" | |
| 474 | by (simp add: cos_expansion_lemma del: of_nat_Suc) | |
| 475 | qed (use assms in auto) | |
| 476 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 477 | apply (rule ex_forward, simp) | 
| 68669 | 478 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 479 | apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE) | 
| 68669 | 480 | done | 
| 481 | qed | |
| 63569 | 482 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 483 | |
| 63569 | 484 | (* Version for ln(1 +/- x). Where is it?? *) | 
| 485 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 486 | |
| 63569 | 487 | lemma sin_bound_lemma: "x = y \<Longrightarrow> \<bar>u\<bar> \<le> v \<Longrightarrow> \<bar>(x + u) - y\<bar> \<le> v" | 
| 488 | for x y u v :: real | |
| 489 | by auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 490 | |
| 63569 | 491 | lemma Maclaurin_sin_bound: "\<bar>sin x - (\<Sum>m<n. sin_coeff m * x ^ m)\<bar> \<le> inverse (fact n) * \<bar>x\<bar> ^ n" | 
| 14738 | 492 | proof - | 
| 63569 | 493 | have est: "x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" for x y :: real | 
| 494 | by (rule mult_right_mono) simp_all | |
| 68157 | 495 | let ?diff = "\<lambda>(n::nat) (x::real). | 
| 63569 | 496 | if n mod 4 = 0 then sin x | 
| 497 | else if n mod 4 = 1 then cos x | |
| 498 | else if n mod 4 = 2 then - sin x | |
| 499 | else - cos x" | |
| 22985 | 500 | have diff_0: "?diff 0 = sin" by simp | 
| 68157 | 501 | have "DERIV (?diff m) x :> ?diff (Suc m) x" for m and x | 
| 502 | using mod_exhaust_less_4 [of m] | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 503 | by (auto simp: mod_Suc intro!: derivative_eq_intros) | 
| 68157 | 504 | then have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x" | 
| 505 | by blast | |
| 22985 | 506 | from Maclaurin_all_le [OF diff_0 DERIV_diff] | 
| 63569 | 507 | obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" | 
| 508 | and t2: "sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / (fact n) * x ^ n" | |
| 509 | by fast | |
| 68157 | 510 | have diff_m_0: "?diff m 0 = (if even m then 0 else (- 1) ^ ((m - Suc 0) div 2))" for m | 
| 511 | using mod_exhaust_less_4 [of m] | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 512 | by (auto simp: minus_one_power_iff even_even_mod_4_iff [of m] dest: even_mod_4_div_2 odd_mod_4_div_2) | 
| 14738 | 513 | show ?thesis | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 514 | unfolding sin_coeff_def | 
| 22985 | 515 | apply (subst t2) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 516 | apply (rule sin_bound_lemma) | 
| 64267 | 517 | apply (rule sum.cong[OF refl]) | 
| 63569 | 518 | apply (subst diff_m_0, simp) | 
| 519 | using est | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 520 | apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono | 
| 63569 | 521 | simp: ac_simps divide_inverse power_abs [symmetric] abs_mult) | 
| 14738 | 522 | done | 
| 523 | qed | |
| 524 | ||
| 63570 | 525 | |
| 526 | section \<open>Taylor series\<close> | |
| 527 | ||
| 528 | text \<open> | |
| 529 | We use MacLaurin and the translation of the expansion point \<open>c\<close> to \<open>0\<close> | |
| 530 | to prove Taylor's theorem. | |
| 531 | \<close> | |
| 532 | ||
| 69529 | 533 | lemma Taylor_up: | 
| 63570 | 534 | assumes INIT: "n > 0" "diff 0 = f" | 
| 535 | and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> (diff (Suc m) t)" | |
| 536 | and INTERV: "a \<le> c" "c < b" | |
| 537 | shows "\<exists>t::real. c < t \<and> t < b \<and> | |
| 538 | f b = (\<Sum>m<n. (diff m c / fact m) * (b - c)^m) + (diff n t / fact n) * (b - c)^n" | |
| 539 | proof - | |
| 540 | from INTERV have "0 < b - c" by arith | |
| 541 | moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))" | |
| 542 | by auto | |
| 543 | moreover | |
| 544 | have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> b - c \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 545 | proof (intro strip) | |
| 546 | fix m t | |
| 547 | assume "m < n \<and> 0 \<le> t \<and> t \<le> b - c" | |
| 548 | with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)" | |
| 549 | by auto | |
| 550 | moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0" | |
| 551 | by (rule DERIV_add) | |
| 552 | ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)" | |
| 553 | by (rule DERIV_chain2) | |
| 554 | then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 555 | by simp | |
| 556 | qed | |
| 557 | ultimately obtain x where | |
| 558 | "0 < x \<and> x < b - c \<and> | |
| 559 | f (b - c + c) = | |
| 560 | (\<Sum>m<n. diff m (0 + c) / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n" | |
| 561 | by (rule Maclaurin [THEN exE]) | |
| 562 | then have "c < x + c \<and> x + c < b \<and> f b = | |
| 563 | (\<Sum>m<n. diff m c / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n" | |
| 564 | by fastforce | |
| 565 | then show ?thesis by fastforce | |
| 566 | qed | |
| 567 | ||
| 69529 | 568 | lemma Taylor_down: | 
| 63570 | 569 | fixes a :: real and n :: nat | 
| 570 | assumes INIT: "n > 0" "diff 0 = f" | |
| 571 | and DERIV: "(\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t)" | |
| 572 | and INTERV: "a < c" "c \<le> b" | |
| 573 | shows "\<exists>t. a < t \<and> t < c \<and> | |
| 574 | f a = (\<Sum>m<n. (diff m c / fact m) * (a - c)^m) + (diff n t / fact n) * (a - c)^n" | |
| 575 | proof - | |
| 576 | from INTERV have "a-c < 0" by arith | |
| 577 | moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))" | |
| 578 | by auto | |
| 579 | moreover | |
| 580 | have "\<forall>m t. m < n \<and> a - c \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 581 | proof (rule allI impI)+ | |
| 582 | fix m t | |
| 583 | assume "m < n \<and> a - c \<le> t \<and> t \<le> 0" | |
| 584 | with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)" | |
| 585 | by auto | |
| 586 | moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0" | |
| 587 | by (rule DERIV_add) | |
| 588 | ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)" | |
| 589 | by (rule DERIV_chain2) | |
| 590 | then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 591 | by simp | |
| 592 | qed | |
| 593 | ultimately obtain x where | |
| 594 | "a - c < x \<and> x < 0 \<and> | |
| 595 | f (a - c + c) = | |
| 596 | (\<Sum>m<n. diff m (0 + c) / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n" | |
| 597 | by (rule Maclaurin_minus [THEN exE]) | |
| 598 | then have "a < x + c \<and> x + c < c \<and> | |
| 599 | f a = (\<Sum>m<n. diff m c / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n" | |
| 600 | by fastforce | |
| 601 | then show ?thesis by fastforce | |
| 602 | qed | |
| 603 | ||
| 69529 | 604 | theorem Taylor: | 
| 63570 | 605 | fixes a :: real and n :: nat | 
| 606 | assumes INIT: "n > 0" "diff 0 = f" | |
| 607 | and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 608 | and INTERV: "a \<le> c " "c \<le> b" "a \<le> x" "x \<le> b" "x \<noteq> c" | |
| 609 | shows "\<exists>t. | |
| 610 | (if x < c then x < t \<and> t < c else c < t \<and> t < x) \<and> | |
| 611 | f x = (\<Sum>m<n. (diff m c / fact m) * (x - c)^m) + (diff n t / fact n) * (x - c)^n" | |
| 612 | proof (cases "x < c") | |
| 613 | case True | |
| 614 | note INIT | |
| 615 | moreover have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 616 | using DERIV and INTERV by fastforce | |
| 617 | moreover note True | |
| 618 | moreover from INTERV have "c \<le> b" | |
| 619 | by simp | |
| 620 | ultimately have "\<exists>t>x. t < c \<and> f x = | |
| 621 | (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n" | |
| 69529 | 622 | by (rule Taylor_down) | 
| 63570 | 623 | with True show ?thesis by simp | 
| 624 | next | |
| 625 | case False | |
| 626 | note INIT | |
| 627 | moreover have "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 628 | using DERIV and INTERV by fastforce | |
| 629 | moreover from INTERV have "a \<le> c" | |
| 630 | by arith | |
| 631 | moreover from False and INTERV have "c < x" | |
| 632 | by arith | |
| 633 | ultimately have "\<exists>t>c. t < x \<and> f x = | |
| 634 | (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n" | |
| 69529 | 635 | by (rule Taylor_up) | 
| 63570 | 636 | with False show ?thesis by simp | 
| 637 | qed | |
| 638 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 639 | end |