author | paulson |
Tue, 06 Mar 2012 16:06:52 +0000 | |
changeset 46821 | ff6b0c1087f2 |
parent 46820 | c656222c4dc1 |
child 58871 | c399ae4b836f |
permissions | -rw-r--r-- |
41777 | 1 |
(* Title: ZF/Bool.thy |
1478 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1992 University of Cambridge |
13328 | 4 |
*) |
837 | 5 |
|
13328 | 6 |
header{*Booleans in Zermelo-Fraenkel Set Theory*} |
0 | 7 |
|
16417 | 8 |
theory Bool imports pair begin |
0 | 9 |
|
24892 | 10 |
abbreviation |
11 |
one ("1") where |
|
12 |
"1 == succ(0)" |
|
2539 | 13 |
|
24892 | 14 |
abbreviation |
15 |
two ("2") where |
|
16 |
"2 == succ(1)" |
|
14
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
0
diff
changeset
|
17 |
|
13328 | 18 |
text{*2 is equal to bool, but is used as a number rather than a type.*} |
19 |
||
24893 | 20 |
definition "bool == {0,1}" |
21 |
||
22 |
definition "cond(b,c,d) == if(b=1,c,d)" |
|
13239 | 23 |
|
24893 | 24 |
definition "not(b) == cond(b,0,1)" |
13239 | 25 |
|
24893 | 26 |
definition |
27 |
"and" :: "[i,i]=>i" (infixl "and" 70) where |
|
13239 | 28 |
"a and b == cond(a,b,0)" |
29 |
||
24893 | 30 |
definition |
31 |
or :: "[i,i]=>i" (infixl "or" 65) where |
|
13239 | 32 |
"a or b == cond(a,1,b)" |
33 |
||
24893 | 34 |
definition |
35 |
xor :: "[i,i]=>i" (infixl "xor" 65) where |
|
13239 | 36 |
"a xor b == cond(a,not(b),b)" |
37 |
||
38 |
||
39 |
lemmas bool_defs = bool_def cond_def |
|
40 |
||
41 |
lemma singleton_0: "{0} = 1" |
|
42 |
by (simp add: succ_def) |
|
43 |
||
44 |
(* Introduction rules *) |
|
45 |
||
46820 | 46 |
lemma bool_1I [simp,TC]: "1 \<in> bool" |
13239 | 47 |
by (simp add: bool_defs ) |
48 |
||
46820 | 49 |
lemma bool_0I [simp,TC]: "0 \<in> bool" |
13239 | 50 |
by (simp add: bool_defs) |
51 |
||
46820 | 52 |
lemma one_not_0: "1\<noteq>0" |
13239 | 53 |
by (simp add: bool_defs ) |
54 |
||
55 |
(** 1=0 ==> R **) |
|
45602 | 56 |
lemmas one_neq_0 = one_not_0 [THEN notE] |
13239 | 57 |
|
58 |
lemma boolE: |
|
59 |
"[| c: bool; c=1 ==> P; c=0 ==> P |] ==> P" |
|
24892 | 60 |
by (simp add: bool_defs, blast) |
13239 | 61 |
|
62 |
(** cond **) |
|
63 |
||
64 |
(*1 means true*) |
|
65 |
lemma cond_1 [simp]: "cond(1,c,d) = c" |
|
66 |
by (simp add: bool_defs ) |
|
67 |
||
68 |
(*0 means false*) |
|
69 |
lemma cond_0 [simp]: "cond(0,c,d) = d" |
|
70 |
by (simp add: bool_defs ) |
|
71 |
||
72 |
lemma cond_type [TC]: "[| b: bool; c: A(1); d: A(0) |] ==> cond(b,c,d): A(b)" |
|
13269 | 73 |
by (simp add: bool_defs, blast) |
13239 | 74 |
|
75 |
(*For Simp_tac and Blast_tac*) |
|
76 |
lemma cond_simple_type: "[| b: bool; c: A; d: A |] ==> cond(b,c,d): A" |
|
77 |
by (simp add: bool_defs ) |
|
78 |
||
79 |
lemma def_cond_1: "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c" |
|
80 |
by simp |
|
81 |
||
82 |
lemma def_cond_0: "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d" |
|
83 |
by simp |
|
84 |
||
45602 | 85 |
lemmas not_1 = not_def [THEN def_cond_1, simp] |
86 |
lemmas not_0 = not_def [THEN def_cond_0, simp] |
|
13239 | 87 |
|
45602 | 88 |
lemmas and_1 = and_def [THEN def_cond_1, simp] |
89 |
lemmas and_0 = and_def [THEN def_cond_0, simp] |
|
13239 | 90 |
|
45602 | 91 |
lemmas or_1 = or_def [THEN def_cond_1, simp] |
92 |
lemmas or_0 = or_def [THEN def_cond_0, simp] |
|
13239 | 93 |
|
45602 | 94 |
lemmas xor_1 = xor_def [THEN def_cond_1, simp] |
95 |
lemmas xor_0 = xor_def [THEN def_cond_0, simp] |
|
13239 | 96 |
|
46820 | 97 |
lemma not_type [TC]: "a:bool ==> not(a) \<in> bool" |
13239 | 98 |
by (simp add: not_def) |
99 |
||
46820 | 100 |
lemma and_type [TC]: "[| a:bool; b:bool |] ==> a and b \<in> bool" |
13239 | 101 |
by (simp add: and_def) |
102 |
||
46820 | 103 |
lemma or_type [TC]: "[| a:bool; b:bool |] ==> a or b \<in> bool" |
13239 | 104 |
by (simp add: or_def) |
105 |
||
46820 | 106 |
lemma xor_type [TC]: "[| a:bool; b:bool |] ==> a xor b \<in> bool" |
13239 | 107 |
by (simp add: xor_def) |
108 |
||
109 |
lemmas bool_typechecks = bool_1I bool_0I cond_type not_type and_type |
|
110 |
or_type xor_type |
|
111 |
||
13356 | 112 |
subsection{*Laws About 'not' *} |
13239 | 113 |
|
114 |
lemma not_not [simp]: "a:bool ==> not(not(a)) = a" |
|
115 |
by (elim boolE, auto) |
|
116 |
||
117 |
lemma not_and [simp]: "a:bool ==> not(a and b) = not(a) or not(b)" |
|
118 |
by (elim boolE, auto) |
|
119 |
||
120 |
lemma not_or [simp]: "a:bool ==> not(a or b) = not(a) and not(b)" |
|
121 |
by (elim boolE, auto) |
|
122 |
||
13356 | 123 |
subsection{*Laws About 'and' *} |
13239 | 124 |
|
125 |
lemma and_absorb [simp]: "a: bool ==> a and a = a" |
|
126 |
by (elim boolE, auto) |
|
127 |
||
128 |
lemma and_commute: "[| a: bool; b:bool |] ==> a and b = b and a" |
|
129 |
by (elim boolE, auto) |
|
130 |
||
131 |
lemma and_assoc: "a: bool ==> (a and b) and c = a and (b and c)" |
|
132 |
by (elim boolE, auto) |
|
133 |
||
24892 | 134 |
lemma and_or_distrib: "[| a: bool; b:bool; c:bool |] ==> |
13239 | 135 |
(a or b) and c = (a and c) or (b and c)" |
136 |
by (elim boolE, auto) |
|
137 |
||
13356 | 138 |
subsection{*Laws About 'or' *} |
13239 | 139 |
|
140 |
lemma or_absorb [simp]: "a: bool ==> a or a = a" |
|
141 |
by (elim boolE, auto) |
|
142 |
||
143 |
lemma or_commute: "[| a: bool; b:bool |] ==> a or b = b or a" |
|
144 |
by (elim boolE, auto) |
|
145 |
||
146 |
lemma or_assoc: "a: bool ==> (a or b) or c = a or (b or c)" |
|
147 |
by (elim boolE, auto) |
|
148 |
||
24892 | 149 |
lemma or_and_distrib: "[| a: bool; b: bool; c: bool |] ==> |
13239 | 150 |
(a and b) or c = (a or c) and (b or c)" |
151 |
by (elim boolE, auto) |
|
152 |
||
13269 | 153 |
|
24893 | 154 |
definition |
155 |
bool_of_o :: "o=>i" where |
|
13269 | 156 |
"bool_of_o(P) == (if P then 1 else 0)" |
157 |
||
158 |
lemma [simp]: "bool_of_o(True) = 1" |
|
24892 | 159 |
by (simp add: bool_of_o_def) |
13269 | 160 |
|
161 |
lemma [simp]: "bool_of_o(False) = 0" |
|
24892 | 162 |
by (simp add: bool_of_o_def) |
13269 | 163 |
|
164 |
lemma [simp,TC]: "bool_of_o(P) \<in> bool" |
|
24892 | 165 |
by (simp add: bool_of_o_def) |
13269 | 166 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
167 |
lemma [simp]: "(bool_of_o(P) = 1) \<longleftrightarrow> P" |
24892 | 168 |
by (simp add: bool_of_o_def) |
13269 | 169 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
170 |
lemma [simp]: "(bool_of_o(P) = 0) \<longleftrightarrow> ~P" |
24892 | 171 |
by (simp add: bool_of_o_def) |
13269 | 172 |
|
0 | 173 |
end |