| author | paulson | 
| Tue, 06 Mar 2012 16:06:52 +0000 | |
| changeset 46821 | ff6b0c1087f2 | 
| parent 46820 | c656222c4dc1 | 
| child 46953 | 2b6e55924af3 | 
| permissions | -rw-r--r-- | 
| 41777 | 1  | 
(* Title: ZF/Sum.thy  | 
| 1478 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 3  | 
Copyright 1993 University of Cambridge  | 
4  | 
*)  | 
|
5  | 
||
| 13356 | 6  | 
header{*Disjoint Sums*}
 | 
7  | 
||
| 16417 | 8  | 
theory Sum imports Bool equalities begin  | 
| 3923 | 9  | 
|
| 13356 | 10  | 
text{*And the "Part" primitive for simultaneous recursive type definitions*}
 | 
11  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
12  | 
definition sum :: "[i,i]=>i" (infixr "+" 65) where  | 
| 46820 | 13  | 
     "A+B == {0}*A \<union> {1}*B"
 | 
| 13240 | 14  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
15  | 
definition Inl :: "i=>i" where  | 
| 13240 | 16  | 
"Inl(a) == <0,a>"  | 
17  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
18  | 
definition Inr :: "i=>i" where  | 
| 13240 | 19  | 
"Inr(b) == <1,b>"  | 
20  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
21  | 
definition "case" :: "[i=>i, i=>i, i]=>i" where  | 
| 13240 | 22  | 
"case(c,d) == (%<y,z>. cond(y, d(z), c(z)))"  | 
23  | 
||
24  | 
(*operator for selecting out the various summands*)  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
25  | 
definition Part :: "[i,i=>i] => i" where  | 
| 46820 | 26  | 
     "Part(A,h) == {x: A. \<exists>z. x = h(z)}"
 | 
| 0 | 27  | 
|
| 13356 | 28  | 
subsection{*Rules for the @{term Part} Primitive*}
 | 
| 13240 | 29  | 
|
30  | 
lemma Part_iff:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
31  | 
"a \<in> Part(A,h) \<longleftrightarrow> a:A & (\<exists>y. a=h(y))"  | 
| 13240 | 32  | 
apply (unfold Part_def)  | 
33  | 
apply (rule separation)  | 
|
34  | 
done  | 
|
35  | 
||
36  | 
lemma Part_eqI [intro]:  | 
|
| 46820 | 37  | 
"[| a \<in> A; a=h(b) |] ==> a \<in> Part(A,h)"  | 
| 13255 | 38  | 
by (unfold Part_def, blast)  | 
| 13240 | 39  | 
|
40  | 
lemmas PartI = refl [THEN [2] Part_eqI]  | 
|
41  | 
||
42  | 
lemma PartE [elim!]:  | 
|
| 46820 | 43  | 
"[| a \<in> Part(A,h); !!z. [| a \<in> A; a=h(z) |] ==> P  | 
| 13240 | 44  | 
|] ==> P"  | 
| 13255 | 45  | 
apply (unfold Part_def, blast)  | 
| 13240 | 46  | 
done  | 
47  | 
||
| 46820 | 48  | 
lemma Part_subset: "Part(A,h) \<subseteq> A"  | 
| 13240 | 49  | 
apply (unfold Part_def)  | 
50  | 
apply (rule Collect_subset)  | 
|
51  | 
done  | 
|
52  | 
||
53  | 
||
| 13356 | 54  | 
subsection{*Rules for Disjoint Sums*}
 | 
| 13240 | 55  | 
|
56  | 
lemmas sum_defs = sum_def Inl_def Inr_def case_def  | 
|
57  | 
||
58  | 
lemma Sigma_bool: "Sigma(bool,C) = C(0) + C(1)"  | 
|
| 13255 | 59  | 
by (unfold bool_def sum_def, blast)  | 
| 13240 | 60  | 
|
61  | 
(** Introduction rules for the injections **)  | 
|
62  | 
||
| 46820 | 63  | 
lemma InlI [intro!,simp,TC]: "a \<in> A ==> Inl(a) \<in> A+B"  | 
| 13255 | 64  | 
by (unfold sum_defs, blast)  | 
| 13240 | 65  | 
|
| 46820 | 66  | 
lemma InrI [intro!,simp,TC]: "b \<in> B ==> Inr(b) \<in> A+B"  | 
| 13255 | 67  | 
by (unfold sum_defs, blast)  | 
| 13240 | 68  | 
|
69  | 
(** Elimination rules **)  | 
|
70  | 
||
71  | 
lemma sumE [elim!]:  | 
|
72  | 
"[| u: A+B;  | 
|
73  | 
!!x. [| x:A; u=Inl(x) |] ==> P;  | 
|
74  | 
!!y. [| y:B; u=Inr(y) |] ==> P  | 
|
75  | 
|] ==> P"  | 
|
| 13255 | 76  | 
by (unfold sum_defs, blast)  | 
| 13240 | 77  | 
|
78  | 
(** Injection and freeness equivalences, for rewriting **)  | 
|
79  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
80  | 
lemma Inl_iff [iff]: "Inl(a)=Inl(b) \<longleftrightarrow> a=b"  | 
| 13255 | 81  | 
by (simp add: sum_defs)  | 
| 13240 | 82  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
83  | 
lemma Inr_iff [iff]: "Inr(a)=Inr(b) \<longleftrightarrow> a=b"  | 
| 13255 | 84  | 
by (simp add: sum_defs)  | 
| 13240 | 85  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
86  | 
lemma Inl_Inr_iff [simp]: "Inl(a)=Inr(b) \<longleftrightarrow> False"  | 
| 13255 | 87  | 
by (simp add: sum_defs)  | 
| 13240 | 88  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
89  | 
lemma Inr_Inl_iff [simp]: "Inr(b)=Inl(a) \<longleftrightarrow> False"  | 
| 13255 | 90  | 
by (simp add: sum_defs)  | 
| 13240 | 91  | 
|
92  | 
lemma sum_empty [simp]: "0+0 = 0"  | 
|
| 13255 | 93  | 
by (simp add: sum_defs)  | 
| 13240 | 94  | 
|
95  | 
(*Injection and freeness rules*)  | 
|
96  | 
||
| 45602 | 97  | 
lemmas Inl_inject = Inl_iff [THEN iffD1]  | 
98  | 
lemmas Inr_inject = Inr_iff [THEN iffD1]  | 
|
| 13823 | 99  | 
lemmas Inl_neq_Inr = Inl_Inr_iff [THEN iffD1, THEN FalseE, elim!]  | 
100  | 
lemmas Inr_neq_Inl = Inr_Inl_iff [THEN iffD1, THEN FalseE, elim!]  | 
|
| 13240 | 101  | 
|
102  | 
||
103  | 
lemma InlD: "Inl(a): A+B ==> a: A"  | 
|
| 13255 | 104  | 
by blast  | 
| 13240 | 105  | 
|
106  | 
lemma InrD: "Inr(b): A+B ==> b: B"  | 
|
| 13255 | 107  | 
by blast  | 
| 13240 | 108  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
109  | 
lemma sum_iff: "u: A+B \<longleftrightarrow> (\<exists>x. x:A & u=Inl(x)) | (\<exists>y. y:B & u=Inr(y))"  | 
| 13255 | 110  | 
by blast  | 
111  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
112  | 
lemma Inl_in_sum_iff [simp]: "(Inl(x) \<in> A+B) \<longleftrightarrow> (x \<in> A)";  | 
| 13255 | 113  | 
by auto  | 
114  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
115  | 
lemma Inr_in_sum_iff [simp]: "(Inr(y) \<in> A+B) \<longleftrightarrow> (y \<in> B)";  | 
| 13255 | 116  | 
by auto  | 
| 13240 | 117  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
118  | 
lemma sum_subset_iff: "A+B \<subseteq> C+D \<longleftrightarrow> A<=C & B<=D"  | 
| 13255 | 119  | 
by blast  | 
| 13240 | 120  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
121  | 
lemma sum_equal_iff: "A+B = C+D \<longleftrightarrow> A=C & B=D"  | 
| 13255 | 122  | 
by (simp add: extension sum_subset_iff, blast)  | 
| 13240 | 123  | 
|
124  | 
lemma sum_eq_2_times: "A+A = 2*A"  | 
|
| 13255 | 125  | 
by (simp add: sum_def, blast)  | 
| 13240 | 126  | 
|
127  | 
||
| 13356 | 128  | 
subsection{*The Eliminator: @{term case}*}
 | 
| 0 | 129  | 
|
| 13240 | 130  | 
lemma case_Inl [simp]: "case(c, d, Inl(a)) = c(a)"  | 
| 13255 | 131  | 
by (simp add: sum_defs)  | 
| 13240 | 132  | 
|
133  | 
lemma case_Inr [simp]: "case(c, d, Inr(b)) = d(b)"  | 
|
| 13255 | 134  | 
by (simp add: sum_defs)  | 
| 13240 | 135  | 
|
136  | 
lemma case_type [TC]:  | 
|
137  | 
"[| u: A+B;  | 
|
138  | 
!!x. x: A ==> c(x): C(Inl(x));  | 
|
139  | 
!!y. y: B ==> d(y): C(Inr(y))  | 
|
| 46820 | 140  | 
|] ==> case(c,d,u) \<in> C(u)"  | 
| 13255 | 141  | 
by auto  | 
| 13240 | 142  | 
|
143  | 
lemma expand_case: "u: A+B ==>  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
144  | 
R(case(c,d,u)) \<longleftrightarrow>  | 
| 46820 | 145  | 
((\<forall>x\<in>A. u = Inl(x) \<longrightarrow> R(c(x))) &  | 
146  | 
(\<forall>y\<in>B. u = Inr(y) \<longrightarrow> R(d(y))))"  | 
|
| 13240 | 147  | 
by auto  | 
148  | 
||
149  | 
lemma case_cong:  | 
|
150  | 
"[| z: A+B;  | 
|
151  | 
!!x. x:A ==> c(x)=c'(x);  | 
|
152  | 
!!y. y:B ==> d(y)=d'(y)  | 
|
153  | 
|] ==> case(c,d,z) = case(c',d',z)"  | 
|
| 13255 | 154  | 
by auto  | 
| 13240 | 155  | 
|
156  | 
lemma case_case: "z: A+B ==>  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
24893 
diff
changeset
 | 
157  | 
case(c, d, case(%x. Inl(c'(x)), %y. Inr(d'(y)), z)) =  | 
| 13240 | 158  | 
case(%x. c(c'(x)), %y. d(d'(y)), z)"  | 
159  | 
by auto  | 
|
160  | 
||
161  | 
||
| 13356 | 162  | 
subsection{*More Rules for @{term "Part(A,h)"}*}
 | 
| 13240 | 163  | 
|
164  | 
lemma Part_mono: "A<=B ==> Part(A,h)<=Part(B,h)"  | 
|
| 13255 | 165  | 
by blast  | 
| 13240 | 166  | 
|
167  | 
lemma Part_Collect: "Part(Collect(A,P), h) = Collect(Part(A,h), P)"  | 
|
| 13255 | 168  | 
by blast  | 
| 13240 | 169  | 
|
170  | 
lemmas Part_CollectE =  | 
|
| 45602 | 171  | 
Part_Collect [THEN equalityD1, THEN subsetD, THEN CollectE]  | 
| 13240 | 172  | 
|
173  | 
lemma Part_Inl: "Part(A+B,Inl) = {Inl(x). x: A}"
 | 
|
| 13255 | 174  | 
by blast  | 
| 13240 | 175  | 
|
176  | 
lemma Part_Inr: "Part(A+B,Inr) = {Inr(y). y: B}"
 | 
|
| 13255 | 177  | 
by blast  | 
| 13240 | 178  | 
|
| 46820 | 179  | 
lemma PartD1: "a \<in> Part(A,h) ==> a \<in> A"  | 
| 13255 | 180  | 
by (simp add: Part_def)  | 
| 13240 | 181  | 
|
182  | 
lemma Part_id: "Part(A,%x. x) = A"  | 
|
| 13255 | 183  | 
by blast  | 
| 13240 | 184  | 
|
185  | 
lemma Part_Inr2: "Part(A+B, %x. Inr(h(x))) = {Inr(y). y: Part(B,h)}"
 | 
|
| 13255 | 186  | 
by blast  | 
| 13240 | 187  | 
|
| 46820 | 188  | 
lemma Part_sum_equality: "C \<subseteq> A+B ==> Part(C,Inl) \<union> Part(C,Inr) = C"  | 
| 13255 | 189  | 
by blast  | 
| 13240 | 190  | 
|
| 0 | 191  | 
end  |