76396
|
1 |
theory Document
|
|
2 |
imports Main
|
|
3 |
begin
|
|
4 |
|
|
5 |
section \<open>Some section\<close>
|
|
6 |
|
|
7 |
subsection \<open>Some subsection\<close>
|
|
8 |
|
|
9 |
subsection \<open>Some subsubsection\<close>
|
|
10 |
|
|
11 |
subsubsection \<open>Some subsubsubsection\<close>
|
|
12 |
|
|
13 |
paragraph \<open>A paragraph.\<close>
|
|
14 |
|
|
15 |
text \<open>Informal bla bla.\<close>
|
|
16 |
|
|
17 |
definition "foo = True" \<comment> \<open>side remark on \<^const>\<open>foo\<close>\<close>
|
|
18 |
|
|
19 |
definition "bar = False" \<comment> \<open>side remark on \<^const>\<open>bar\<close>\<close>
|
|
20 |
|
|
21 |
lemma foo unfolding foo_def ..
|
|
22 |
|
|
23 |
|
|
24 |
paragraph \<open>Another paragraph.\<close>
|
|
25 |
|
76987
|
26 |
text \<open>See also \<^cite>\<open>\<open>\S3\<close> in "isabelle-system"\<close>.\<close>
|
76396
|
27 |
|
|
28 |
|
|
29 |
section \<open>Formal proof of Cantor's theorem\<close>
|
|
30 |
|
|
31 |
text_raw \<open>\isakeeptag{proof}\<close>
|
|
32 |
text \<open>
|
|
33 |
Cantor's Theorem states that there is no surjection from
|
|
34 |
a set to its powerset. The proof works by diagonalization. E.g.\ see
|
|
35 |
\<^item> \<^url>\<open>http://mathworld.wolfram.com/CantorDiagonalMethod.html\<close>
|
|
36 |
\<^item> \<^url>\<open>https://en.wikipedia.org/wiki/Cantor's_diagonal_argument\<close>
|
|
37 |
\<close>
|
|
38 |
|
|
39 |
theorem Cantor: "\<nexists>f :: 'a \<Rightarrow> 'a set. \<forall>A. \<exists>x. A = f x"
|
|
40 |
proof
|
|
41 |
assume "\<exists>f :: 'a \<Rightarrow> 'a set. \<forall>A. \<exists>x. A = f x"
|
|
42 |
then obtain f :: "'a \<Rightarrow> 'a set" where *: "\<forall>A. \<exists>x. A = f x" ..
|
|
43 |
let ?D = "{x. x \<notin> f x}"
|
|
44 |
from * obtain a where "?D = f a" by blast
|
|
45 |
moreover have "a \<in> ?D \<longleftrightarrow> a \<notin> f a" by blast
|
|
46 |
ultimately show False by blast
|
|
47 |
qed
|
|
48 |
|
|
49 |
|
|
50 |
subsection \<open>Lorem ipsum dolor\<close>
|
|
51 |
|
|
52 |
text \<open>
|
|
53 |
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec id ipsum
|
|
54 |
sapien. Vivamus malesuada enim nibh, a tristique nisi sodales ac. Praesent
|
|
55 |
ut sem consectetur, interdum tellus ac, sodales nulla. Quisque vel diam at
|
|
56 |
risus tempus tempor eget a tortor. Suspendisse potenti. Nulla erat lacus,
|
|
57 |
dignissim sed volutpat nec, feugiat non leo. Nunc blandit et justo sed
|
|
58 |
venenatis. Donec scelerisque placerat magna, et congue nulla convallis vel.
|
|
59 |
Cras tristique dolor consequat dolor tristique rutrum. Suspendisse ultrices
|
|
60 |
sem nibh, et suscipit felis ultricies at. Aliquam venenatis est vel nulla
|
|
61 |
efficitur ornare. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
|
|
62 |
\<close>
|
|
63 |
|
|
64 |
end
|