src/Doc/Tutorial/Recdef/Nested2.thy
author nipkow
Tue, 17 Jun 2025 14:11:40 +0200
changeset 82733 8b537e1af2ec
parent 69505 cc2d676d5395
permissions -rw-r--r--
reinstated intersection of lists as inter_list_set
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
     1
(*<*)
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 13111
diff changeset
     2
theory Nested2 imports Nested0 begin
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
     3
(*>*)
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
     4
56846
9df717fef2bb renamed 'xxx_size' to 'size_xxx' for old datatype package
blanchet
parents: 48985
diff changeset
     5
lemma [simp]: "t \<in> set ts \<longrightarrow> size t < Suc(size_term_list ts)"
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10885
diff changeset
     6
by(induct_tac ts, auto)
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
     7
(*<*)
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
     8
recdef trev "measure size"
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
     9
 "trev (Var x) = Var x"
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10885
diff changeset
    10
 "trev (App f ts) = App f (rev(map trev ts))"
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    11
(*>*)
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    12
text\<open>\noindent
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    13
By making this theorem a simplification rule, \isacommand{recdef}
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10654
diff changeset
    14
applies it automatically and the definition of @{term"trev"}
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    15
succeeds now. As a reward for our effort, we can now prove the desired
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10654
diff changeset
    16
lemma directly.  We no longer need the verbose
69505
cc2d676d5395 isabelle update_cartouches -t;
wenzelm
parents: 67406
diff changeset
    17
induction schema for type \<open>term\<close> and can use the simpler one arising from
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    18
@{term"trev"}:
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    19
\<close>
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    20
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10885
diff changeset
    21
lemma "trev(trev t) = t"
12815
wenzelm
parents: 12491
diff changeset
    22
apply(induct_tac t rule: trev.induct)
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    23
txt\<open>
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10885
diff changeset
    24
@{subgoals[display,indent=0]}
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10885
diff changeset
    25
Both the base case and the induction step fall to simplification:
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    26
\<close>
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    27
12815
wenzelm
parents: 12491
diff changeset
    28
by(simp_all add: rev_map sym[OF map_compose] cong: map_cong)
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    29
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    30
text\<open>\noindent
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10654
diff changeset
    31
If the proof of the induction step mystifies you, we recommend that you go through
9754
a123a64cadeb *** empty log message ***
nipkow
parents: 9721
diff changeset
    32
the chain of simplification steps in detail; you will probably need the help of
69505
cc2d676d5395 isabelle update_cartouches -t;
wenzelm
parents: 67406
diff changeset
    33
\<open>simp_trace\<close>. Theorem @{thm[source]map_cong} is discussed below.
9721
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    34
%\begin{quote}
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    35
%{term[display]"trev(trev(App f ts))"}\\
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    36
%{term[display]"App f (rev(map trev (rev(map trev ts))))"}\\
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    37
%{term[display]"App f (map trev (rev(rev(map trev ts))))"}\\
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    38
%{term[display]"App f (map trev (map trev ts))"}\\
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    39
%{term[display]"App f (map (trev o trev) ts)"}\\
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    40
%{term[display]"App f (map (%x. x) ts)"}\\
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    41
%{term[display]"App f ts"}
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    42
%\end{quote}
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    43
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10654
diff changeset
    44
The definition of @{term"trev"} above is superior to the one in
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10654
diff changeset
    45
\S\ref{sec:nested-datatype} because it uses @{term"rev"}
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10654
diff changeset
    46
and lets us use existing facts such as \hbox{@{prop"rev(rev xs) = xs"}}.
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    47
Thus this proof is a good example of an important principle:
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    48
\begin{quote}
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    49
\emph{Chose your definitions carefully\\
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    50
because they determine the complexity of your proofs.}
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    51
\end{quote}
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    52
9721
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    53
Let us now return to the question of how \isacommand{recdef} can come up with
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    54
sensible termination conditions in the presence of higher-order functions
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    55
like @{term"map"}. For a start, if nothing were known about @{term"map"}, then
9721
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    56
@{term"map trev ts"} might apply @{term"trev"} to arbitrary terms, and thus
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    57
\isacommand{recdef} would try to prove the unprovable @{term"size t < Suc
56846
9df717fef2bb renamed 'xxx_size' to 'size_xxx' for old datatype package
blanchet
parents: 48985
diff changeset
    58
(size_term_list ts)"}, without any assumption about @{term"t"}.  Therefore
9721
7e51c9f3d5a0 *** empty log message ***
nipkow
parents: 9690
diff changeset
    59
\isacommand{recdef} has been supplied with the congruence theorem
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9754
diff changeset
    60
@{thm[source]map_cong}:
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    61
@{thm[display,margin=50]"map_cong"[no_vars]}
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    62
Its second premise expresses that in @{term"map f xs"},
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    63
function @{term"f"} is only applied to elements of list @{term"xs"}.  Congruence
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    64
rules for other higher-order functions on lists are similar.  If you get
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10186
diff changeset
    65
into a situation where you need to supply \isacommand{recdef} with new
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    66
congruence rules, you can append a hint after the end of
13111
2d6782e71702 *** empty log message ***
nipkow
parents: 12815
diff changeset
    67
the recursion equations:\cmmdx{hints}
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    68
\<close>
9940
102f2430cef9 *** empty log message ***
nipkow
parents: 9933
diff changeset
    69
(*<*)
102f2430cef9 *** empty log message ***
nipkow
parents: 9933
diff changeset
    70
consts dummy :: "nat => nat"
102f2430cef9 *** empty log message ***
nipkow
parents: 9933
diff changeset
    71
recdef dummy "{}"
102f2430cef9 *** empty log message ***
nipkow
parents: 9933
diff changeset
    72
"dummy n = n"
102f2430cef9 *** empty log message ***
nipkow
parents: 9933
diff changeset
    73
(*>*)
10171
59d6633835fa *** empty log message ***
nipkow
parents: 9940
diff changeset
    74
(hints recdef_cong: map_cong)
9690
50f22b1b136a *** empty log message ***
nipkow
parents:
diff changeset
    75
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    76
text\<open>\noindent
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    77
Or you can declare them globally
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    78
by giving them the \attrdx{recdef_cong} attribute:
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    79
\<close>
9940
102f2430cef9 *** empty log message ***
nipkow
parents: 9933
diff changeset
    80
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10885
diff changeset
    81
declare map_cong[recdef_cong]
9940
102f2430cef9 *** empty log message ***
nipkow
parents: 9933
diff changeset
    82
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    83
text\<open>
69505
cc2d676d5395 isabelle update_cartouches -t;
wenzelm
parents: 67406
diff changeset
    84
The \<open>cong\<close> and \<open>recdef_cong\<close> attributes are
9940
102f2430cef9 *** empty log message ***
nipkow
parents: 9933
diff changeset
    85
intentionally kept apart because they control different activities, namely
10171
59d6633835fa *** empty log message ***
nipkow
parents: 9940
diff changeset
    86
simplification and making recursive definitions.
9933
9feb1e0c4cb3 *** empty log message ***
nipkow
parents: 9834
diff changeset
    87
%The simplifier's congruence rules cannot be used by recdef.
9feb1e0c4cb3 *** empty log message ***
nipkow
parents: 9834
diff changeset
    88
%For example the weak congruence rules for if and case would prevent
9feb1e0c4cb3 *** empty log message ***
nipkow
parents: 9834
diff changeset
    89
%recdef from generating sensible termination conditions.
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 56846
diff changeset
    90
\<close>
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10885
diff changeset
    91
(*<*)end(*>*)