|
1 (* Title: CCL/terms |
|
2 ID: $Id$ |
|
3 Author: Martin Coen, Cambridge University Computer Laboratory |
|
4 Copyright 1993 University of Cambridge |
|
5 |
|
6 For terms.thy. |
|
7 *) |
|
8 |
|
9 open Term; |
|
10 |
|
11 val simp_can_defs = [one_def,inl_def,inr_def]; |
|
12 val simp_ncan_defs = [if_def,when_def,split_def,fst_def,snd_def,thd_def]; |
|
13 val simp_defs = simp_can_defs @ simp_ncan_defs; |
|
14 |
|
15 val ind_can_defs = [zero_def,succ_def,nil_def,cons_def]; |
|
16 val ind_ncan_defs = [ncase_def,nrec_def,lcase_def,lrec_def]; |
|
17 val ind_defs = ind_can_defs @ ind_ncan_defs; |
|
18 |
|
19 val data_defs = simp_defs @ ind_defs @ [napply_def]; |
|
20 val genrec_defs = [letrec_def,letrec2_def,letrec3_def]; |
|
21 |
|
22 val term_congs = ccl_mk_congs Term.thy |
|
23 ["inl","inr","succ","op .","split","if","when","ncase","nrec","lcase","lrec", |
|
24 "fst","snd","thd","let","letrec","letrec2","letrec3","napply"]; |
|
25 |
|
26 (*** Beta Rules, including strictness ***) |
|
27 |
|
28 goalw Term.thy [let_def] "~ t=bot--> let x be t in f(x) = f(t)"; |
|
29 by (res_inst_tac [("t","t")] term_case 1); |
|
30 by (ALLGOALS(SIMP_TAC(CCL_ss addrews [caseBtrue,caseBfalse,caseBpair,caseBlam]))); |
|
31 val letB = result() RS mp; |
|
32 |
|
33 goalw Term.thy [let_def] "let x be bot in f(x) = bot"; |
|
34 br caseBbot 1; |
|
35 val letBabot = result(); |
|
36 |
|
37 goalw Term.thy [let_def] "let x be t in bot = bot"; |
|
38 brs ([caseBbot] RL [term_case]) 1; |
|
39 by (ALLGOALS(SIMP_TAC(CCL_ss addrews [caseBtrue,caseBfalse,caseBpair,caseBlam]))); |
|
40 val letBbbot = result(); |
|
41 |
|
42 goalw Term.thy [apply_def] "(lam x.b(x)) ` a = b(a)"; |
|
43 by (ALLGOALS(SIMP_TAC(CCL_ss addrews [caseBtrue,caseBfalse,caseBpair,caseBlam]))); |
|
44 val applyB = result(); |
|
45 |
|
46 goalw Term.thy [apply_def] "bot ` a = bot"; |
|
47 br caseBbot 1; |
|
48 val applyBbot = result(); |
|
49 |
|
50 goalw Term.thy [fix_def] "fix(f) = f(fix(f))"; |
|
51 by (resolve_tac [applyB RS ssubst] 1 THEN resolve_tac [refl] 1); |
|
52 val fixB = result(); |
|
53 |
|
54 goalw Term.thy [letrec_def] |
|
55 "letrec g x be h(x,g) in g(a) = h(a,%y.letrec g x be h(x,g) in g(y))"; |
|
56 by (resolve_tac [fixB RS ssubst] 1 THEN |
|
57 resolve_tac [applyB RS ssubst] 1 THEN resolve_tac [refl] 1); |
|
58 val letrecB = result(); |
|
59 |
|
60 val rawBs = caseBs @ [applyB,applyBbot,letrecB]; |
|
61 |
|
62 fun raw_mk_beta_rl defs s = prove_goalw Term.thy defs s |
|
63 (fn _ => [SIMP_TAC (CCL_ss addrews rawBs addcongs term_congs) 1]); |
|
64 fun mk_beta_rl s = raw_mk_beta_rl data_defs s; |
|
65 |
|
66 val ifBtrue = mk_beta_rl "if true then t else u = t"; |
|
67 val ifBfalse = mk_beta_rl "if false then t else u = u"; |
|
68 val ifBbot = mk_beta_rl "if bot then t else u = bot"; |
|
69 |
|
70 val whenBinl = mk_beta_rl "when(inl(a),t,u) = t(a)"; |
|
71 val whenBinr = mk_beta_rl "when(inr(a),t,u) = u(a)"; |
|
72 val whenBbot = mk_beta_rl "when(bot,t,u) = bot"; |
|
73 |
|
74 val splitB = mk_beta_rl "split(<a,b>,h) = h(a,b)"; |
|
75 val splitBbot = mk_beta_rl "split(bot,h) = bot"; |
|
76 val fstB = mk_beta_rl "fst(<a,b>) = a"; |
|
77 val fstBbot = mk_beta_rl "fst(bot) = bot"; |
|
78 val sndB = mk_beta_rl "snd(<a,b>) = b"; |
|
79 val sndBbot = mk_beta_rl "snd(bot) = bot"; |
|
80 val thdB = mk_beta_rl "thd(<a,<b,c>>) = c"; |
|
81 val thdBbot = mk_beta_rl "thd(bot) = bot"; |
|
82 |
|
83 val ncaseBzero = mk_beta_rl "ncase(zero,t,u) = t"; |
|
84 val ncaseBsucc = mk_beta_rl "ncase(succ(n),t,u) = u(n)"; |
|
85 val ncaseBbot = mk_beta_rl "ncase(bot,t,u) = bot"; |
|
86 val nrecBzero = mk_beta_rl "nrec(zero,t,u) = t"; |
|
87 val nrecBsucc = mk_beta_rl "nrec(succ(n),t,u) = u(n,nrec(n,t,u))"; |
|
88 val nrecBbot = mk_beta_rl "nrec(bot,t,u) = bot"; |
|
89 |
|
90 val lcaseBnil = mk_beta_rl "lcase([],t,u) = t"; |
|
91 val lcaseBcons = mk_beta_rl "lcase(x.xs,t,u) = u(x,xs)"; |
|
92 val lcaseBbot = mk_beta_rl "lcase(bot,t,u) = bot"; |
|
93 val lrecBnil = mk_beta_rl "lrec([],t,u) = t"; |
|
94 val lrecBcons = mk_beta_rl "lrec(x.xs,t,u) = u(x,xs,lrec(xs,t,u))"; |
|
95 val lrecBbot = mk_beta_rl "lrec(bot,t,u) = bot"; |
|
96 |
|
97 val letrec2B = raw_mk_beta_rl (data_defs @ [letrec2_def]) |
|
98 "letrec g x y be h(x,y,g) in g(p,q) = \ |
|
99 \ h(p,q,%u v.letrec g x y be h(x,y,g) in g(u,v))"; |
|
100 val letrec3B = raw_mk_beta_rl (data_defs @ [letrec3_def]) |
|
101 "letrec g x y z be h(x,y,z,g) in g(p,q,r) = \ |
|
102 \ h(p,q,r,%u v w.letrec g x y z be h(x,y,z,g) in g(u,v,w))"; |
|
103 |
|
104 val napplyBzero = mk_beta_rl "f^zero`a = a"; |
|
105 val napplyBsucc = mk_beta_rl "f^succ(n)`a = f(f^n`a)"; |
|
106 |
|
107 val termBs = [letB,applyB,applyBbot,splitB,splitBbot, |
|
108 fstB,fstBbot,sndB,sndBbot,thdB,thdBbot, |
|
109 ifBtrue,ifBfalse,ifBbot,whenBinl,whenBinr,whenBbot, |
|
110 ncaseBzero,ncaseBsucc,ncaseBbot,nrecBzero,nrecBsucc,nrecBbot, |
|
111 lcaseBnil,lcaseBcons,lcaseBbot,lrecBnil,lrecBcons,lrecBbot, |
|
112 napplyBzero,napplyBsucc]; |
|
113 |
|
114 (*** Constructors are injective ***) |
|
115 |
|
116 val term_injs = map (mk_inj_rl Term.thy |
|
117 [applyB,splitB,whenBinl,whenBinr,ncaseBsucc,lcaseBcons] |
|
118 (ccl_congs @ term_congs)) |
|
119 ["(inl(a) = inl(a')) <-> (a=a')", |
|
120 "(inr(a) = inr(a')) <-> (a=a')", |
|
121 "(succ(a) = succ(a')) <-> (a=a')", |
|
122 "(a.b = a'.b') <-> (a=a' & b=b')"]; |
|
123 |
|
124 (*** Constructors are distinct ***) |
|
125 |
|
126 val term_dstncts = mkall_dstnct_thms Term.thy data_defs (ccl_injs @ term_injs) |
|
127 [["bot","inl","inr"],["bot","zero","succ"],["bot","nil","op ."]]; |
|
128 |
|
129 (*** Rules for pre-order [= ***) |
|
130 |
|
131 local |
|
132 fun mk_thm s = prove_goalw Term.thy data_defs s (fn _ => |
|
133 [SIMP_TAC (ccl_ss addrews (ccl_porews)) 1]); |
|
134 in |
|
135 val term_porews = map mk_thm ["inl(a) [= inl(a') <-> a [= a'", |
|
136 "inr(b) [= inr(b') <-> b [= b'", |
|
137 "succ(n) [= succ(n') <-> n [= n'", |
|
138 "x.xs [= x'.xs' <-> x [= x' & xs [= xs'"]; |
|
139 end; |
|
140 |
|
141 (*** Rewriting and Proving ***) |
|
142 |
|
143 val term_rews = termBs @ term_injs @ term_dstncts @ ccl_porews @ term_porews; |
|
144 val term_ss = ccl_ss addrews term_rews addcongs term_congs; |
|
145 |
|
146 val term_cs = ccl_cs addSEs (term_dstncts RL [notE]) addSDs (XH_to_Ds term_injs); |