src/LCF/fix.ML
changeset 0 a5a9c433f639
child 231 cb6a24451544
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 signature FIX =
       
     2 sig
       
     3   val adm_eq: thm
       
     4   val adm_not_eq_tr: thm
       
     5   val adm_not_not: thm
       
     6   val not_eq_TT: thm
       
     7   val not_eq_FF: thm
       
     8   val not_eq_UU: thm
       
     9   val induct2: thm
       
    10   val induct_tac: string -> int -> tactic
       
    11   val induct2_tac: string*string -> int -> tactic
       
    12 end;
       
    13 
       
    14 structure Fix:FIX =
       
    15 struct
       
    16 
       
    17 val adm_eq = prove_goal LCF.thy "adm(%x.t(x)=u(x)::'a::cpo)"
       
    18 	(fn _ => [rewrite_goals_tac [eq_def],
       
    19 		  REPEAT(rstac[adm_conj,adm_less]1)]);
       
    20 
       
    21 val adm_not_not = prove_goal LCF.thy "adm(P) ==> adm(%x.~~P(x))"
       
    22 	(fn prems => [simp_tac (LCF_ss addsimps prems) 1]);
       
    23 
       
    24 
       
    25 val tac = rtac tr_induct 1 THEN REPEAT(simp_tac LCF_ss 1);
       
    26 
       
    27 val not_eq_TT = prove_goal LCF.thy "ALL p. ~p=TT <-> (p=FF | p=UU)"
       
    28 	(fn _ => [tac]) RS spec;
       
    29 
       
    30 val not_eq_FF = prove_goal LCF.thy "ALL p. ~p=FF <-> (p=TT | p=UU)"
       
    31 	(fn _ => [tac]) RS spec;
       
    32 
       
    33 val not_eq_UU = prove_goal LCF.thy "ALL p. ~p=UU <-> (p=TT | p=FF)"
       
    34 	(fn _ => [tac]) RS spec;
       
    35 
       
    36 val adm_not_eq_tr = prove_goal LCF.thy "ALL p::tr.adm(%x. ~t(x)=p)"
       
    37 	(fn _ => [rtac tr_induct 1,
       
    38 	REPEAT(simp_tac (LCF_ss addsimps [not_eq_TT,not_eq_FF,not_eq_UU]) 1 THEN
       
    39                REPEAT(rstac [adm_disj,adm_eq] 1))]) RS spec;
       
    40 
       
    41 val adm_lemmas = [adm_not_free,adm_eq,adm_less,adm_not_less,adm_not_eq_tr,
       
    42 		  adm_conj,adm_disj,adm_imp,adm_all];
       
    43 
       
    44 fun induct_tac v i = res_inst_tac[("f",v)] induct i THEN
       
    45 		     REPEAT(rstac adm_lemmas i);
       
    46 
       
    47 
       
    48 val least_FIX = prove_goal LCF.thy "f(p) = p ==> FIX(f) << p"
       
    49 	(fn [prem] => [induct_tac "f" 1, rtac minimal 1, strip_tac 1,
       
    50 			stac (prem RS sym) 1, etac less_ap_term 1]);
       
    51 
       
    52 (*Generates unification messages for some reason*)
       
    53 val lfp_is_FIX = prove_goal LCF.thy
       
    54 	"[| f(p) = p; ALL q. f(q)=q --> p << q |] ==> p = FIX(f)"
       
    55 	(fn [prem1,prem2] => [rtac less_anti_sym 1,
       
    56 			      rtac (FIX_eq RS (prem2 RS spec RS mp)) 1,
       
    57 			      rtac least_FIX 1, rtac prem1 1]);
       
    58 
       
    59 val ffix = read_instantiate [("f","f::?'a=>?'a")] FIX_eq;
       
    60 val gfix = read_instantiate [("f","g::?'a=>?'a")] FIX_eq;
       
    61 val ss = LCF_ss addsimps [ffix,gfix];
       
    62 
       
    63 (* Do not use prove_goal because the result is ?ed which leads to divergence
       
    64    when submitted as an argument to SIMP_THM *)
       
    65 (*
       
    66 local
       
    67 val thm = trivial(Sign.read_cterm(sign_of LCF.thy)
       
    68         ("<FIX(f),FIX(g)> = FIX(%p.<f(FST(p)),g(SND(p))>)",propT));
       
    69 val tac = EVERY1[rtac lfp_is_FIX, simp_tac ss,
       
    70 	  strip_tac, simp_tac (LCF_ss addsimps [PROD_less]),
       
    71 	  rtac conjI, rtac least_FIX, etac subst, rtac (FST RS sym),
       
    72 	  rtac least_FIX, etac subst, rtac (SND RS sym)];
       
    73 in
       
    74 val Some(FIX_pair,_) = Sequence.pull(tapply(tac,thm));
       
    75 end;
       
    76 
       
    77 val FIX_pair_conj = SIMP_THM (LCF_ss addsimps [PROD_eq]) FIX_pair;
       
    78 *)
       
    79 val FIX_pair = prove_goal LCF.thy
       
    80   "<FIX(f),FIX(g)> = FIX(%p.<f(FST(p)),g(SND(p))>)"
       
    81   (fn _ => [rtac lfp_is_FIX 1, simp_tac ss 1,
       
    82 	  strip_tac 1, simp_tac (LCF_ss addsimps [PROD_less]) 1,
       
    83 	  rtac conjI 1, rtac least_FIX 1, etac subst 1, rtac (FST RS sym) 1,
       
    84 	  rtac least_FIX 1, etac subst 1, rtac (SND RS sym) 1]);
       
    85 
       
    86 val FIX_pair_conj = rewrite_rule (map mk_meta_eq [PROD_eq,FST,SND]) FIX_pair;
       
    87 
       
    88 val FIX1 = FIX_pair_conj RS conjunct1;
       
    89 val FIX2 = FIX_pair_conj RS conjunct2;
       
    90 
       
    91 val induct2 = prove_goal LCF.thy
       
    92 	 "[| adm(%p.P(FST(p),SND(p))); P(UU::'a,UU::'b);\
       
    93 \	     ALL x y. P(x,y) --> P(f(x),g(y)) |] ==> P(FIX(f),FIX(g))"
       
    94 	(fn prems => [EVERY1
       
    95 	[res_inst_tac [("f","f"),("g","g")] (standard(FIX1 RS ssubst)),
       
    96 	 res_inst_tac [("f","f"),("g","g")] (standard(FIX2 RS ssubst)),
       
    97 	 res_inst_tac [("f","%x. <f(FST(x)),g(SND(x))>")] induct,
       
    98 	 rstac prems, simp_tac ss, rstac prems,
       
    99 	 simp_tac (LCF_ss addsimps [expand_all_PROD]), rstac prems]]);
       
   100 
       
   101 fun induct2_tac (f,g) i = res_inst_tac[("f",f),("g",g)] induct2 i THEN
       
   102 		     REPEAT(rstac adm_lemmas i);
       
   103 
       
   104 end;
       
   105 
       
   106 open Fix;