|
1 (* Title: 91/Modal/prover |
|
2 ID: $Id$ |
|
3 Author: Martin Coen |
|
4 Copyright 1991 University of Cambridge |
|
5 *) |
|
6 |
|
7 signature MODAL_PROVER_RULE = |
|
8 sig |
|
9 val rewrite_rls : thm list |
|
10 val safe_rls : thm list |
|
11 val unsafe_rls : thm list |
|
12 val bound_rls : thm list |
|
13 val aside_rls : thm list |
|
14 end; |
|
15 |
|
16 signature MODAL_PROVER = |
|
17 sig |
|
18 val rule_tac : thm list -> int ->tactic |
|
19 val step_tac : int -> tactic |
|
20 val solven_tac : int -> int -> tactic |
|
21 val solve_tac : int -> tactic |
|
22 end; |
|
23 |
|
24 functor Modal_ProverFun (Modal_Rule: MODAL_PROVER_RULE) : MODAL_PROVER = |
|
25 struct |
|
26 local open Modal_Rule |
|
27 in |
|
28 |
|
29 (*Returns the list of all formulas in the sequent*) |
|
30 fun forms_of_seq (Const("Seqof",_) $ P $ u) = P :: forms_of_seq u |
|
31 | forms_of_seq (H $ u) = forms_of_seq u |
|
32 | forms_of_seq _ = []; |
|
33 |
|
34 (*Tests whether two sequences (left or right sides) could be resolved. |
|
35 seqp is a premise (subgoal), seqc is a conclusion of an object-rule. |
|
36 Assumes each formula in seqc is surrounded by sequence variables |
|
37 -- checks that each concl formula looks like some subgoal formula.*) |
|
38 fun could_res (seqp,seqc) = |
|
39 forall (fn Qc => exists (fn Qp => could_unify (Qp,Qc)) |
|
40 (forms_of_seq seqp)) |
|
41 (forms_of_seq seqc); |
|
42 |
|
43 (*Tests whether two sequents G|-H could be resolved, comparing each side.*) |
|
44 fun could_resolve_seq (prem,conc) = |
|
45 case (prem,conc) of |
|
46 (_ $ Abs(_,_,leftp) $ Abs(_,_,rightp), |
|
47 _ $ Abs(_,_,leftc) $ Abs(_,_,rightc)) => |
|
48 could_res (leftp,leftc) andalso could_res (rightp,rightc) |
|
49 | _ => false; |
|
50 |
|
51 (*Like filt_resolve_tac, using could_resolve_seq |
|
52 Much faster than resolve_tac when there are many rules. |
|
53 Resolve subgoal i using the rules, unless more than maxr are compatible. *) |
|
54 fun filseq_resolve_tac rules maxr = SUBGOAL(fn (prem,i) => |
|
55 let val rls = filter_thms could_resolve_seq (maxr+1, prem, rules) |
|
56 in if length rls > maxr then no_tac else resolve_tac rls i |
|
57 end); |
|
58 |
|
59 fun fresolve_tac rls n = filseq_resolve_tac rls 999 n; |
|
60 |
|
61 (* NB No back tracking possible with aside rules *) |
|
62 |
|
63 fun aside_tac n = DETERM(REPEAT (filt_resolve_tac aside_rls 999 n)); |
|
64 fun rule_tac rls n = fresolve_tac rls n THEN aside_tac n; |
|
65 |
|
66 val fres_safe_tac = fresolve_tac safe_rls; |
|
67 val fres_unsafe_tac = fresolve_tac unsafe_rls THEN' aside_tac; |
|
68 val fres_bound_tac = fresolve_tac bound_rls; |
|
69 |
|
70 fun UPTOGOAL n tf = let fun tac i = if i<n then all_tac |
|
71 else tf(i) THEN tac(i-1) |
|
72 in STATE(fn state=> tac(nprems_of state)) end; |
|
73 |
|
74 (* Depth first search bounded by d *) |
|
75 fun solven_tac d n = STATE (fn state => |
|
76 if d<0 then no_tac |
|
77 else if (nprems_of state = 0) then all_tac |
|
78 else (DETERM(fres_safe_tac n) THEN UPTOGOAL n (solven_tac d)) ORELSE |
|
79 ((fres_unsafe_tac n THEN UPTOGOAL n (solven_tac d)) APPEND |
|
80 (fres_bound_tac n THEN UPTOGOAL n (solven_tac (d-1))))); |
|
81 |
|
82 fun solve_tac d = rewrite_goals_tac rewrite_rls THEN solven_tac d 1; |
|
83 |
|
84 fun step_tac n = STATE (fn state => |
|
85 if (nprems_of state = 0) then all_tac |
|
86 else (DETERM(fres_safe_tac n)) ORELSE |
|
87 (fres_unsafe_tac n APPEND fres_bound_tac n)); |
|
88 |
|
89 end; |
|
90 end; |