|
1 (* Title: tactic |
|
2 ID: $Id$ |
|
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 Copyright 1991 University of Cambridge |
|
5 |
|
6 Tactics |
|
7 *) |
|
8 |
|
9 signature TACTIC = |
|
10 sig |
|
11 structure Tactical: TACTICAL and Net: NET |
|
12 local open Tactical Tactical.Thm Net |
|
13 in |
|
14 val ares_tac: thm list -> int -> tactic |
|
15 val asm_rewrite_goal_tac: |
|
16 (meta_simpset -> tactic) -> meta_simpset -> int -> tactic |
|
17 val assume_tac: int -> tactic |
|
18 val atac: int ->tactic |
|
19 val bimatch_from_nets_tac: (int*(bool*thm)) net * (int*(bool*thm)) net -> int -> tactic |
|
20 val bimatch_tac: (bool*thm)list -> int -> tactic |
|
21 val biresolve_from_nets_tac: (int*(bool*thm)) net * (int*(bool*thm)) net -> int -> tactic |
|
22 val biresolve_tac: (bool*thm)list -> int -> tactic |
|
23 val build_net: thm list -> (int*thm) net |
|
24 val build_netpair: (bool*thm)list -> (int*(bool*thm)) net * (int*(bool*thm)) net |
|
25 val compose_inst_tac: (string*string)list -> (bool*thm*int) -> int -> tactic |
|
26 val compose_tac: (bool * thm * int) -> int -> tactic |
|
27 val cut_facts_tac: thm list -> int -> tactic |
|
28 val dmatch_tac: thm list -> int -> tactic |
|
29 val dresolve_tac: thm list -> int -> tactic |
|
30 val dres_inst_tac: (string*string)list -> thm -> int -> tactic |
|
31 val dtac: thm -> int ->tactic |
|
32 val etac: thm -> int ->tactic |
|
33 val eq_assume_tac: int -> tactic |
|
34 val ematch_tac: thm list -> int -> tactic |
|
35 val eresolve_tac: thm list -> int -> tactic |
|
36 val eres_inst_tac: (string*string)list -> thm -> int -> tactic |
|
37 val filter_thms: (term*term->bool) -> int*term*thm list -> thm list |
|
38 val filt_resolve_tac: thm list -> int -> int -> tactic |
|
39 val flexflex_tac: tactic |
|
40 val fold_goals_tac: thm list -> tactic |
|
41 val fold_tac: thm list -> tactic |
|
42 val forward_tac: thm list -> int -> tactic |
|
43 val forw_inst_tac: (string*string)list -> thm -> int -> tactic |
|
44 val is_fact: thm -> bool |
|
45 val lessb: (bool * thm) * (bool * thm) -> bool |
|
46 val lift_inst_rule: thm * int * (string*string)list * thm -> thm |
|
47 val make_elim: thm -> thm |
|
48 val match_from_net_tac: (int*thm) net -> int -> tactic |
|
49 val match_tac: thm list -> int -> tactic |
|
50 val metacut_tac: thm -> int -> tactic |
|
51 val net_bimatch_tac: (bool*thm) list -> int -> tactic |
|
52 val net_biresolve_tac: (bool*thm) list -> int -> tactic |
|
53 val net_match_tac: thm list -> int -> tactic |
|
54 val net_resolve_tac: thm list -> int -> tactic |
|
55 val PRIMITIVE: (thm -> thm) -> tactic |
|
56 val PRIMSEQ: (thm -> thm Sequence.seq) -> tactic |
|
57 val prune_params_tac: tactic |
|
58 val rename_tac: string -> int -> tactic |
|
59 val rename_last_tac: string -> string list -> int -> tactic |
|
60 val resolve_from_net_tac: (int*thm) net -> int -> tactic |
|
61 val resolve_tac: thm list -> int -> tactic |
|
62 val res_inst_tac: (string*string)list -> thm -> int -> tactic |
|
63 val rewrite_goals_tac: thm list -> tactic |
|
64 val rewrite_tac: thm list -> tactic |
|
65 val rewtac: thm -> tactic |
|
66 val rtac: thm -> int -> tactic |
|
67 val rule_by_tactic: tactic -> thm -> thm |
|
68 val subgoals_of_brl: bool * thm -> int |
|
69 val subgoal_tac: string -> int -> tactic |
|
70 val trace_goalno_tac: (int -> tactic) -> int -> tactic |
|
71 end |
|
72 end; |
|
73 |
|
74 |
|
75 functor TacticFun (structure Logic: LOGIC and Drule: DRULE and |
|
76 Tactical: TACTICAL and Net: NET |
|
77 sharing Drule.Thm = Tactical.Thm) : TACTIC = |
|
78 struct |
|
79 structure Tactical = Tactical; |
|
80 structure Thm = Tactical.Thm; |
|
81 structure Net = Net; |
|
82 structure Sequence = Thm.Sequence; |
|
83 structure Sign = Thm.Sign; |
|
84 local open Tactical Tactical.Thm Drule |
|
85 in |
|
86 |
|
87 (*Discover what goal is chosen: SOMEGOAL(trace_goalno_tac tac) *) |
|
88 fun trace_goalno_tac tf i = Tactic (fn state => |
|
89 case Sequence.pull(tapply(tf i, state)) of |
|
90 None => Sequence.null |
|
91 | seqcell => (prs("Subgoal " ^ string_of_int i ^ " selected\n"); |
|
92 Sequence.seqof(fn()=> seqcell))); |
|
93 |
|
94 fun string_of (a,0) = a |
|
95 | string_of (a,i) = a ^ "_" ^ string_of_int i; |
|
96 |
|
97 (*convert all Vars in a theorem to Frees -- export??*) |
|
98 fun freeze th = |
|
99 let val fth = freezeT th |
|
100 val {prop,sign,...} = rep_thm fth |
|
101 fun mk_inst (Var(v,T)) = |
|
102 (Sign.cterm_of sign (Var(v,T)), |
|
103 Sign.cterm_of sign (Free(string_of v, T))) |
|
104 val insts = map mk_inst (term_vars prop) |
|
105 in instantiate ([],insts) fth end; |
|
106 |
|
107 (*Makes a rule by applying a tactic to an existing rule*) |
|
108 fun rule_by_tactic (Tactic tf) rl = |
|
109 case Sequence.pull(tf (freeze (standard rl))) of |
|
110 None => raise THM("rule_by_tactic", 0, [rl]) |
|
111 | Some(rl',_) => standard rl'; |
|
112 |
|
113 (*** Basic tactics ***) |
|
114 |
|
115 (*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*) |
|
116 fun PRIMSEQ thmfun = Tactic (fn state => thmfun state |
|
117 handle THM _ => Sequence.null); |
|
118 |
|
119 (*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*) |
|
120 fun PRIMITIVE thmfun = PRIMSEQ (Sequence.single o thmfun); |
|
121 |
|
122 (*** The following fail if the goal number is out of range: |
|
123 thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *) |
|
124 |
|
125 (*Solve subgoal i by assumption*) |
|
126 fun assume_tac i = PRIMSEQ (assumption i); |
|
127 |
|
128 (*Solve subgoal i by assumption, using no unification*) |
|
129 fun eq_assume_tac i = PRIMITIVE (eq_assumption i); |
|
130 |
|
131 (** Resolution/matching tactics **) |
|
132 |
|
133 (*The composition rule/state: no lifting or var renaming. |
|
134 The arg = (bires_flg, orule, m) ; see bicompose for explanation.*) |
|
135 fun compose_tac arg i = PRIMSEQ (bicompose false arg i); |
|
136 |
|
137 (*Converts a "destruct" rule like P&Q==>P to an "elimination" rule |
|
138 like [| P&Q; P==>R |] ==> R *) |
|
139 fun make_elim rl = zero_var_indexes (rl RS revcut_rl); |
|
140 |
|
141 (*Attack subgoal i by resolution, using flags to indicate elimination rules*) |
|
142 fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i); |
|
143 |
|
144 (*Resolution: the simple case, works for introduction rules*) |
|
145 fun resolve_tac rules = biresolve_tac (map (pair false) rules); |
|
146 |
|
147 (*Resolution with elimination rules only*) |
|
148 fun eresolve_tac rules = biresolve_tac (map (pair true) rules); |
|
149 |
|
150 (*Forward reasoning using destruction rules.*) |
|
151 fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac; |
|
152 |
|
153 (*Like forward_tac, but deletes the assumption after use.*) |
|
154 fun dresolve_tac rls = eresolve_tac (map make_elim rls); |
|
155 |
|
156 (*Shorthand versions: for resolution with a single theorem*) |
|
157 fun rtac rl = resolve_tac [rl]; |
|
158 fun etac rl = eresolve_tac [rl]; |
|
159 fun dtac rl = dresolve_tac [rl]; |
|
160 val atac = assume_tac; |
|
161 |
|
162 (*Use an assumption or some rules ... A popular combination!*) |
|
163 fun ares_tac rules = assume_tac ORELSE' resolve_tac rules; |
|
164 |
|
165 (*Matching tactics -- as above, but forbid updating of state*) |
|
166 fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i); |
|
167 fun match_tac rules = bimatch_tac (map (pair false) rules); |
|
168 fun ematch_tac rules = bimatch_tac (map (pair true) rules); |
|
169 fun dmatch_tac rls = ematch_tac (map make_elim rls); |
|
170 |
|
171 (*Smash all flex-flex disagreement pairs in the proof state.*) |
|
172 val flexflex_tac = PRIMSEQ flexflex_rule; |
|
173 |
|
174 (*Lift and instantiate a rule wrt the given state and subgoal number *) |
|
175 fun lift_inst_rule (state, i, sinsts, rule) = |
|
176 let val {maxidx,sign,...} = rep_thm state |
|
177 val (_, _, Bi, _) = dest_state(state,i) |
|
178 val params = Logic.strip_params Bi (*params of subgoal i*) |
|
179 val params = rev(rename_wrt_term Bi params) (*as they are printed*) |
|
180 val paramTs = map #2 params |
|
181 and inc = maxidx+1 |
|
182 fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T) |
|
183 | liftvar t = raise TERM("Variable expected", [t]); |
|
184 fun liftterm t = list_abs_free (params, |
|
185 Logic.incr_indexes(paramTs,inc) t) |
|
186 (*Lifts instantiation pair over params*) |
|
187 fun liftpair (cv,ct) = (Sign.cfun liftvar cv, Sign.cfun liftterm ct) |
|
188 fun lifttvar((a,i),ctyp) = |
|
189 let val {T,sign} = Sign.rep_ctyp ctyp |
|
190 in ((a,i+inc), Sign.ctyp_of sign (incr_tvar inc T)) end |
|
191 val rts = types_sorts rule and (types,sorts) = types_sorts state |
|
192 fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm) |
|
193 | types'(ixn) = types ixn; |
|
194 val (Tinsts,insts) = Sign.read_insts sign rts (types',sorts) sinsts |
|
195 in instantiate (map lifttvar Tinsts, map liftpair insts) |
|
196 (lift_rule (state,i) rule) |
|
197 end; |
|
198 |
|
199 |
|
200 (*** Resolve after lifting and instantation; may refer to parameters of the |
|
201 subgoal. Fails if "i" is out of range. ***) |
|
202 |
|
203 (*compose version: arguments are as for bicompose.*) |
|
204 fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i = |
|
205 STATE ( fn state => |
|
206 compose_tac (bires_flg, lift_inst_rule (state, i, sinsts, rule), |
|
207 nsubgoal) i |
|
208 handle TERM (msg,_) => (writeln msg; no_tac) |
|
209 | THM _ => no_tac ); |
|
210 |
|
211 (*Resolve version*) |
|
212 fun res_inst_tac sinsts rule i = |
|
213 compose_inst_tac sinsts (false, rule, nprems_of rule) i; |
|
214 |
|
215 (*eresolve (elimination) version*) |
|
216 fun eres_inst_tac sinsts rule i = |
|
217 compose_inst_tac sinsts (true, rule, nprems_of rule) i; |
|
218 |
|
219 (*For forw_inst_tac and dres_inst_tac: preserve Var indexes of rl. |
|
220 Fails if rl's major premise contains !! or ==> ; it should not anyway!*) |
|
221 fun make_elim_preserve rl = |
|
222 let val revcut_rl' = lift_rule (rl,1) revcut_rl |
|
223 val arg = (false, rl, nprems_of rl) |
|
224 val [th] = Sequence.list_of_s (bicompose false arg 1 revcut_rl') |
|
225 in th end |
|
226 handle Bind => raise THM("make_elim_preserve", 1, [rl]); |
|
227 |
|
228 (*forward version*) |
|
229 fun forw_inst_tac sinsts rule = |
|
230 res_inst_tac sinsts (make_elim_preserve rule) THEN' assume_tac; |
|
231 |
|
232 (*dresolve version*) |
|
233 fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule); |
|
234 |
|
235 (*** Applications of cut_rl -- forward reasoning ***) |
|
236 |
|
237 (*Used by metacut_tac*) |
|
238 fun bires_cut_tac arg i = |
|
239 resolve_tac [cut_rl] i THEN biresolve_tac arg (i+1) ; |
|
240 |
|
241 (*The conclusion of the rule gets assumed in subgoal i, |
|
242 while subgoal i+1,... are the premises of the rule.*) |
|
243 fun metacut_tac rule = bires_cut_tac [(false,rule)]; |
|
244 |
|
245 (*Recognizes theorems that are not rules, but simple propositions*) |
|
246 fun is_fact rl = |
|
247 case prems_of rl of |
|
248 [] => true | _::_ => false; |
|
249 |
|
250 (*"Cut" all facts from theorem list into the goal as assumptions. *) |
|
251 fun cut_facts_tac ths i = |
|
252 EVERY (map (fn th => metacut_tac th i) (filter is_fact ths)); |
|
253 |
|
254 (*Introduce the given proposition as a lemma and subgoal*) |
|
255 fun subgoal_tac sprop = res_inst_tac [("psi", sprop)] cut_rl; |
|
256 |
|
257 |
|
258 (**** Indexing and filtering of theorems ****) |
|
259 |
|
260 (*Returns the list of potentially resolvable theorems for the goal "prem", |
|
261 using the predicate could(subgoal,concl). |
|
262 Resulting list is no longer than "limit"*) |
|
263 fun filter_thms could (limit, prem, ths) = |
|
264 let val pb = Logic.strip_assums_concl prem; (*delete assumptions*) |
|
265 fun filtr (limit, []) = [] |
|
266 | filtr (limit, th::ths) = |
|
267 if limit=0 then [] |
|
268 else if could(pb, concl_of th) then th :: filtr(limit-1, ths) |
|
269 else filtr(limit,ths) |
|
270 in filtr(limit,ths) end; |
|
271 |
|
272 |
|
273 (*** biresolution and resolution using nets ***) |
|
274 |
|
275 (** To preserve the order of the rules, tag them with increasing integers **) |
|
276 |
|
277 (*insert tags*) |
|
278 fun taglist k [] = [] |
|
279 | taglist k (x::xs) = (k,x) :: taglist (k+1) xs; |
|
280 |
|
281 (*remove tags and suppress duplicates -- list is assumed sorted!*) |
|
282 fun untaglist [] = [] |
|
283 | untaglist [(k:int,x)] = [x] |
|
284 | untaglist ((k,x) :: (rest as (k',x')::_)) = |
|
285 if k=k' then untaglist rest |
|
286 else x :: untaglist rest; |
|
287 |
|
288 (*return list elements in original order*) |
|
289 val orderlist = untaglist o sort (fn(x,y)=> #1 x < #1 y); |
|
290 |
|
291 (*insert one tagged brl into the pair of nets*) |
|
292 fun insert_kbrl (kbrl as (k,(eres,th)), (inet,enet)) = |
|
293 if eres then |
|
294 case prems_of th of |
|
295 prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false)) |
|
296 | [] => error"insert_kbrl: elimination rule with no premises" |
|
297 else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet); |
|
298 |
|
299 (*build a pair of nets for biresolution*) |
|
300 fun build_netpair brls = |
|
301 foldr insert_kbrl (taglist 1 brls, (Net.empty,Net.empty)); |
|
302 |
|
303 (*biresolution using a pair of nets rather than rules*) |
|
304 fun biresolution_from_nets_tac match (inet,enet) = |
|
305 SUBGOAL |
|
306 (fn (prem,i) => |
|
307 let val hyps = Logic.strip_assums_hyp prem |
|
308 and concl = Logic.strip_assums_concl prem |
|
309 val kbrls = Net.unify_term inet concl @ |
|
310 flat (map (Net.unify_term enet) hyps) |
|
311 in PRIMSEQ (biresolution match (orderlist kbrls) i) end); |
|
312 |
|
313 (*versions taking pre-built nets*) |
|
314 val biresolve_from_nets_tac = biresolution_from_nets_tac false; |
|
315 val bimatch_from_nets_tac = biresolution_from_nets_tac true; |
|
316 |
|
317 (*fast versions using nets internally*) |
|
318 val net_biresolve_tac = biresolve_from_nets_tac o build_netpair; |
|
319 val net_bimatch_tac = bimatch_from_nets_tac o build_netpair; |
|
320 |
|
321 (*** Simpler version for resolve_tac -- only one net, and no hyps ***) |
|
322 |
|
323 (*insert one tagged rl into the net*) |
|
324 fun insert_krl (krl as (k,th), net) = |
|
325 Net.insert_term ((concl_of th, krl), net, K false); |
|
326 |
|
327 (*build a net of rules for resolution*) |
|
328 fun build_net rls = |
|
329 foldr insert_krl (taglist 1 rls, Net.empty); |
|
330 |
|
331 (*resolution using a net rather than rules; pred supports filt_resolve_tac*) |
|
332 fun filt_resolution_from_net_tac match pred net = |
|
333 SUBGOAL |
|
334 (fn (prem,i) => |
|
335 let val krls = Net.unify_term net (Logic.strip_assums_concl prem) |
|
336 in |
|
337 if pred krls |
|
338 then PRIMSEQ |
|
339 (biresolution match (map (pair false) (orderlist krls)) i) |
|
340 else no_tac |
|
341 end); |
|
342 |
|
343 (*Resolve the subgoal using the rules (making a net) unless too flexible, |
|
344 which means more than maxr rules are unifiable. *) |
|
345 fun filt_resolve_tac rules maxr = |
|
346 let fun pred krls = length krls <= maxr |
|
347 in filt_resolution_from_net_tac false pred (build_net rules) end; |
|
348 |
|
349 (*versions taking pre-built nets*) |
|
350 val resolve_from_net_tac = filt_resolution_from_net_tac false (K true); |
|
351 val match_from_net_tac = filt_resolution_from_net_tac true (K true); |
|
352 |
|
353 (*fast versions using nets internally*) |
|
354 val net_resolve_tac = resolve_from_net_tac o build_net; |
|
355 val net_match_tac = match_from_net_tac o build_net; |
|
356 |
|
357 |
|
358 (*** For Natural Deduction using (bires_flg, rule) pairs ***) |
|
359 |
|
360 (*The number of new subgoals produced by the brule*) |
|
361 fun subgoals_of_brl (true,rule) = length (prems_of rule) - 1 |
|
362 | subgoals_of_brl (false,rule) = length (prems_of rule); |
|
363 |
|
364 (*Less-than test: for sorting to minimize number of new subgoals*) |
|
365 fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2; |
|
366 |
|
367 |
|
368 (*** Meta-Rewriting Tactics ***) |
|
369 |
|
370 fun result1 tacf mss thm = |
|
371 case Sequence.pull(tapply(tacf mss,thm)) of |
|
372 None => None |
|
373 | Some(thm,_) => Some(thm); |
|
374 |
|
375 (*Rewrite subgoal i only *) |
|
376 fun asm_rewrite_goal_tac prover_tac mss i = |
|
377 PRIMITIVE(rewrite_goal_rule (result1 prover_tac) mss i); |
|
378 |
|
379 (*Rewrite or fold throughout proof state. *) |
|
380 fun rewrite_tac thms = PRIMITIVE(rewrite_rule thms); |
|
381 fun fold_tac rths = rewrite_tac (map symmetric rths); |
|
382 |
|
383 (*Rewrite subgoals only, not main goal. *) |
|
384 fun rewrite_goals_tac thms = PRIMITIVE (rewrite_goals_rule thms); |
|
385 fun fold_goals_tac rths = rewrite_goals_tac (map symmetric rths); |
|
386 |
|
387 fun rewtac rth = rewrite_goals_tac [rth]; |
|
388 |
|
389 |
|
390 (** Renaming of parameters in a subgoal |
|
391 Names may contain letters, digits or primes and must be |
|
392 separated by blanks **) |
|
393 |
|
394 (*Calling this will generate the warning "Same as previous level" since |
|
395 it affects nothing but the names of bound variables!*) |
|
396 fun rename_tac str i = |
|
397 let val cs = explode str |
|
398 in |
|
399 if !Logic.auto_rename |
|
400 then (writeln"Note: setting Logic.auto_rename := false"; |
|
401 Logic.auto_rename := false) |
|
402 else (); |
|
403 case #2 (take_prefix (is_letdig orf is_blank) cs) of |
|
404 [] => PRIMITIVE (rename_params_rule (scanwords is_letdig cs, i)) |
|
405 | c::_ => error ("Illegal character: " ^ c) |
|
406 end; |
|
407 |
|
408 (*Rename recent parameters using names generated from (a) and the suffixes, |
|
409 provided the string (a), which represents a term, is an identifier. *) |
|
410 fun rename_last_tac a sufs i = |
|
411 let val names = map (curry op^ a) sufs |
|
412 in if Syntax.is_identifier a |
|
413 then PRIMITIVE (rename_params_rule (names,i)) |
|
414 else all_tac |
|
415 end; |
|
416 |
|
417 (*Prunes all redundant parameters from the proof state by rewriting*) |
|
418 val prune_params_tac = rewrite_tac [triv_forall_equality]; |
|
419 |
|
420 end; |
|
421 end; |