src/ZF/Sum.ML
changeset 0 a5a9c433f639
child 6 8ce8c4d13d4d
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 (*  Title: 	ZF/sum
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 Disjoint sums in Zermelo-Fraenkel Set Theory 
       
     7 *)
       
     8 
       
     9 open Sum;
       
    10 
       
    11 val sum_defs = [sum_def,Inl_def,Inr_def,case_def];
       
    12 
       
    13 (** Introduction rules for the injections **)
       
    14 
       
    15 goalw Sum.thy sum_defs "!!a A B. a : A ==> Inl(a) : A+B";
       
    16 by (REPEAT (ares_tac [UnI1,SigmaI,singletonI] 1));
       
    17 val InlI = result();
       
    18 
       
    19 goalw Sum.thy sum_defs "!!b A B. b : B ==> Inr(b) : A+B";
       
    20 by (REPEAT (ares_tac [UnI2,SigmaI,singletonI] 1));
       
    21 val InrI = result();
       
    22 
       
    23 (** Elimination rules **)
       
    24 
       
    25 val major::prems = goalw Sum.thy sum_defs
       
    26     "[| u: A+B;  \
       
    27 \       !!x. [| x:A;  u=Inl(x) |] ==> P; \
       
    28 \       !!y. [| y:B;  u=Inr(y) |] ==> P \
       
    29 \    |] ==> P";
       
    30 by (rtac (major RS UnE) 1);
       
    31 by (REPEAT (rtac refl 1
       
    32      ORELSE eresolve_tac (prems@[SigmaE,singletonE,ssubst]) 1));
       
    33 val sumE = result();
       
    34 
       
    35 (** Injection and freeness rules **)
       
    36 
       
    37 val [major] = goalw Sum.thy sum_defs "Inl(a)=Inl(b) ==> a=b";
       
    38 by (EVERY1 [rtac (major RS Pair_inject), assume_tac]);
       
    39 val Inl_inject = result();
       
    40 
       
    41 val [major] = goalw Sum.thy sum_defs "Inr(a)=Inr(b) ==> a=b";
       
    42 by (EVERY1 [rtac (major RS Pair_inject), assume_tac]);
       
    43 val Inr_inject = result();
       
    44 
       
    45 val [major] = goalw Sum.thy sum_defs "Inl(a)=Inr(b) ==> P";
       
    46 by (rtac (major RS Pair_inject) 1);
       
    47 by (etac (sym RS one_neq_0) 1);
       
    48 val Inl_neq_Inr = result();
       
    49 
       
    50 val Inr_neq_Inl = sym RS Inl_neq_Inr;
       
    51 
       
    52 (** Injection and freeness equivalences, for rewriting **)
       
    53 
       
    54 goal Sum.thy "Inl(a)=Inl(b) <-> a=b";
       
    55 by (rtac iffI 1);
       
    56 by (REPEAT (eresolve_tac [Inl_inject,subst_context] 1));
       
    57 val Inl_iff = result();
       
    58 
       
    59 goal Sum.thy "Inr(a)=Inr(b) <-> a=b";
       
    60 by (rtac iffI 1);
       
    61 by (REPEAT (eresolve_tac [Inr_inject,subst_context] 1));
       
    62 val Inr_iff = result();
       
    63 
       
    64 goal Sum.thy "Inl(a)=Inr(b) <-> False";
       
    65 by (rtac iffI 1);
       
    66 by (REPEAT (eresolve_tac [Inl_neq_Inr,FalseE] 1));
       
    67 val Inl_Inr_iff = result();
       
    68 
       
    69 goal Sum.thy "Inr(b)=Inl(a) <-> False";
       
    70 by (rtac iffI 1);
       
    71 by (REPEAT (eresolve_tac [Inr_neq_Inl,FalseE] 1));
       
    72 val Inr_Inl_iff = result();
       
    73 
       
    74 val sum_cs = ZF_cs addIs [InlI,InrI] addSEs [sumE,Inl_neq_Inr,Inr_neq_Inl]
       
    75                    addSDs [Inl_inject,Inr_inject];
       
    76 
       
    77 goal Sum.thy "u: A+B <-> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))";
       
    78 by (fast_tac sum_cs 1);
       
    79 val sum_iff = result();
       
    80 
       
    81 goal Sum.thy "A+B <= C+D <-> A<=C & B<=D";
       
    82 by (fast_tac sum_cs 1);
       
    83 val sum_subset_iff = result();
       
    84 
       
    85 goal Sum.thy "A+B = C+D <-> A=C & B=D";
       
    86 by (SIMP_TAC (ZF_ss addrews [extension,sum_subset_iff]) 1);
       
    87 by (fast_tac ZF_cs 1);
       
    88 val sum_equal_iff = result();
       
    89 
       
    90 (*** Eliminator -- case ***)
       
    91 
       
    92 goalw Sum.thy sum_defs "case(c, d, Inl(a)) = c(a)";
       
    93 by (rtac (split RS trans) 1);
       
    94 by (rtac cond_0 1);
       
    95 val case_Inl = result();
       
    96 
       
    97 goalw Sum.thy sum_defs "case(c, d, Inr(b)) = d(b)";
       
    98 by (rtac (split RS trans) 1);
       
    99 by (rtac cond_1 1);
       
   100 val case_Inr = result();
       
   101 
       
   102 val prems = goalw Sum.thy [case_def]
       
   103     "[| u=u'; !!x. c(x)=c'(x);  !!y. d(y)=d'(y) |] ==>    \
       
   104 \    case(c,d,u)=case(c',d',u')";
       
   105 by (REPEAT (resolve_tac ([refl,split_cong,cond_cong] @ prems) 1));
       
   106 val case_cong = result();
       
   107 
       
   108 val major::prems = goal Sum.thy
       
   109     "[| u: A+B; \
       
   110 \       !!x. x: A ==> c(x): C(Inl(x));   \
       
   111 \       !!y. y: B ==> d(y): C(Inr(y)) \
       
   112 \    |] ==> case(c,d,u) : C(u)";
       
   113 by (rtac (major RS sumE) 1);
       
   114 by (ALLGOALS (etac ssubst));
       
   115 by (ALLGOALS (ASM_SIMP_TAC (ZF_ss addrews
       
   116 			    (prems@[case_Inl,case_Inr]))));
       
   117 val case_type = result();
       
   118 
       
   119 (** Rules for the Part primitive **)
       
   120 
       
   121 goalw Sum.thy [Part_def]
       
   122     "!!a b A h. [| a : A;  a=h(b) |] ==> a : Part(A,h)";
       
   123 by (REPEAT (ares_tac [exI,CollectI] 1));
       
   124 val Part_eqI = result();
       
   125 
       
   126 val PartI = refl RSN (2,Part_eqI);
       
   127 
       
   128 val major::prems = goalw Sum.thy [Part_def]
       
   129     "[| a : Part(A,h);  !!z. [| a : A;  a=h(z) |] ==> P  \
       
   130 \    |] ==> P";
       
   131 by (rtac (major RS CollectE) 1);
       
   132 by (etac exE 1);
       
   133 by (REPEAT (ares_tac prems 1));
       
   134 val PartE = result();
       
   135 
       
   136 goalw Sum.thy [Part_def] "Part(A,h) <= A";
       
   137 by (rtac Collect_subset 1);
       
   138 val Part_subset = result();
       
   139 
       
   140 goal Sum.thy "!!A B h. A<=B ==> Part(A,h)<=Part(B,h)";
       
   141 by (fast_tac (ZF_cs addIs [PartI] addSEs [PartE]) 1);
       
   142 val Part_mono = result();
       
   143 
       
   144 goal Sum.thy "Part(A+B,Inl) = {Inl(x). x: A}";
       
   145 by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1);
       
   146 val Part_Inl = result();
       
   147 
       
   148 goal Sum.thy "Part(A+B,Inr) = {Inr(y). y: B}";
       
   149 by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1);
       
   150 val Part_Inr = result();
       
   151 
       
   152 goalw Sum.thy [Part_def] "!!a. a : Part(A,h) ==> a : A";
       
   153 by (etac CollectD1 1);
       
   154 val PartD1 = result();
       
   155 
       
   156 goal Sum.thy "Part(A,%x.x) = A";
       
   157 by (fast_tac (ZF_cs addIs [PartI,equalityI] addSEs [PartE]) 1);
       
   158 val Part_id = result();
       
   159 
       
   160 goal Sum.thy "Part(A+B, %x.Inr(h(x))) = {Inr(y). y: Part(B,h)}";
       
   161 by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1);
       
   162 val Part_Inr2 = result();
       
   163 
       
   164 goal Sum.thy "!!A B C. C <= A+B ==> Part(C,Inl) Un Part(C,Inr) = C";
       
   165 by (rtac equalityI 1);
       
   166 by (rtac Un_least 1);
       
   167 by (rtac Part_subset 1);
       
   168 by (rtac Part_subset 1);
       
   169 by (fast_tac (ZF_cs addIs [PartI] addSEs [sumE]) 1);
       
   170 val Part_sum_equality = result();