src/ZF/WF.thy
changeset 0 a5a9c433f639
child 124 858ab9a9b047
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 (*  Title: 	ZF/wf.thy
       
     2     ID:         $Id$
       
     3     Author: 	Tobias Nipkow and Lawrence C Paulson
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 Well-founded Recursion
       
     7 *)
       
     8 
       
     9 WF = Trancl +
       
    10 consts
       
    11     wf		 ::      "i=>o"
       
    12     wftrec,wfrec ::      "[i, i, [i,i]=>i] =>i"
       
    13     is_recfun    ::      "[i, i, [i,i]=>i, i] =>o"
       
    14     the_recfun   ::      "[i, i, [i,i]=>i] =>i"
       
    15 
       
    16 rules
       
    17   (*r is a well-founded relation*)
       
    18   wf_def	 "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
       
    19 
       
    20   is_recfun_def  "is_recfun(r,a,H,f) == \
       
    21 \   			(f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
       
    22 
       
    23   the_recfun_def "the_recfun(r,a,H) == (THE f.is_recfun(r,a,H,f))"
       
    24 
       
    25   wftrec_def  	 "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
       
    26 
       
    27   (*public version.  Does not require r to be transitive*)
       
    28   wfrec_def "wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
       
    29 
       
    30 end