src/ZF/ex/equiv.thy
changeset 0 a5a9c433f639
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 (*  Title: 	ZF/ex/equiv.thy
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1993  University of Cambridge
       
     5 
       
     6 Equivalence relations in Zermelo-Fraenkel Set Theory 
       
     7 *)
       
     8 
       
     9 Equiv = Trancl +
       
    10 consts
       
    11     refl,equiv 	::      "[i,i]=>o"
       
    12     sym         ::      "i=>o"
       
    13     "'/"        ::      "[i,i]=>i"  (infixl 90)  (*set of equiv classes*)
       
    14     congruent	::	"[i,i=>i]=>o"
       
    15     congruent2  ::      "[i,[i,i]=>i]=>o"
       
    16 
       
    17 rules
       
    18     refl_def      "refl(A,r) == r <= (A*A) & (ALL x: A. <x,x> : r)"
       
    19     sym_def       "sym(r) == ALL x y. <x,y>: r --> <y,x>: r"
       
    20     equiv_def     "equiv(A,r) == refl(A,r) & sym(r) & trans(r)"
       
    21     quotient_def  "A/r == {r``{x} . x:A}"
       
    22     congruent_def "congruent(r,b) == ALL y z. <y,z>:r --> b(y)=b(z)"
       
    23 
       
    24     congruent2_def
       
    25        "congruent2(r,b) == ALL y1 z1 y2 z2. \
       
    26 \           <y1,z1>:r --> <y2,z2>:r --> b(y1,y2) = b(z1,z2)"
       
    27 
       
    28 end