src/ZF/mono.ML
changeset 0 a5a9c433f639
child 485 5e00a676a211
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 (*  Title: 	ZF/mono
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1993  University of Cambridge
       
     5 
       
     6 Monotonicity of various operations (for lattice properties see subset.ML)
       
     7 *)
       
     8 
       
     9 (** Replacement, in its various formulations **)
       
    10 
       
    11 (*Not easy to express monotonicity in P, since any "bigger" predicate
       
    12   would have to be single-valued*)
       
    13 goal ZF.thy "!!A B. A<=B ==> Replace(A,P) <= Replace(B,P)";
       
    14 by (fast_tac ZF_cs 1);
       
    15 val Replace_mono = result();
       
    16 
       
    17 goal ZF.thy "!!A B. A<=B ==> {f(x). x:A} <= {f(x). x:B}";
       
    18 by (fast_tac ZF_cs 1);
       
    19 val RepFun_mono = result();
       
    20 
       
    21 goal ZF.thy "!!A B. A<=B ==> Pow(A) <= Pow(B)";
       
    22 by (fast_tac ZF_cs 1);
       
    23 val Pow_mono = result();
       
    24 
       
    25 goal ZF.thy "!!A B. A<=B ==> Union(A) <= Union(B)";
       
    26 by (fast_tac ZF_cs 1);
       
    27 val Union_mono = result();
       
    28 
       
    29 val prems = goal ZF.thy
       
    30     "[| A<=C;  !!x. x:A ==> B(x)<=D(x) \
       
    31 \    |] ==> (UN x:A. B(x)) <= (UN x:C. D(x))";
       
    32 by (fast_tac (ZF_cs addIs (prems RL [subsetD])) 1);
       
    33 val UN_mono = result();
       
    34 
       
    35 (*Intersection is ANTI-monotonic.  There are TWO premises! *)
       
    36 goal ZF.thy "!!A B. [| A<=B;  a:A |] ==> Inter(B) <= Inter(A)";
       
    37 by (fast_tac ZF_cs 1);
       
    38 val Inter_anti_mono = result();
       
    39 
       
    40 goal ZF.thy "!!C D. C<=D ==> cons(a,C) <= cons(a,D)";
       
    41 by (fast_tac ZF_cs 1);
       
    42 val cons_mono = result();
       
    43 
       
    44 goal ZF.thy "!!A B C D. [| A<=C;  B<=D |] ==> A Un B <= C Un D";
       
    45 by (fast_tac ZF_cs 1);
       
    46 val Un_mono = result();
       
    47 
       
    48 goal ZF.thy "!!A B C D. [| A<=C;  B<=D |] ==> A Int B <= C Int D";
       
    49 by (fast_tac ZF_cs 1);
       
    50 val Int_mono = result();
       
    51 
       
    52 goal ZF.thy "!!A B C D. [| A<=C;  D<=B |] ==> A-B <= C-D";
       
    53 by (fast_tac ZF_cs 1);
       
    54 val Diff_mono = result();
       
    55 
       
    56 (** Standard products, sums and function spaces **)
       
    57 
       
    58 goal ZF.thy "!!A B C D. [| A<=C;  ALL x:A. B(x) <= D(x) |] ==> \
       
    59 \                       Sigma(A,B) <= Sigma(C,D)";
       
    60 by (fast_tac ZF_cs 1);
       
    61 val Sigma_mono_lemma = result();
       
    62 val Sigma_mono = ballI RSN (2,Sigma_mono_lemma);
       
    63 
       
    64 goalw Sum.thy sum_defs "!!A B C D. [| A<=C;  B<=D |] ==> A+B <= C+D";
       
    65 by (REPEAT (ares_tac [subset_refl,Un_mono,Sigma_mono] 1));
       
    66 val sum_mono = result();
       
    67 
       
    68 (*Note that B->A and C->A are typically disjoint!*)
       
    69 goal ZF.thy "!!A B C. B<=C ==> A->B <= A->C";
       
    70 by (fast_tac (ZF_cs addIs [lam_type] addEs [Pi_lamE]) 1);
       
    71 val Pi_mono = result();
       
    72 
       
    73 goalw ZF.thy [lam_def] "!!A B. A<=B ==> Lambda(A,c) <= Lambda(B,c)";
       
    74 by (etac RepFun_mono 1);
       
    75 val lam_mono = result();
       
    76 
       
    77 (** Quine-inspired ordered pairs, products, injections and sums **)
       
    78 
       
    79 goalw QPair.thy [QPair_def] "!!a b c d. [| a<=c;  b<=d |] ==> <a;b> <= <c;d>";
       
    80 by (REPEAT (ares_tac [sum_mono] 1));
       
    81 val QPair_mono = result();
       
    82 
       
    83 goal QPair.thy "!!A B C D. [| A<=C;  ALL x:A. B(x) <= D(x) |] ==>  \
       
    84 \                          QSigma(A,B) <= QSigma(C,D)";
       
    85 by (fast_tac (ZF_cs addIs [QSigmaI] addSEs [QSigmaE]) 1);
       
    86 val QSigma_mono_lemma = result();
       
    87 val QSigma_mono = ballI RSN (2,QSigma_mono_lemma);
       
    88 
       
    89 goalw QPair.thy [QInl_def] "!!a b. a<=b ==> QInl(a) <= QInl(b)";
       
    90 by (REPEAT (ares_tac [subset_refl RS QPair_mono] 1));
       
    91 val QInl_mono = result();
       
    92 
       
    93 goalw QPair.thy [QInr_def] "!!a b. a<=b ==> QInr(a) <= QInr(b)";
       
    94 by (REPEAT (ares_tac [subset_refl RS QPair_mono] 1));
       
    95 val QInr_mono = result();
       
    96 
       
    97 goal QPair.thy "!!A B C D. [| A<=C;  B<=D |] ==> A <+> B <= C <+> D";
       
    98 by (fast_tac qsum_cs 1);
       
    99 val qsum_mono = result();
       
   100 
       
   101 
       
   102 (** Converse, domain, range, field **)
       
   103 
       
   104 goal ZF.thy "!!r s. r<=s ==> converse(r) <= converse(s)";
       
   105 by (fast_tac ZF_cs 1);
       
   106 val converse_mono = result();
       
   107 
       
   108 goal ZF.thy "!!r s. r<=s ==> domain(r)<=domain(s)";
       
   109 by (fast_tac ZF_cs 1);
       
   110 val domain_mono = result();
       
   111 
       
   112 val [prem] = goal ZF.thy "r <= Sigma(A,B) ==> domain(r) <= A";
       
   113 by (rtac (domain_subset RS (prem RS domain_mono RS subset_trans)) 1);
       
   114 val domain_rel_subset = result();
       
   115 
       
   116 goal ZF.thy "!!r s. r<=s ==> range(r)<=range(s)";
       
   117 by (fast_tac ZF_cs 1);
       
   118 val range_mono = result();
       
   119 
       
   120 val [prem] = goal ZF.thy "r <= A*B ==> range(r) <= B";
       
   121 by (rtac (range_subset RS (prem RS range_mono RS subset_trans)) 1);
       
   122 val range_rel_subset = result();
       
   123 
       
   124 goal ZF.thy "!!r s. r<=s ==> field(r)<=field(s)";
       
   125 by (fast_tac ZF_cs 1);
       
   126 val field_mono = result();
       
   127 
       
   128 goal ZF.thy "!!r A. r <= A*A ==> field(r) <= A";
       
   129 by (etac (field_mono RS subset_trans) 1);
       
   130 by (fast_tac ZF_cs 1);
       
   131 val field_rel_subset = result();
       
   132 
       
   133 
       
   134 (** Images **)
       
   135 
       
   136 val [prem1,prem2] = goal ZF.thy
       
   137     "[| !! x y. <x,y>:r ==> <x,y>:s;  A<=B |] ==> r``A <= s``B";
       
   138 by (fast_tac (ZF_cs addIs [prem1, prem2 RS subsetD]) 1);
       
   139 val image_pair_mono = result();
       
   140 
       
   141 val [prem1,prem2] = goal ZF.thy
       
   142     "[| !! x y. <x,y>:r ==> <x,y>:s;  A<=B |] ==> r-``A <= s-``B";
       
   143 by (fast_tac (ZF_cs addIs [prem1, prem2 RS subsetD]) 1);
       
   144 val vimage_pair_mono = result();
       
   145 
       
   146 goal ZF.thy "!!r s. [| r<=s;  A<=B |] ==> r``A <= s``B";
       
   147 by (fast_tac ZF_cs 1);
       
   148 val image_mono = result();
       
   149 
       
   150 goal ZF.thy "!!r s. [| r<=s;  A<=B |] ==> r-``A <= s-``B";
       
   151 by (fast_tac ZF_cs 1);
       
   152 val vimage_mono = result();
       
   153 
       
   154 val [sub,PQimp] = goal ZF.thy
       
   155     "[| A<=B;  !!x. x:A ==> P(x) --> Q(x) |] ==> Collect(A,P) <= Collect(B,Q)";
       
   156 by (fast_tac (ZF_cs addIs [sub RS subsetD, PQimp RS mp]) 1);
       
   157 val Collect_mono = result();
       
   158 
       
   159 (** Monotonicity of implications -- some could go to FOL **)
       
   160 
       
   161 goal ZF.thy "!!A B x. A<=B ==> x:A --> x:B";
       
   162 by (rtac impI 1);
       
   163 by (etac subsetD 1);
       
   164 by (assume_tac 1);
       
   165 val in_mono = result();
       
   166 
       
   167 goal IFOL.thy "!!P1 P2 Q1 Q2. [| P1-->Q1; P2-->Q2 |] ==> (P1&P2) --> (Q1&Q2)";
       
   168 by (Int.fast_tac 1);
       
   169 val conj_mono = result();
       
   170 
       
   171 goal IFOL.thy "!!P1 P2 Q1 Q2. [| P1-->Q1; P2-->Q2 |] ==> (P1|P2) --> (Q1|Q2)";
       
   172 by (Int.fast_tac 1);
       
   173 val disj_mono = result();
       
   174 
       
   175 goal IFOL.thy "!!P1 P2 Q1 Q2.[| Q1-->P1; P2-->Q2 |] ==> (P1-->P2)-->(Q1-->Q2)";
       
   176 by (Int.fast_tac 1);
       
   177 val imp_mono = result();
       
   178 
       
   179 goal IFOL.thy "P-->P";
       
   180 by (rtac impI 1);
       
   181 by (assume_tac 1);
       
   182 val imp_refl = result();
       
   183 
       
   184 val [PQimp] = goal IFOL.thy
       
   185     "[| !!x. P(x) --> Q(x) |] ==> (EX x.P(x)) --> (EX x.Q(x))";
       
   186 by (fast_tac (FOL_cs addIs [PQimp RS mp]) 1);
       
   187 val ex_mono = result();
       
   188 
       
   189 val [PQimp] = goal IFOL.thy
       
   190     "[| !!x. P(x) --> Q(x) |] ==> (ALL x.P(x)) --> (ALL x.Q(x))";
       
   191 by (fast_tac (FOL_cs addIs [PQimp RS mp]) 1);
       
   192 val all_mono = result();