src/HOL/Library/multiset_simprocs_util.ML
changeset 65029 00731700e54f
parent 65028 87e003397834
child 65030 7fd4130cd0a4
equal deleted inserted replaced
65028:87e003397834 65029:00731700e54f
     1 (* Author: Mathias Fleury, MPII
       
     2 
       
     3 
       
     4 Datatructure for the cancelation simprocs for multisets, based on Larry Paulson's simprocs for
       
     5 natural numbers and numerals.
       
     6 *)
       
     7 signature MULTISET_CANCEL_COMMON =
       
     8 sig
       
     9   val mk_sum : typ -> term list -> term
       
    10   val dest_sum : term -> term list
       
    11   val mk_coeff : int * term -> term
       
    12   val dest_coeff : term -> int * term
       
    13   val find_first_coeff : term -> term list -> int * term list
       
    14   val trans_tac : Proof.context -> thm option -> tactic
       
    15 
       
    16   val norm_ss1 : simpset
       
    17   val norm_ss2: simpset
       
    18   val norm_tac: Proof.context -> tactic
       
    19 
       
    20   val numeral_simp_tac : Proof.context -> tactic
       
    21   val simplify_meta_eq : Proof.context -> thm -> thm
       
    22   val prove_conv : tactic list -> Proof.context -> thm list -> term * term -> thm option
       
    23 end;
       
    24 
       
    25 structure Multiset_Cancel_Common : MULTISET_CANCEL_COMMON =
       
    26 struct
       
    27 
       
    28 (*** Utilities ***)
       
    29 
       
    30 (*No reordering of the arguments.*)
       
    31 fun fast_mk_repeat_mset (n, mset) =
       
    32   let val T = fastype_of mset in
       
    33     Const (@{const_name "repeat_mset"}, @{typ nat} --> T --> T) $ n $ mset
       
    34   end;
       
    35 
       
    36 (*repeat_mset is not symmetric, unlike multiplication over natural numbers.*)
       
    37 fun mk_repeat_mset (t, u) =
       
    38   (if fastype_of t = @{typ nat} then (t, u) else (u, t))
       
    39   |> fast_mk_repeat_mset;
       
    40 
       
    41 (*Maps n to #n for n = 1, 2*)
       
    42 val numeral_syms =
       
    43   map (fn th => th RS sym) @{thms numeral_One numeral_2_eq_2 numeral_1_eq_Suc_0};
       
    44 
       
    45 val numeral_sym_ss =
       
    46   simpset_of (put_simpset HOL_basic_ss @{context} addsimps numeral_syms);
       
    47 
       
    48 fun mk_number 1 = HOLogic.numeral_const HOLogic.natT $ HOLogic.one_const
       
    49   | mk_number n = HOLogic.mk_number HOLogic.natT n;
       
    50 fun dest_number t = Int.max (0, snd (HOLogic.dest_number t));
       
    51 
       
    52 fun find_first_numeral past (t::terms) =
       
    53     ((dest_number t, t, rev past @ terms)
       
    54     handle TERM _ => find_first_numeral (t::past) terms)
       
    55   | find_first_numeral _ [] = raise TERM("find_first_numeral", []);
       
    56 
       
    57 fun typed_zero T = Const (@{const_name "Groups.zero"}, T);
       
    58 val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
       
    59 
       
    60 (*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero.*)
       
    61 fun mk_sum T [] = typed_zero T
       
    62   | mk_sum _ [t,u] = mk_plus (t, u)
       
    63   | mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts);
       
    64 
       
    65 val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} dummyT;
       
    66 
       
    67 
       
    68 (*** Other simproc items ***)
       
    69 
       
    70 val bin_simps =
       
    71   (@{thm numeral_One} RS sym) ::
       
    72   @{thms add_numeral_left diff_nat_numeral diff_0_eq_0 mult_numeral_left(1)
       
    73       if_True if_False not_False_eq_True
       
    74       nat_0 nat_numeral nat_neg_numeral add_mset_commute repeat_mset.simps(1)
       
    75       replicate_mset_0 repeat_mset_empty
       
    76       arith_simps rel_simps};
       
    77 
       
    78 
       
    79 (*** CancelNumerals simprocs ***)
       
    80 
       
    81 val one = mk_number 1;
       
    82 
       
    83 fun mk_prod [] = one
       
    84   | mk_prod [t] = t
       
    85   | mk_prod (t :: ts) = if t = one then mk_prod ts else mk_repeat_mset (t, mk_prod ts);
       
    86 
       
    87 val dest_repeat_mset = HOLogic.dest_bin @{const_name repeat_mset} dummyT;
       
    88 
       
    89 fun dest_repeat_msets t =
       
    90   let val (t,u) = dest_repeat_mset t in
       
    91     t :: dest_repeat_msets u end
       
    92   handle TERM _ => [t];
       
    93 
       
    94 fun mk_coeff (k,t) = mk_repeat_mset (mk_number k, t);
       
    95 
       
    96 (*Express t as a product of (possibly) a numeral with other factors, sorted*)
       
    97 fun dest_coeff t =
       
    98   let
       
    99     val ts = sort Term_Ord.term_ord (dest_repeat_msets t);
       
   100     val (n, _, ts') =
       
   101       find_first_numeral [] ts
       
   102       handle TERM _ => (1, one, ts);
       
   103   in (n, mk_prod ts') end;
       
   104 
       
   105 (*Find first coefficient-term THAT MATCHES u*)
       
   106 fun find_first_coeff _ _ [] = raise TERM("find_first_coeff", [])
       
   107   | find_first_coeff past u (t::terms) =
       
   108     let val (n,u') = dest_coeff t in
       
   109       if u aconv u' then (n, rev past @ terms) else find_first_coeff (t::past) u terms end
       
   110     handle TERM _ => find_first_coeff (t::past) u terms;
       
   111 
       
   112 (*
       
   113   Split up a sum into the list of its constituent terms, on the way replace:
       
   114   * the \<open>add_mset a C\<close> by \<open>add_mset a {#}\<close> and \<open>C\<close>, iff C was not already the empty set;
       
   115   * the \<open>replicate_mset n a\<close> by \<open>repeat_mset n {#a#}\<close>.
       
   116 *)
       
   117 fun dest_add_mset (Const (@{const_name add_mset}, T) $ a $
       
   118       Const (@{const_name "Groups.zero_class.zero"}, U), ts) =
       
   119     Const (@{const_name add_mset}, T) $ a $ typed_zero U :: ts
       
   120   | dest_add_mset (Const (@{const_name add_mset}, T) $ a $ mset, ts) =
       
   121     dest_add_mset (mset, Const (@{const_name add_mset}, T) $ a $
       
   122       typed_zero (fastype_of mset) :: ts)
       
   123   | dest_add_mset (Const (@{const_name replicate_mset},
       
   124       Type (_, [_, Type (_, [T, U])])) $ n $ a, ts) =
       
   125     let val single_a = Const (@{const_name add_mset}, T --> U --> U) $ a $ typed_zero U in
       
   126       fast_mk_repeat_mset (n, single_a) :: ts end
       
   127   | dest_add_mset (t, ts) =
       
   128     let val (t1,t2) = dest_plus t in
       
   129       dest_add_mset (t1, dest_add_mset (t2, ts)) end
       
   130     handle TERM _ => t :: ts;
       
   131 
       
   132 fun dest_add_mset_sum t = dest_add_mset (t, []);
       
   133 
       
   134 val rename_numerals = simplify (put_simpset numeral_sym_ss @{context}) o Thm.transfer @{theory};
       
   135 
       
   136 (*Simplify \<open>repeat_mset (Suc 0) n\<close>, \<open>n+0\<close>, and \<open>0+n\<close> to \<open>n\<close>*)
       
   137 val add_0s  = map rename_numerals @{thms Groups.add_0 Groups.add_0_right};
       
   138 val mult_1s = map rename_numerals @{thms repeat_mset.simps(2)[of 0]};
       
   139 
       
   140 
       
   141 (*And these help the simproc return False when appropriate. We use the same list as the
       
   142 simproc for natural numbers, but adapted to multisets.*)
       
   143 val contra_rules =
       
   144   @{thms union_mset_add_mset_left union_mset_add_mset_right
       
   145       empty_not_add_mset add_mset_not_empty subset_mset.le_zero_eq le_zero_eq};
       
   146 
       
   147 val simplify_meta_eq =
       
   148   Arith_Data.simplify_meta_eq
       
   149     (@{thms numeral_1_eq_Suc_0 Nat.add_0_right
       
   150          mult_0 mult_0_right mult_1 mult_1_right
       
   151          Groups.add_0 repeat_mset.simps(1) monoid_add_class.add_0_right} @
       
   152      contra_rules);
       
   153 
       
   154 val mk_sum = mk_sum;
       
   155 val dest_sum = dest_add_mset_sum;
       
   156 val mk_coeff = mk_coeff;
       
   157 val dest_coeff = dest_coeff;
       
   158 val find_first_coeff = find_first_coeff [];
       
   159 val trans_tac = Numeral_Simprocs.trans_tac;
       
   160 
       
   161 val norm_ss1 =
       
   162   simpset_of (put_simpset Numeral_Simprocs.num_ss @{context} addsimps
       
   163     numeral_syms @ add_0s @ mult_1s @ @{thms ac_simps});
       
   164 
       
   165 val norm_ss2 =
       
   166   simpset_of (put_simpset Numeral_Simprocs.num_ss @{context} addsimps
       
   167     bin_simps @
       
   168     @{thms union_mset_add_mset_left union_mset_add_mset_right
       
   169         repeat_mset_replicate_mset ac_simps});
       
   170 
       
   171 fun norm_tac ctxt =
       
   172   ALLGOALS (simp_tac (put_simpset norm_ss1 ctxt))
       
   173   THEN ALLGOALS (simp_tac (put_simpset norm_ss2 ctxt));
       
   174 
       
   175 val mset_simps_ss =
       
   176   simpset_of (put_simpset HOL_basic_ss @{context} addsimps bin_simps);
       
   177 
       
   178 fun numeral_simp_tac ctxt = ALLGOALS (simp_tac (put_simpset mset_simps_ss ctxt));
       
   179 
       
   180 val simplify_meta_eq = simplify_meta_eq;
       
   181 val prove_conv = Arith_Data.prove_conv;
       
   182 
       
   183 end