src/HOL/Data_Structures/Tree234_Map.thy
changeset 61581 00d9682e8dd7
parent 61515 c64628dbac00
child 61640 44c9198f210c
equal deleted inserted replaced
61569:947ce60a06e1 61581:00d9682e8dd7
     8   "../Data_Structures/Map_by_Ordered"
     8   "../Data_Structures/Map_by_Ordered"
     9 begin
     9 begin
    10 
    10 
    11 subsection \<open>Map operations on 2-3-4 trees\<close>
    11 subsection \<open>Map operations on 2-3-4 trees\<close>
    12 
    12 
    13 fun lookup :: "('a::linorder * 'b) tree234 \<Rightarrow> 'a \<Rightarrow> 'b option" where
    13 fun lookup :: "('a::cmp * 'b) tree234 \<Rightarrow> 'a \<Rightarrow> 'b option" where
    14 "lookup Leaf x = None" |
    14 "lookup Leaf x = None" |
    15 "lookup (Node2 l (a,b) r) x =
    15 "lookup (Node2 l (a,b) r) x = (case cmp x a of
    16   (if x < a then lookup l x else
    16   LT \<Rightarrow> lookup l x |
    17   if a < x then lookup r x else Some b)" |
    17   GT \<Rightarrow> lookup r x |
    18 "lookup (Node3 l (a1,b1) m (a2,b2) r) x =
    18   EQ \<Rightarrow> Some b)" |
    19   (if x < a1 then lookup l x else
    19 "lookup (Node3 l (a1,b1) m (a2,b2) r) x = (case cmp x a1 of
    20    if x = a1 then Some b1 else
    20   LT \<Rightarrow> lookup l x |
    21    if x < a2 then lookup m x else
    21   EQ \<Rightarrow> Some b1 |
    22    if x = a2 then Some b2
    22   GT \<Rightarrow> (case cmp x a2 of
    23    else lookup r x)" |
    23           LT \<Rightarrow> lookup m x |
    24 "lookup (Node4 l (a1,b1) m (a2,b2) n (a3,b3) r) x =
    24           EQ \<Rightarrow> Some b2 |
    25   (if x < a2 then
    25           GT \<Rightarrow> lookup r x))" |
    26      if x = a1 then Some b1 else
    26 "lookup (Node4 t1 (a1,b1) t2 (a2,b2) t3 (a3,b3) t4) x = (case cmp x a2 of
    27      if x < a1 then lookup l x else lookup m x
    27   LT \<Rightarrow> (case cmp x a1 of
    28    else
    28            LT \<Rightarrow> lookup t1 x | EQ \<Rightarrow> Some b1 | GT \<Rightarrow> lookup t2 x) |
    29      if x = a2 then Some b2 else
    29   EQ \<Rightarrow> Some b2 |
    30      if x = a3 then Some b3 else
    30   GT \<Rightarrow> (case cmp x a3 of
    31      if x < a3 then lookup n x
    31            LT \<Rightarrow> lookup t3 x | EQ \<Rightarrow> Some b3 | GT \<Rightarrow> lookup t4 x))"
    32      else lookup r x)"
       
    33 
    32 
    34 fun upd :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>i" where
    33 fun upd :: "'a::cmp \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>i" where
    35 "upd x y Leaf = Up\<^sub>i Leaf (x,y) Leaf" |
    34 "upd x y Leaf = Up\<^sub>i Leaf (x,y) Leaf" |
    36 "upd x y (Node2 l ab r) =
    35 "upd x y (Node2 l ab r) = (case cmp x (fst ab) of
    37    (if x < fst ab then
    36    LT \<Rightarrow> (case upd x y l of
    38         (case upd x y l of
       
    39            T\<^sub>i l' => T\<^sub>i (Node2 l' ab r)
    37            T\<^sub>i l' => T\<^sub>i (Node2 l' ab r)
    40          | Up\<^sub>i l1 q l2 => T\<^sub>i (Node3 l1 q l2 ab r))
    38          | Up\<^sub>i l1 ab' l2 => T\<^sub>i (Node3 l1 ab' l2 ab r)) |
    41     else if x = fst ab then T\<^sub>i (Node2 l (x,y) r)
    39    EQ \<Rightarrow> T\<^sub>i (Node2 l (x,y) r) |
    42     else
    40    GT \<Rightarrow> (case upd x y r of
    43         (case upd x y r of
       
    44            T\<^sub>i r' => T\<^sub>i (Node2 l ab r')
    41            T\<^sub>i r' => T\<^sub>i (Node2 l ab r')
    45          | Up\<^sub>i r1 q r2 => T\<^sub>i (Node3 l ab r1 q r2)))" |
    42          | Up\<^sub>i r1 ab' r2 => T\<^sub>i (Node3 l ab r1 ab' r2)))" |
    46 "upd x y (Node3 l ab1 m ab2 r) =
    43 "upd x y (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
    47    (if x < fst ab1 then
    44    LT \<Rightarrow> (case upd x y l of
    48         (case upd x y l of
       
    49            T\<^sub>i l' => T\<^sub>i (Node3 l' ab1 m ab2 r)
    45            T\<^sub>i l' => T\<^sub>i (Node3 l' ab1 m ab2 r)
    50          | Up\<^sub>i l1 q l2 => Up\<^sub>i (Node2 l1 q l2) ab1 (Node2 m ab2 r))
    46          | Up\<^sub>i l1 ab' l2 => Up\<^sub>i (Node2 l1 ab' l2) ab1 (Node2 m ab2 r)) |
    51     else if x = fst ab1 then T\<^sub>i (Node3 l (x,y) m ab2 r)
    47    EQ \<Rightarrow> T\<^sub>i (Node3 l (x,y) m ab2 r) |
    52     else if x < fst ab2 then
    48    GT \<Rightarrow> (case cmp x (fst ab2) of
    53              (case upd x y m of
    49            LT \<Rightarrow> (case upd x y m of
    54                 T\<^sub>i m' => T\<^sub>i (Node3 l ab1 m' ab2 r)
    50                    T\<^sub>i m' => T\<^sub>i (Node3 l ab1 m' ab2 r)
    55               | Up\<^sub>i m1 q m2 => Up\<^sub>i (Node2 l ab1 m1) q (Node2 m2 ab2 r))
    51                  | Up\<^sub>i m1 ab' m2 => Up\<^sub>i (Node2 l ab1 m1) ab' (Node2 m2 ab2 r)) |
    56          else if x = fst ab2 then T\<^sub>i (Node3 l ab1 m (x,y) r)
    52            EQ \<Rightarrow> T\<^sub>i (Node3 l ab1 m (x,y) r) |
    57          else
    53            GT \<Rightarrow> (case upd x y r of
    58              (case upd x y r of
    54                    T\<^sub>i r' => T\<^sub>i (Node3 l ab1 m ab2 r')
    59                 T\<^sub>i r' => T\<^sub>i (Node3 l ab1 m ab2 r')
    55                  | Up\<^sub>i r1 ab' r2 => Up\<^sub>i (Node2 l ab1 m) ab2 (Node2 r1 ab' r2))))" |
    60               | Up\<^sub>i r1 q r2 => Up\<^sub>i (Node2 l ab1 m) ab2 (Node2 r1 q r2)))" |
    56 "upd x y (Node4 t1 ab1 t2 ab2 t3 ab3 t4) = (case cmp x (fst ab2) of
    61 "upd x y (Node4 l ab1 m ab2 n ab3 r) =
    57    LT \<Rightarrow> (case cmp x (fst ab1) of
    62    (if x < fst ab2 then
    58             LT \<Rightarrow> (case upd x y t1 of
    63       if x < fst ab1 then
    59                      T\<^sub>i t1' => T\<^sub>i (Node4 t1' ab1 t2 ab2 t3 ab3 t4)
    64         (case upd x y l of
    60                   | Up\<^sub>i t11 q t12 => Up\<^sub>i (Node2 t11 q t12) ab1 (Node3 t2 ab2 t3 ab3 t4)) |
    65            T\<^sub>i l' => T\<^sub>i (Node4 l' ab1 m ab2 n ab3 r)
    61             EQ \<Rightarrow> T\<^sub>i (Node4 t1 (x,y) t2 ab2 t3 ab3 t4) |
    66          | Up\<^sub>i l1 q l2 => Up\<^sub>i (Node2 l1 q l2) ab1 (Node3 m ab2 n ab3 r))
    62             GT \<Rightarrow> (case upd x y t2 of
    67       else
    63                     T\<^sub>i t2' => T\<^sub>i (Node4 t1 ab1 t2' ab2 t3 ab3 t4)
    68       if x = fst ab1 then T\<^sub>i (Node4 l (x,y) m ab2 n ab3 r)
    64                   | Up\<^sub>i t21 q t22 => Up\<^sub>i (Node2 t1 ab1 t21) q (Node3 t22 ab2 t3 ab3 t4))) |
    69       else
    65    EQ \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 (x,y) t3 ab3 t4) |
    70         (case upd x y m of
    66    GT \<Rightarrow> (case cmp x (fst ab3) of
    71            T\<^sub>i m' => T\<^sub>i (Node4 l ab1 m' ab2 n ab3 r)
    67             LT \<Rightarrow> (case upd x y t3 of
    72          | Up\<^sub>i m1 q m2 => Up\<^sub>i (Node2 l ab1 m1) q (Node3 m2 ab2 n ab3 r))
    68                     T\<^sub>i t3' \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 ab2 t3' ab3 t4)
    73     else
    69                   | Up\<^sub>i t31 q t32 => Up\<^sub>i (Node2 t1 ab1 t2) ab2(*q*) (Node3 t31 q t32 ab3 t4)) |
    74     if x = fst ab2 then T\<^sub>i (Node4 l ab1 m (x,y) n ab3 r) else
    70             EQ \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 ab2 t3 (x,y) t4) |
    75     if x < fst ab3 then
    71             GT \<Rightarrow> (case upd x y t4 of
    76       (case upd x y n of
    72                     T\<^sub>i t4' => T\<^sub>i (Node4 t1 ab1 t2 ab2 t3 ab3 t4')
    77          T\<^sub>i n' => T\<^sub>i (Node4 l ab1 m ab2 n' ab3 r)
    73                   | Up\<^sub>i t41 q t42 => Up\<^sub>i (Node2 t1 ab1 t2) ab2 (Node3 t3 ab3 t41 q t42))))"
    78        | Up\<^sub>i n1 q n2 => Up\<^sub>i (Node2 l ab1 m) ab2(*q*) (Node3 n1 q n2 ab3 r))
       
    79     else
       
    80     if x = fst ab3 then T\<^sub>i (Node4 l ab1 m ab2 n (x,y) r)
       
    81     else
       
    82       (case upd x y r of
       
    83          T\<^sub>i r' => T\<^sub>i (Node4 l ab1 m ab2 n ab3 r')
       
    84        | Up\<^sub>i r1 q r2 => Up\<^sub>i (Node2 l ab1 m) ab2 (Node3 n ab3 r1 q r2)))"
       
    85 
    74 
    86 definition update :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
    75 definition update :: "'a::cmp \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
    87 "update a b t = tree\<^sub>i(upd a b t)"
    76 "update x y t = tree\<^sub>i(upd x y t)"
    88 
    77 
    89 fun del :: "'a::linorder \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>d"
    78 fun del :: "'a::cmp \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>d" where
    90 where
    79 "del x Leaf = T\<^sub>d Leaf" |
    91 "del k Leaf = T\<^sub>d Leaf" |
    80 "del x (Node2 Leaf ab1 Leaf) = (if x=fst ab1 then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf ab1 Leaf))" |
    92 "del k (Node2 Leaf p Leaf) = (if k=fst p then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf p Leaf))" |
    81 "del x (Node3 Leaf ab1 Leaf ab2 Leaf) = T\<^sub>d(if x=fst ab1 then Node2 Leaf ab2 Leaf
    93 "del k (Node3 Leaf p Leaf q Leaf) =
    82   else if x=fst ab2 then Node2 Leaf ab1 Leaf else Node3 Leaf ab1 Leaf ab2 Leaf)" |
    94   T\<^sub>d(if k=fst p then Node2 Leaf q Leaf else
    83 "del x (Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf) =
    95      if k=fst q then Node2 Leaf p Leaf
    84   T\<^sub>d(if x = fst ab1 then Node3 Leaf ab2 Leaf ab3 Leaf else
    96      else Node3 Leaf p Leaf q Leaf)" |
    85      if x = fst ab2 then Node3 Leaf ab1 Leaf ab3 Leaf else
    97 "del k (Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf) =
    86      if x = fst ab3 then Node3 Leaf ab1 Leaf ab2 Leaf
    98   T\<^sub>d(if k=fst ab1 then Node3 Leaf ab2 Leaf ab3 Leaf else
       
    99      if k=fst ab2 then Node3 Leaf ab1 Leaf ab3 Leaf else
       
   100      if k=fst ab3 then Node3 Leaf ab1 Leaf ab2 Leaf
       
   101      else Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf)" |
    87      else Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf)" |
   102 "del k (Node2 l a r) =
    88 "del x (Node2 l ab1 r) = (case cmp x (fst ab1) of
   103   (if k<fst a then node21 (del k l) a r else
    89   LT \<Rightarrow> node21 (del x l) ab1 r |
   104    if k > fst a then node22 l a (del k r)
    90   GT \<Rightarrow> node22 l ab1 (del x r) |
   105    else let (a',t) = del_min r in node22 l a' t)" |
    91   EQ \<Rightarrow> let (ab1',t) = del_min r in node22 l ab1' t)" |
   106 "del k (Node3 l a m b r) =
    92 "del x (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
   107   (if k<fst a then node31 (del k l) a m b r else
    93   LT \<Rightarrow> node31 (del x l) ab1 m ab2 r |
   108    if k = fst a then let (a',m') = del_min m in node32 l a' m' b r else
    94   EQ \<Rightarrow> let (ab1',m') = del_min m in node32 l ab1' m' ab2 r |
   109    if k < fst b then node32 l a (del k m) b r else
    95   GT \<Rightarrow> (case cmp x (fst ab2) of
   110    if k = fst b then let (b',r') = del_min r in node33 l a m b' r'
    96            LT \<Rightarrow> node32 l ab1 (del x m) ab2 r |
   111    else node33 l a m b (del k r))" |
    97            EQ \<Rightarrow> let (ab2',r') = del_min r in node33 l ab1 m ab2' r' |
   112 "del x (Node4 l ab1 m ab2 n ab3 r) =
    98            GT \<Rightarrow> node33 l ab1 m ab2 (del x r)))" |
   113   (if x < fst ab2 then
    99 "del x (Node4 t1 ab1 t2 ab2 t3 ab3 t4) = (case cmp x (fst ab2) of
   114      if x < fst ab1 then node41 (del x l) ab1 m ab2 n ab3 r else
   100   LT \<Rightarrow> (case cmp x (fst ab1) of
   115      if x = fst ab1 then let (ab',m') = del_min m in node42 l ab' m' ab2 n ab3 r
   101            LT \<Rightarrow> node41 (del x t1) ab1 t2 ab2 t3 ab3 t4 |
   116      else node42 l ab1 (del x m) ab2 n ab3 r
   102            EQ \<Rightarrow> let (ab',t2') = del_min t2 in node42 t1 ab' t2' ab2 t3 ab3 t4 |
   117    else
   103            GT \<Rightarrow> node42 t1 ab1 (del x t2) ab2 t3 ab3 t4) |
   118      if x = fst ab2 then let (ab',n') = del_min n in node43 l ab1 m ab' n' ab3 r else
   104   EQ \<Rightarrow> let (ab',t3') = del_min t3 in node43 t1 ab1 t2 ab' t3' ab3 t4 |
   119      if x < fst ab3 then node43 l ab1 m ab2 (del x n) ab3 r else
   105   GT \<Rightarrow> (case cmp x (fst ab3) of
   120      if x = fst ab3 then let (ab',r') = del_min r in node44 l ab1 m ab2 n ab' r'
   106           LT \<Rightarrow> node43 t1 ab1 t2 ab2 (del x t3) ab3 t4 |
   121      else node44 l ab1 m ab2 n ab3 (del x r))"
   107           EQ \<Rightarrow> let (ab',t4') = del_min t4 in node44 t1 ab1 t2 ab2 t3 ab' t4' |
       
   108           GT \<Rightarrow> node44 t1 ab1 t2 ab2 t3 ab3 (del x t4)))"
   122 
   109 
   123 definition delete :: "'a::linorder \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
   110 definition delete :: "'a::cmp \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
   124 "delete k t = tree\<^sub>d(del k t)"
   111 "delete x t = tree\<^sub>d(del x t)"
   125 
   112 
   126 
   113 
   127 subsection "Functional correctness"
   114 subsection "Functional correctness"
   128 
   115 
   129 lemma lookup: "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
   116 lemma lookup: "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
   142 
   129 
   143 lemma inorder_del: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
   130 lemma inorder_del: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
   144   inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
   131   inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
   145 by(induction t rule: del.induct)
   132 by(induction t rule: del.induct)
   146   ((auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)[1])+
   133   ((auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)[1])+
   147 (* 290 secs (2015) *)
   134 (* 200 secs (2015) *)
   148 
   135 
   149 lemma inorder_delete: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
   136 lemma inorder_delete: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
   150   inorder(delete x t) = del_list x (inorder t)"
   137   inorder(delete x t) = del_list x (inorder t)"
   151 by(simp add: delete_def inorder_del)
   138 by(simp add: delete_def inorder_del)
   152 
   139 
   153 
   140 
   154 subsection \<open>Balancedness\<close>
   141 subsection \<open>Balancedness\<close>
   155 
   142 
   156 lemma bal_upd: "bal t \<Longrightarrow> bal (tree\<^sub>i(upd x y t)) \<and> height(upd x y t) = height t"
   143 lemma bal_upd: "bal t \<Longrightarrow> bal (tree\<^sub>i(upd x y t)) \<and> height(upd x y t) = height t"
   157 by (induct t) (auto, auto split: up\<^sub>i.split) (* 33 secs (2015) *)
   144 by (induct t) (auto, auto split: up\<^sub>i.split) (* 20 secs (2015) *)
   158 
   145 
   159 lemma bal_update: "bal t \<Longrightarrow> bal (update x y t)"
   146 lemma bal_update: "bal t \<Longrightarrow> bal (update x y t)"
   160 by (simp add: update_def bal_upd)
   147 by (simp add: update_def bal_upd)
   161 
   148 
   162 
   149 
   163 lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
   150 lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
   164 by(induction x t rule: del.induct)
   151 by(induction x t rule: del.induct)
   165   (auto simp add: heights height_del_min split: prod.split)
   152   (auto simp add: heights height_del_min split: prod.split)
       
   153 (* 20 secs (2015) *)
   166 
   154 
   167 lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
   155 lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
   168 by(induction x t rule: del.induct)
   156 by(induction x t rule: del.induct)
   169   (auto simp: bals bal_del_min height_del height_del_min split: prod.split)
   157   (auto simp: bals bal_del_min height_del height_del_min split: prod.split)
   170 (* 110 secs (2015) *)
   158 (* 100 secs (2015) *)
   171 
   159 
   172 corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
   160 corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
   173 by(simp add: delete_def bal_tree\<^sub>d_del)
   161 by(simp add: delete_def bal_tree\<^sub>d_del)
   174 
   162 
   175 
   163