equal
deleted
inserted
replaced
420 (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4) sequentially" |
420 (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4) sequentially" |
421 using d0 \<open>\<epsilon> > 0\<close> apply (subst (asm) tendsto_iff) |
421 using d0 \<open>\<epsilon> > 0\<close> apply (subst (asm) tendsto_iff) |
422 by (subst (asm) dist_complex_def, drule spec, erule mp, auto) |
422 by (subst (asm) dist_complex_def, drule spec, erule mp, auto) |
423 hence "\<exists>N. \<forall>n \<ge> N. cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) - |
423 hence "\<exists>N. \<forall>n \<ge> N. cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) - |
424 (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4" by (simp add: eventually_sequentially) |
424 (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4" by (simp add: eventually_sequentially) |
425 then guess N .. |
425 then obtain N |
|
426 where "\<forall>n\<ge>N. cmod ((CLBINT t:{- d / 2..d / 2}. 1 - char (M n) t) - |
|
427 (CLBINT t:{- d / 2..d / 2}. 1 - char M' t)) < d * \<epsilon> / 4" .. |
426 hence N: "\<And>n. n \<ge> N \<Longrightarrow> cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) - |
428 hence N: "\<And>n. n \<ge> N \<Longrightarrow> cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) - |
427 (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4" by auto |
429 (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4" by auto |
428 { fix n |
430 { fix n |
429 assume "n \<ge> N" |
431 assume "n \<ge> N" |
430 have "cmod (CLBINT t:{-d/2..d/2}. 1 - char (M n) t) = |
432 have "cmod (CLBINT t:{-d/2..d/2}. 1 - char (M n) t) = |